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Abstract

The state space explosion problem in model checking remains the chief obstacle to

the practical veri�cation of real-world distributed systems. We attempt to address

this problem in the context of verifying concurrent (message-passing) C programs

against safety speci�cations. More speci�cally, we present a fully automated com-

positional framework which combines two orthogonal abstraction techniques (oper-

ating respectively on data and events) within a counterexample-guided abstraction

re�nement (CEGAR) scheme. In this way, our algorithm incrementally increases

the granularity of the abstractions until the speci�cation is either established or

refuted. Our explicit use of compositionality delays the onset of state space explo-

sion for as long as possible. To our knowledge, this is the �rst compositional use of

CEGAR in the context of model checking concurrent C programs. We describe our

approach in detail, and report on some very encouraging preliminary experimental

results obtained with our tool MAGIC.

1 Introduction

Formal veri�cation of distributed software has long been acknowledged to be

a diÆcult yet important task. For this reason, there has been a tremendous
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amount of research over the years devoted to the abstract modelling and val-

idation of concurrent systems and their speci�cations. Many paradigms and

techniques, ranging from process algebra and model checking to predicate ab-

straction and counterexample-guided abstraction re�nement (CEGAR), have

been proposed towards the ultimate goal of automatically verifying large dis-

tributed applications written in industry-level programming languages.

The majority of these advances target speci�c|and often orthogonal|

aspects of the problem, but fail to solve it as a whole. The work we present here

combines several of these techniques to eÆciently verify global speci�cations

on concurrent C programs in a fully automated way. More speci�cally, we fo-

cus on reactive systems, implemented using concurrent C programs that com-

municate with each other through synchronous (blocking) message-passing.

Examples of such systems include client-server protocols, schedulers, telecom-

munication applications, etc. We consider safety speci�cations, in other words

requirements describing the sequences of messages (or events) that the system

is allowed to produce, or equivalently the `bad' states that the system is meant

to avoid.

We propose a fully automated compositional two-level counterexample-

guided abstraction re�nement scheme to verify that a parallel composition

C1jj : : : jjCn of n sequential C programs satis�es a speci�cation Spec. We �rst

use predicate abstraction to transform conservatively (insofar as safety prop-

erties are concerned) each (in�nite-state) C program Ci into a �nite-state

process Pi. Since the parallel composition of these Pi's may well still have an

unmanageably large state space, we further reduce each Pi by conservatively

aggregating states together, based on the events they can perform, yielding

a smaller process Ai; only then do we explicitly build the global state space

of the much coarser parallel composition A = A1jj : : : jjAn. By construction,

A exhibits all of the original system's behaviours, and usually many more.

We then check A against the speci�cation Spec. If successful, we conclude

that our original system C1jj : : : jjCn is safe. Otherwise, we must examine the

counterexample obtained to determine whether it is valid (at the lower levels)

or not. It is important to note that this validation can be carried out level-

and component-wise, without it ever being necessary to construct in full the

large state space of the whole system. A valid counterexample at the lowest

level shows Spec to be violated and thus terminates the procedure. Other-

wise, a (component-speci�c) re�nement of the appropriate abstracted system

is carried out, eliminating the spurious counterexample, and the algorithm

proceeds with a new iteration of the veri�cation cycle.

The crucial features of our approach therefore consist of the following:

� We leverage two very di�erent kinds of abstraction to reduce a parallel com-

position of sequential C programs to a very coarse parallel composition of

�nite-state processes. The �rst (predicate) abstraction partitions the (po-

tentially in�nite) state space according to the possible values of variables,

whereas the second abstraction lumps these resulting states together ac-
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cording to the events that they can communicate.

� A counterexample-guided abstraction re�nement scheme incrementally re-

�nes these abstractions until the right granularity is achieved to decide

whether the speci�cation holds or not. We note that while termination of

the entire algorithm obviously cannot be guaranteed
2
, all of our experi-

mental examples could be handled without requiring human input.

