
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 41

lWC98b]

[wacgr]

Enoch Y. Wang and Betty H. C. Cheng. A rigorous object-
oriented design process. In Proc. of International Confer-
enos on Software Process, Naperville, Illlnos, June 1998.

Enoch Y. Wang, Heather A. Richter, and Betty H. C.
Cheng. Formalizing and integrating the dynamic model
within OMT. In Proc. of IEEE International Conference on
Software Engineering (ICSE97), Boston, MA, May 1997.

A u t o m a t i c Verification
of Hardware and Software Systems

Edmund M. Clarke
Carnegie Mellon University

Pittsburgh, Pa 15213
(ernc@es.cmu.edu)

Logical errors in finite-state concurrent systems such as se-
quential circuit designs and communication protocols are an
important problem for computer scientists. They can delay
getting a new product on the market or cause the failure
of some critical device that is already in use. My research
group has developed a verification method called temporal
logic model checking for this class of systems. In this approach
specifications are expressed in a propositional temporal logic,
while circuits and protocols are modeled as state-transit ion
systems. An efficient search procedure is used to determine
automatically if a specification is satisfied by some transition
system. The technique has been used in the past to find subtle
errors in a number of non-trivial examples.

During the past decade, the size of the state-transition sys-
tems that can be verified by model checking techniques has
increased dramatically. By representing transition relations
implicitly using Binary Decision Diagrams (BDDs), we have
been able to check some examples that would have required
1020 states with the original algorithm. Various refinements
of the BDD-based techniques have pushed the state count up
to 101°° . By combining model checking with various abstrac-
tion techniques, we have been able to handle even larger sys-
tems. For example, we have used this technique to verify the
cache coherence protocol in the IEEE Futurebus+ Standard.
We found several errors that had been previously undetected.
Apparently, this was the first time that formal methods have
been used to find nontrivial errors in an IEEE standard.

Although we believe that model checking is already useful for
verifying many circuit and protocol designs that arise in in-
dustry, additional research is needed to exploit the full power
of this method. We describe below some of the state-space
reduction techniques that we are currently investigating.

Exploit ing symmetry to reduce model size Our work
in this area has focused on developing techniques for ex-
ploiting symmetry to alleviate the state explosion problem.
Finite state concurrent systems frequently exhibit consider-
able symmetry. It is possible to find symmetry in memories,
caches, register files, bus protocols, network protocols - any-
thing that has a lot of replicated structure. For example, a
ring of processes exhibits rotational symmetry. This fact can

be used to obtain an equivalent reduced model of the system.
Given a Kripke Structure, a symmetry group is a group act-
ing on the state set that preserves the transition relation. A
symmetry group acting on the state set partitions the state
set into equivalence classes called orbits. A quotient model
is constructed that contains one representative from each or-
bit. The state space of the quotient model will, in general,
be much smaller than the original state space. This makes
it possible to verify much larger structures. Based on these
ideas we have built a prototype tool called SYMM. The user
describes a system, gives a specification in CTL, and provides
the symmetries of the system. SYMM checks that the sym-
metries provided are valid and then uses it during the model
checking process. We have verified several examples using
this tool. Two specific examples are the cache-coherence pro-
tocol and the arbiter circuit given in the IEEE Futurebns+
standard. For both examples, substantial reductions were ob-
tained because of the use of symmetry. Similar results have
been obtained by Emerson and Sistlay.

Verifying parameterized designs Most of the research
done in the area of model checking focuses on verifying single
finite-state systems. Typically, circuit and protocol designs
are parameterized, i.e., define an infinite family of systems.
For example, a circuit design to multiply two integers has the
width of the integers as a parameter. We have investigated
methods to verify such parameterized designs. This problem
is difficult because the state space is unbounded. Formally,
the problem of verifying parameterized designs can be stated
as: Given an infinite family F offinite-state systems and a
temporal specification f, determine whether Pi models f for
all Pi in F.

In general the problem is undecidable. However~ for specific
families the problem can be solved. Most techniques are based
on finding network invariants. Given an infinite family F and
a reflexive, transitive relation i =, an invariant I is a process
such that Pi i = I for all Pi in F. The relation i = should
preserve the property f we are interested in, i.e., if I satis-
fies f, then Pi should also satisfy f. Once the invariant I is
found, traditional model checking techniques can be used to
check that I satisfies f. We have defined a formalism based
on network grammars to describe parameterized designs and
created a logic based on regular expressions which can be in-
terpreted over these parameterized designs. Our methodology
constructs invariants based on a technique called unfolding.
We have developed a prototype tool INDUCT to generate
invariants. We have been able to generate invariants auto-
matically for a complicated token-ring example and a systolic
parity tree circuit.