� Our use of compositional reasoning, grounded in standard process algebraic

techniques, enables us to perform most of our analysis component by com-

ponent, without ever having to construct global state spaces except at the

highest (most abstract) level.

The veri�cation procedure is fully automated, and requires no user input be-

yond supplying the C programs and the speci�cation to be veri�ed. We have

implemented the algorithm within our tool MAGIC (Modular Analysis of

proGrams In C) [2,9] and have carried out a number of case studies, which

we report here. To our knowledge, our algorithm is the �rst to invoke CEGAR

over more than a single abstraction re�nement scheme (and in particular over

action-based abstractions), and also the �rst to combine CEGAR with fully

automatic compositional reasoning for concurrent systems.

The experiments we have carried out range over a variety of sequential and

concurrent examples, and yield promising results. With the smaller examples

we �nd that our two-level approach constructs models that are 2 to 11 times

smaller than those generated by predicate abstraction alone. These ratios

increase dramatically as we consider larger and larger examples. In some of

our instances MAGIC constructs models that are more than two orders of

magnitude smaller than those created by mere predicate abstraction. Full

details are presented in Section 5.

Foundations and Related Work

Predicate abstraction was introduced in [37] as a means to transform conser-

vatively in�nite-state systems into �nite-state ones, so as to enable the use of

�nitary techniques such as model checking [12,11]. It has since been widely

used|see, for instance [17,21,18,32,5,20]. The technique we employ to gener-

ate automatically suitable predicates is described in [9].

The formalization of the more general notion of abstraction �rst appeared

in [19]. We distinguish between exact abstractions, which preserve all prop-

erties of interest of the system, and conservative abstractions|used in this

paper|which are only guaranteed to preserve `undesirable' properties of the

system (e.g., [27,14]). The advantage of the latter is that they usually lead

to much greater reductions in the state space than their exact counterparts.

However, conservative abstractions in general require an iterated abstraction

re�nement mechanism (such as CEGAR [13]) in order to establish speci�cation

2 This of course follows from the fact that the halting problem is undecidable.
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satisfaction.

The abstractions we use on �nite-state processes essentially lump together

states that can perform the same set of actions, and gradually re�ne these

partitions according to reachable successor states. Our re�nement procedure

can be seen as an atomic step of the Paige-Tarjan algorithm [34], and therefore

yields successive abstractions which converge in a �nite number of steps to the

bisimulation quotient of the original process.

Counterexample-guided abstraction re�nement [13,28], or CEGAR, is an

iterative procedure whereby spurious counterexamples to a speci�cation are

repeatedly eliminated through incremental re�nements of a conservative ab-

straction of the system. CEGAR has been used, among others, in [33] (in

non-automated form), and [6,35,29,24,10,15].

Compositionality, which features crucially in our work, is broadly con-

cerned with the preservation of properties under substitution of components

in concurrent systems. It has been most extensively studied in process alge-

bra (e.g., [26,31,36]), particularly in conjunction with abstraction. In [7], a

compositional framework for (non-automated) CEGAR over data-based ab-

stractions is presented. This approach di�ers from ours in that communication

takes place through shared variables (rather than blocking message-passing),

and abstractions are re�ned by eliminating spurious transitions, rather than

by splitting abstract states.

A technique closely related to compositionality is that of assume-guarantee

reasoning [22,30,25]. It was originally developed to circumvent the diÆculties

associated with generating exact abstractions, and has recently been imple-

mented as part of a fully automated and incremental veri�cation framework

[16].

Among the works most closely resembling ours we note the following. The

Bandera project [18] o�ers tool support for the automated veri�cation of Java

programs based on abstract interpretation; there is no automated CEGAR

and no explicit compositional support for concurrency. [35] imports Bandera-

derived abstractions into an extension of Java PathFinder which incorporates

CEGAR. However, once again no use is made of compositionality, and only

a single level of abstraction is considered. [38] describes another tool im-

plemented in Java PathFinder which explicitly supports concurrency; it uses

datatype abstraction on the �rst level, and partial order reduction with aggre-

gation of invisible transitions on the second level. Since all abstractions are ex-