P a r t i a l order reduction for t imed systems: We have also
investigated how to approach the state explosion problem for
timed systems, such as asynchronous circuits and protocols, or
mixed hardware-software designs. Recently, we have demon-
strated how this problem can be alleviated by using partial
order reduction, which restricts exploration to a subset of rep-
resentative trajectories in the state space, while preserving the
verified property. The analyzed models are compositions of

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 200{) Page 42

timed automata, a formalism that uses continuous-time clocks
to represent the passage of time. Specifications are given in an
extension of next-time free linear temporal logic, in which tim-
ing relationships of events are modeled by specifying bounds
on the difference between two clocks of an automaton. We
use a relaxed local time semantics for timed automata that
can be extended to preserve properties in the selected logic.
The resulting algorithm achieves reduction in both the control
state space and the time space of the model.

Symbolic mode l checking wi thou t BDDs: Symbolic
Model Checking has proven to be a powerful technique for the
verification of reactive systems. BDDs have traditionally been
used as a symbolic representation of the system. Recently,
we have demonstrated how boolean decision procedures, like
St~ilmarck's Method or the Davis &: Putnam Procedure, can
replace BDDs. This new technique avoids the space blow up
of BDDs, generates counterexamples much faster, and some-
times speeds up the verification. In addition, it produces
counterexamples of minimal length. We have implemented
a bounded model checking procedure for LTL which reduces
model checking to propositional satisfiability. Bounded LTL
model checking does not require an expensive tableau con-
struction. Our initial experiments with the new model check-
ing system are quite promising.

Speci f icat ion Formal isms for
C o m p o n e n t - B a s e d Concurrent

Systemsr
Rance Cleaveland

SUNY at S tony Brook
S tony Brook, NY 11794-4400

(rance~cs.sunysb.edu)
ht tp: / /www, cs.sunysb.edu/Nrance

Introduction and Project Goals.
This project builds on my ongoing research into design for-
malisms for, and the automatic verification of, concurrent sys-
tems. The difficulties such systems pose for system engineers
are well-known and result in large part from the the com-
plexities of process interaction and the possibilities for non-
determinism. My work is motivated by a belief that math-
ematically rigorous specification and verification techniques
will ultimately lead to better and easier-to-build concurrent
systems.

My specific research interests lie in the development of fully
automatic analysis methods and process-algebraic design for-
malisms for modeling system behavior. I have worked on al-
gorithms for checking properties of, and refinement relations
between, system descriptions [CH93, CS93]; the implementa-
tion and release of a verification tool, the CWB- NC [CS96]
(see http://www.cs.sunysb.edu/~rance to obtain the distrib-
ution); case studies [BCL99, ECB97]; and the formalization
of system features, such as real time, probability, and priority,
in process algebra [BCL99, CDSYar].

71~F CCI~9996086.

The aims of this project include the development of ex-
pressive and usable formalisms for specifying and reasoning
about properties of open, component-based concurrent sys-
tems. More specifically, my colleagues and I have been investi-
gating new approaches for describing component requirements
and automated techniques for determining when finite-state
components m ~ t their requirements. The key topics under
study include the following.

A t empora l logic for open sys tems. We are working on
a notation for conveniently expressing properties con-
straining the behavior of open systems.

Implicit specifications. Implicit specifications use of sys-
tem contexts, or "test harnesses," to define requirements
for open systems. We are studying expressiveness issues
and model-checking algorithms for such specifications.

Au toma t i c model-checker genera t ion . We have been
developing a model-checker generator that, given a tem-
poral logic and "proof rules" for the logic, automatically
produces an efficient model checker.

Status.
Work so far has :focused on the temporal logic for open sys-
tems and the m0del-checker generator. The former extends
an existing temporal logic with "action formulas" that allow
the characterization of an open system's response to environ-
mental stimuli. We have also identified a useful intermediate
notation to "compile" temporal formulas to and have designed
and implemented a model checker for the notation in the Con-
currency Workbench. Both pieces of work are the subject of
a paper in preparation [BCG].

With researchers in Germany we have also studied a class of
implicit specifications and showed that they may automati-
cally be converted in explicit specifications [MOSC99]. The
former are often easier to write, while the second provided
clearer guidance to implementors.

We have also been studying temporal logics for probabilistic
behavior of open systems [NCI99] and compositional design
frameworks based on Statecharts [LvdBC99].

Future Plans
With the model-checking kernel in hand, we plan next to im-
plement a package taking a logic and proof rules as input and
generating routines for converting formulas into our interme-
diate format. Like the Process Algebra Compiler [CSar], this
tool will be used to provide specialized front ends for the
CWB-NC. In contrast with the PAC, however, the new tool
will generate new analyzers for system properties rather than
new design-language routines. We also plan to continue our
investigations into implicit specifications and into the incor-
poration of pr0babilistic and performance information into
models of open tsystems.

R e f e r e n c e s

[BCG] G. Bh~t, R. Cleavelamd, and A, Groee. Efficient on-the-fly
model checking via alternating Buechi tableau automata. In
preparation.