act it does not require the use of CEGAR. The SLAM project [3,6,5] has been

very successful in analyzing interfaces written in C. It is built around a single-

level predicate abstraction and automated CEGAR treatment, and o�ers no

explicit compositional support for concurrency. Lastly, the BLAST project

[1,24,23] proposes a single-level lazy (on-the-
y) predicate abstraction scheme

together with CEGAR and thread-modular assume-guarantee reasoning. The

BLAST framework is based on shared variables rather than message-passing

as the communication mechanism.
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The next section presents a series of standard de�nitions that are used

throughout the paper. Section 3 then describes the two-level CEGAR algo-

rithm, while Section 4 presents our action-guided CEGAR procedure. Sec-

tion 5 summarizes the results of our experiments. Finally, Section 6 o�ers

conclusions and avenues for future work.

2 Preliminaries

A labelled transition system (LTS for short) is a quadruple hS; init ;Act ; T i
with S a �nite set of states, init 2 S an initial state, Act a �nite set (alphabet)

of actions (or events), and T � S � A � S a transition relation. We often

write s
a

�! t to mean (s; a; t) 2 T . In this section, unless noted otherwise, we

assume a �xed LTS M = hS; init ;Act ; T i.

A trace � is a �nite (possibly empty) sequence of actions. We de�ne the

language L(M) of the LTS M to be the set of all traces a1 : : : an 2 Act
�

such that, for some sequence s0 : : : sn of states of M (with s0 = init) we have

s0
a1�! s1

a2�! : : :
an�! sn. We refer to the underlying sequence of states

s0 : : : sn as the path in M corresponding to the trace a1 : : : an.

For s 2 S we write enabled(s) = fa 2 Act j 9t 2 S � s
a

�! tg to denote the

set of actions enabled in state s.

For a trace � = a1 : : : an 2 Act
� and s; t 2 S two states of M , we write

s
�

=) t to indicate that t is reachable from s through �, i.e., that there exist

states s0 : : : sn with s = s0 and t = sn, such that s0
a1�! s1

a2�! : : :
an�! sn.

Given a state s 2 S and a trace � 2 Act
�, let Reach(M; s; �) = ft 2 S js

�

=) tg
stand for the set of states reachable from s through �. We overload this

notation by setting, for a set of states Q � S, Reach(M;Q; �) = ft 2 S j 9q 2
Q � q

�

=) tg; this represents the set of states reachable through � from some

state in Q.

Let � 2 Act
� be a trace over Act , and let Act 0 be another (not necessarily

disjoint) set of actions. The projection ��
Act

0 of � on Act
0 is the subtrace of

� obtained by simply removing all actions in � that are not in Act
0.

Let M1 = hS1; init1;Act1; T1i and M2 = hS2; init2;Act2; T2i be two LTSs.

Their parallel compositionM1jjM2 = hS1�S2; (init1; init2);Act1[Act 2; T1jjT2i
is de�ned so that ((s1; s2); a; (t1; t2)) 2 T1jjT2 i� one of the following holds:

(i) a 2 Act 1 n Act2 and s1
a

�! t1 and s2 = t2.

(ii) a 2 Act 2 n Act1 and s2
a

�! t2 and s1 = t1.

(iii) a 2 Act 1 \ Act2 and s1
a

�! t1 and s2
a

�! t2.

In other words, components must synchronize on shared actions and proceed

independently on local actions. This notion of parallel composition has been

used in, e.g., CSP [26], and in the work of Anantharaman et al. [4]. We refer

the reader to [36] for proofs of the following standard results:
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Theorem 2.1

(i) Parallel composition is associative and commutative as far as the accepted

language is concerned. Thus, in particular, no bracketing is required when

combining more than two LTSs.

(ii) Let M1; : : : ;Mn and M 0

1
; : : : ;M 0

n
be LTSs with every pair of LTSs Mi,

M 0

i
sharing the same alphabet Act i = Act 0

i
. If, for each 1 6 i 6 n, we

have L(Mi) � L(M 0

i
), then L(M1jj : : : jjMn) � L(M 0

1
jj : : : jjM 0

n
). In other

words, parallel composition preserves language containment.

(iii) Let M1; : : : ;Mn be LTSs with respective alphabets Act1; : : : ;Actn, and let

� be any trace. Then � 2 L(M1jj : : : jjMn) i�, for each 1 6 i 6 n, we

have ��
Acti

2 L(Mi). In other words, whether a trace belongs to a parallel

composition of LTSs can be checked by projecting and examining the trace

on each individual component separately.

Theorem 2.1 forms the basis of our compositional approach to veri�cation.

We consider a concurrent version of the C programming language in which
a �xed number of sequential programs C1; : : : ; Cn are run concurrently on
independent platforms. Each program Ci has an associated alphabet of actions
Act i, and can communicate a particular event a in its alphabet only if all other
programs having a in their alphabets are willing to synchronize on this event.
An action is realized in C using a call to a library routine. Programs have
local variables but no shared variables. In other words, we are assuming
blocking message-passing (i.e., `send' and `receive' statements) as the sole
communication mechanism. Given such a parallel composition C1jj : : : jjCn of
C programs, we write L(C1jj : : : jjCn) to denote the set of all possible traces
of events which C1jj : : : jjCn can communicate. At present, the full syntax of
ANSI C is supported, with the exception of pointers, recursion, and 
oating-
point arithmetic. We refer the reader to [9] for more details.

Our goal is to verify that the concurrent C program C1jj : : : jjCn satis�es
a speci�cation Spec, where the latter is expressed as an LTS. We use trace
containment as our notion of conformance: the concurrent program meets its
speci�cation i� L(C1jj : : : jjCn) � L(Spec).

3 Two-Level Counterexample-Guided Abstraction Re-

�nement

Consider a concurrent C program C1jj : : : jjCn and a speci�cation Spec. We
�rst invoke predicate abstraction to reduce each (in�nite-state) program Ci

into a �nite LTS (or process) Pi having the same alphabet as Ci. The initial
abstraction is created with a relatively small set of predicates, and further
predicates are then added as required to re�ne the Pi's and eliminate spuri-
ous counterexamples. This procedure may add a large number of predicates,
yielding an abstract model with a potentially huge state space. We therefore

6
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Input: C programs C1; : : : ; Cn and specification Spec

Output: `C1jj : : : jjCn satisfies Spec' or

counterexample � 2 L(C1jj : : : jjCn) n L(Spec)

predicate abst.: create LTSs P1; : : : ; Pn with L(Ci) � L(Pi)
y action-guided abst.: create LTSs A1; : : : ; An with L(Pi) � L(Ai)
repeat

if L(A1jj : : : jjAn) � L(Spec) return `C1jj : : : jjCn satisfies Spec'

else

extract counterexample � 2 L(A1jj : : : jjAn) n L(Spec)
if � 2 L(P1jj : : : jjPn)

if � 2 L(C1jj : : : jjCn) return �

else

do predicate abstraction refinement of P1; : : : ; Pn

y adjust or create new abstractions A1; : : : ; An

else

z do action-guided refinement of A1; : : : ; An to eliminate �

endrepeat.

Fig. 1. Two-level CEGAR algorithm.

seek to further reduce each Pi into an LTS Ai with fewer states, again having
the same alphabet as Ci. Both abstractions are such that they maintain the
language containment L(Ci) � L(Pi) � L(Ai). Theorem 2.1 then immediately
yields the rule:

L(A1jj : : : jjAn) � L(Spec)) L(C1jj : : : jjCn) � L(Spec)

The converse need not hold: it is possible for a trace � =2 Spec to belong to
L(A1jj : : : jjAn) but not to L(C1jj : : : jjCn). Such a spurious counterexample is
then eliminated, either by suitably re�ning the Ai's (if � =2 L(P1jj : : : jjPn)), or
by re�ning the Pi's (and subsequently adjusting the Ai's to re
ect this change).
The chief property of our re�nement procedure (whether at the Ai or the Pi

level) is that it purges the spurious counterexample by restricting the accepted
language yet maintains the invariant L(Ci) � L(P 0

i
) � L(Pi) � L(A0

i
) �

L(Ai), where primed terms denote re�ned processes. Note that, according
to Theorem 2.1, we can check whether � 2 L(P1jj : : : jjPn) and whether � 2
L(C1jj : : : jjCn) one sequential component at a time, without it ever being
necessary to construct the full state spaces of the parallel compositions. This
iterated process forms the basis of our two-level CEGAR algorithm.

We describe this algorithm in Figure 1. The predicate abstraction and re-
�nement procedure is detailed in [9]. We present our action-guided abstraction
and re�nement steps (marked y and z respectively) in Section 4.
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4 Action-Guided Abstraction

We present a CEGAR scheme that operates on LTSs. Given an LTS P =

hS; init ;Act ; T i, we �rst create an LTS A0 = hS0

A
; init0

A
;Act ; T 0

A
i such that

(i) L(P ) � L(A0) and (ii) A0 contains at most as many states as P (and

typically many fewer). Given an abstraction A = hSA; initA;Act ; TAi of P

and a trace � 2 L(A) n L(P ), our re�nement procedure produces a re�ned

abstraction A0 = hS 0

A
; init 0

A
;Act ; T 0

A
i such that (i) L(P ) � L(A0) � L(A),

(ii) � =2 L(A0), and (iii) A0 contains at most as many states as P . It is

important to note that we require throughout that P , A0, A, and A0 all share

the same alphabet. We also remark that iterating this re�nement procedure

must converge in a �nite number of steps to an LTS that accepts the same

language as P .

Let us write B = hSB; initB ; Act; TBi to denote a generic abstraction of P .

States of B are called abstract states, whereas states of P are called concrete

states. In our framework, abstract states are always disjoint sets of concrete

states that partition S, and our abstraction re�nement step corresponds pre-

cisely to a re�nement of the partition. For s 2 S a concrete state, the unique

abstract state of B to which s belongs is written [s]B.

In any abstraction B that we generate, a partition SB of the concrete states

of P uniquely determines the abstract model B: the initial state initB of B

is simply [init ]B, and for any pair of abstract states u; v 2 SB and any action

a 2 Act , we postulate a transition u
a

�! v 2 TB i� there exist concrete states

s 2 u and t 2 v such that s
a

�! t. This construction is an instance of an

existential abstraction [14]. It is straightforward to show that it is sound, i.e.,

that L(P ) � L(B) always holds.

The initial partition S0

A
of concrete states identi�es two states s; t 2

S if they share the same set of immediately enabled actions: t 2 [s]0
A

i�

enabled(t) = enabled(s). We then let S0

A
= f[s]0

A
js 2 Sg. Again, this uniquely

de�nes our initial abstraction A0, the construction marked y on Figure 1.

In order to describe the re�nement step, we need an auxiliary de�nition.

Given an abstract state u 2 SB and an action a 2 Act , we construct a re�ned

partition S 0

B
= Split(SB; u; a) of S which agrees with SB outside of u, but

distinguishes concrete states in u if they have di�erent abstract a-successors

in SB. More precisely, for any s 2 S, if s =2 u, we let [s]B0 = [s]B. Otherwise,

for s; t 2 u, we let [s]B0 = [t]B0 i�
S
f[s0]B j s

0 2 Reach(P; s; a)g =
S
f[t0]B j t

0 2
Reach(P; t; a)g. We then let Split(SB; u; a) = f[s]B0 j s 2 Sg. This re�ned par-

tition uniquely de�nes a new abstraction, which we write Abs(Split(SB; u; a)).

Note that in order to compute the transition relation of Abs(Split(SB; u; a))

it suÆces to adjust only those transitions in TB that have u either as source

or target.

The re�nement step takes as input a `spurious' trace � 2 L(A) nL(P ) and
returns a re�ned abstraction A0 which does not accept �. This is achieved

by repeatedly splitting states of A along abstract paths which accept �. The

8
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Input: abstraction A of P (with L(P ) � L(A)) and

trace � = a1 : : : am 2 L(A) n L(P )
Output: refined abstraction A0

(with L(P ) � L(A0) � L(A)) and

� =2 L(A0)

while there exists some abstract path u0
a1
�! : : :

am
�! um in A do

let reachable states = finitg /* init = initial state of P */

let j = 1
while reachable states 6= ; do

let reachable states = Reach(P; reachable states ; aj) \ uj
let j = j + 1

endwhile

let A = Abs(Split(SA; uj�2; aj�1)) /* SA = set of states of A */

endwhile

let A0 = A

return A0.

Fig. 2. Action-guided CEGAR algorithm on LTS.

algorithm in Figure 2 (marked z in Figure 1) describes this procedure in detail.

Theorem 4.1 The algorithm described in Figure 2 is correct and always ter-

minates.

Proof. We �rst note that it is immediate that whenever the algorithm termi-
nates it does return an abstraction A0 with � =2 L(A0). It is equally clear, since
A0 is obtained via successive re�nements of A, that L(P ) � L(A0) � L(A).
It remains to show that every splitting operation performed by the algorithm
results in a proper partition re�nement; termination then follows from the fact
that the set of states of P is �nite.

Observe that, since � =2 L(P ), Reach(P; init ; �) = ;, and therefore the
inner while loop always terminates. At that point, we claim that (i) there is

an abstract transition uj�2

aj�1

�! uj�1; (ii) there are some concrete states in uj�2

reachable (in P ) from init ; and (iii) none of these reachable concrete states
have concrete aj�1-successors in uj�1. Note that (ii) follows from the fact that
the inner loop is entered with reachable states = finitg, whereas (i) and (iii)
are immediate. Because of the existential de�nition of the abstract transition
relation, we conclude that uj�2 contains two kinds of concrete states: some
having concrete aj�1-successors in uj�1, and some not. Splitting state uj�2

according to action aj�1 therefore produces a proper re�nement. 2

We remark again that each splitting operation is similar to a unit step of
the Paige-Tarjan algorithm [34]. Iterating our re�nement procedure therefore
converges to the bisimulation quotient of P .

We stress that the CEGAR algorithm described in Figure 1 never invokes
the above abstraction re�nement routine with the full parallel composition
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A = A1jj : : : jjAn as input. Indeed, this would be very expensive, since the

size of the global state space grows exponentially with the number of con-

current processes. It is much cheaper to take advantage of composition-

ality: by Theorem 2.1, � 2 L(A1jj : : : jjAn) n L(P1jj : : : jjPn) i�, for some i,

��Acti 2 L(Ai) nL(Pi). It then suÆces to apply abstraction re�nement to this

particular Ai, since ��Acti =2 L(A0

i
) implies that � =2 L(A1jj : : : jjA

0

i
jj : : : jjAn).

The advantage of this approach follows from the fact that the computational

e�ort required to identify Ai grows only linearly with the number of concurrent

components.

5 Experimental Results

Our experiments were carried out with two broad goals in mind. The �rst goal

was to compare the overall e�ectiveness of the proposed two-level CEGAR

approach, particularly insofar as memory usage is concerned. The second

goal was to verify the e�ectiveness of our LTS abstraction scheme by itself.

We carried out experiments over 36 examples, of which 26 were sequential

programs and 10 were concurrent programs. Each example consisted of an

implementation (a C program) and a speci�cation (provided separately as an

LTS). All of the experiments were carried out on an AMD Athlon 1800 XP

machine with 3 GB RAM running RedHat 7.1.

Example LOC Description PredOnly BothAbst

State Iter Time State Iter Time

lock-y 27 pthread mutex lock (pthread) 26 1 52 16 3 54

unlock-y 24 pthread mutex unlock (pthread) 27 1 51 13 2 56

socket-y 60 socket (socket) 187 3 1752 44 25 2009

sock alloc-y 24 sock alloc (socket) 50 2 141 14 4 154

sys send-y 4 sys send (socket) 7 1 92 6 1 93

sock sendmsg-y 11 sock sendmsg (socket) 23 1 108 14 3 113

lock-n 27 modi�ed pthread mutex lock 23 1 59 14 2 61

unlock-n 24 modi�ed pthread mutex unlock 27 1 61 12 2 66

sock alloc-n 24 modi�ed sock alloc 47 1 103 9 1 106

sock sendmsg-n 11 modi�ed sock sendmsg 21 1 96 10 1 97

All times are in milliseconds

Fig. 3. Summary of results for Linux Kernel code. LOC and Description de-

note the number of lines of code and a brief description of the benchmark source

code. The measurements for PIter and LIter have been omitted because they are

insigni�cant.

Each example was veri�ed twice, once with only the low-level abstraction,

and once with the full two-level algorithm. Tests that used only the low-level
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predicate abstraction re�nement scheme are marked by PredOnly in our results

tables, whereas tests that also incorporated our LTS action-guided abstraction

re�nement procedure are marked by BothAbst. Both schemes started out

with the same initial sets of predicates. For each experiment we measured

several quantities: (i) the size of the �nal state space on which the property

was proved/disproved,
3

(ii) the number of predicate re�nement iterations

required, (iii) the number of LTS re�nement iterations required, (iv) the total

number of re�nement iterations required, and (v) the total time required.

In the tables summarizing our results, these measurements are reported in

columns named respectively State, PIter, LIter, Iter and Time.

Unix Kernel examples

The �rst set of examples were meant to examine how our approach works

on a wide spectrum of implementations. We chose ten code fragments from

the Linux Kernel 2.4.0. Corresponding to each code fragment we constructed

a speci�cation from the Linux man pages. For example, the speci�cation in

`socket-y' states that the socket system call either properly allocates internal

data structures for a new socket and returns 1, or fails to do so and returns

an appropriate negative error value. The summary of our results on these

examples is presented in Figure 3.

OpenSSL Examples

The next set of examples was aimed at verifying larger pieces of code. We

designed a set of 26 benchmarks to check various properties of the OpenSSL

version 0.9.6c source code, which is a popular open source implementation of

the SSL protocol used for secure data transfer over the internet. In particular

we used the source code implementing the handshake that occurs when an

SSL client and server attempt to establish a connection. The source code is

accordingly divided into two parts, SrvrCode and ClntCode, that implement

the server and client components respectively. The speci�cations were derived

from the oÆcial SSL design documents. For example, the speci�cation for

`ssl-1' states that the handshake is always initiated by the client.

The �rst 16 examples are sequential implementations, examining di�erent

properties of SrvrCode and ClntCode separately. Each of these examples

contains about 350 comment-free LOC. The results for these are summarized

in Figure 4. The remaining 10 examples test various properties of SrvrCode

and ClntCode when executed together. These examples are concurrent and

consist of about 700 LOC. All OpenSSL benchmarks other than srvr-7 passed

the property. The results are summarized in Figure 5. In terms of state space

size, the two-level re�nement scheme outperforms the one-level scheme by

3 Note that, since our abstraction-re�nement scheme produces increasingly re�ned models,

and since we reuse memory from one iteration to the next, the size of the �nal state space

represents the total memory used.
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Example PredOnly BothAbst Gain

State(S1) PIter LIter Iter Time State(S2) PIter LIter Iter Time S1/S2

srvr-1 563 7 0 7 127 151 7 191 198 142 3.73

srvr-2 323 9 0 9 134 172 9 307 316 156 1.89

srvr-3 362 21 0 21 212 214 20 850 870 263 1.69

srvr-4 227 1 0 1 25 19 1 0 1 23 11.94

srvr-5 3204 98 0 98 1284 878 53 6014 6067 6292 3.65

srvr-6 2614 121 0 121 1418 559 113 9443 9556 6144 4.68

srvr-7 2471 40 0 40 517 662 34 3281 3315 2713 3.73

srvr-8 2614 60 0 60 750 455 37 3158 3195 1992 5.75

clnt-1 402 18 0 18 174 176 19 506 525 209 2.28

clnt-2 408 18 0 18 194 185 16 651 667 217 2.21

clnt-3 633 51 0 51 405 263 58 3078 3136 688 2.41

clnt-4 369 28 0 28 232 193 33 987 1020 306 1.91

clnt-5 318 15 0 15 166 172 13 398 411 182 1.85

clnt-6 323 20 0 20 190 236 21 644 665 242 1.37

clnt-7 323 20 0 20 188 160 20 556 576 221 2.02

clnt-8 314 16 0 16 168 264 16 570 586 215 1.19

All times are in seconds

Fig. 4. Summary of results for sequential OpenSSL examples.

factors ranging from 2 to 136. The savings for the concurrent examples are

signi�cantly higher than for the sequential ones. We expect these savings to

increase with the number of concurrent components in the implementation.

Although our aim to reduce the size of the state space was achieved, our

implementation of the two-level algorithm shows an increase in time over that

of the one-level scheme. However, we believe that this situation can be re-

dressed through engineering optimizations of MAGIC. For instance, not only

is MAGIC currently based on explicit state enumeration, but also in each it-

eration it performs the entire veri�cation from scratch. As is evident from

our results, the majority of iterations involve LTS re�nement. Since the lat-

ter only induces a local change in the transition system, the re�ned model is

likely to di�er marginally from the previous one. Therefore much of the work

done during veri�cation in the previous iteration could be reused. We plan to

investigate the possibility of doing incremental veri�cation and will report on

our �ndings in the �nal version of this article.
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Example PredOnly BothAbst Gain

State(S1) PIter LIter Iter Time State(S2) PIter LIter Iter Time S1/S2

ssl-1 108659 8 0 8 243 16960 8 268 276 529 6.41

ssl-2 95535 9 0 9 226 15698 9 331 340 608 6.09

ssl-3 69866 24 0 24 449 23865 19 828 847 1831 2.93

ssl-4 43811 1 0 1 51 323 1 0 1 55 135.64

ssl-5 108659 7 0 7 217 16006 6 186 192 384 6.79

ssl-6 162699 12 0 12 366 18297 9 375 384 792 8.89

ssl-7 167524 23 0 23 599 31250 24 1441 1465 4492 5.36

ssl-8 60602 9 0 9 227 17922 10 434 444 852 3.38

ssl-9 313432 115 0 115 3431 50274 63 3660 3723 15860 6.23

ssl-10 123520 23 0 23 430 23460 21 926 947 2139 5.27

All times are in seconds

Fig. 5. Summary of results for concurrent OpenSSL examples.

6 Conclusions and Future Work

Despite signi�cant research and advancement, automated veri�cation of con-

current programs remains an important, yet elusive, goal. In this paper we

presented an approach to automatically and compositionally verify concur-

rent C programs against safety properties. These concurrent implementa-

tions consist of several sequential C programs which communicate via blocking

message-passing. Our approach is an instantiation of the CEGAR paradigm,

and incorporates two levels of abstraction, which respectively aggregate states

according to the values of local variables, and observable events. Experimental

results with our tool MAGIC suggest that this scheme e�ectively combats the

state space explosion problem. In all our benchmarks, the two-level algorithm

achieved signi�cant reductions in state space (in one case by over two orders

of magnitude) compared to the single-level predicate abstraction scheme.

We are currently engaged in extending MAGIC to handle the proprietary

implementation of a large industrial controller for a metal casting plant. This

code consists of over 30,000 lines of C and incorporates up to 25 concurrent

threads which communicate through shared variables. Adapting MAGIC to

handle shared memory is therefore one of our priorities. Not only will this

enable us to test our tool on the many available shared-memory-based bench-

marks, but it will also allow us to compare MAGIC with other similar tools

(such as BLAST) which already use shared memory for communication.

Finally, we intend to explore the possibility of adapting our two-level

CEGAR scheme to di�erent types of conformance relations such as simulation

and bisimulation, so as to handle a wider range of speci�cations.
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