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Message passing is one of the primary modes of interprocess communication in a
distributed system. In this paper we investigate the possibility of characterizing and
aviomatizing different message passing systems in temporal logic. Specifically, we
consider FIFO buffers (queues), LIFO buffers (stacks) and unordered buffers
(bags). We show that all bounded buffers are characterizable in propositional tem-
poral logic (PTL) and so are axiomatizable. We prove that the theory of unboun-
ded FIFO buffers is rl-complete and so is nol axiomatizable. We also prove that
the theories of unbounded LIFO and unordered buffers are decidable and hence are
axiomatizable. 1984 Academic Press, Inc,

[. INTRODUCTION

Exchange of information between executing processes is one of the
primary reasons for process interaction. Many distributed systems
implement explicit message passing primitives to facilitate intercom-
munication. Typically, a process executes a write command to pass a
message to another process, and the target process accepts the message by
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executing a read command. The semantics of write and read may differ con-
siderably depending on the methods used for storing or buffering messages
that have been sent but not yet accepted by the receiving process.

Because message passing systems are so widely used, it is important to
develop formal techniques for reasoning about them. In this paper we
investigate the possibility (impossibility) of using linear temporal logic to
characterize and axiomatize different message buffering mechanisms. This
logic was originally introduced as a formal system for reasoning about
sequences of events that are totally ordered in time. Recently, linear tem-
poral logic has been proposed by Manna and Pnueli [2] and Owicki and
Lamport [3] as an appropriate formal system for reasoning about paraliel
programs, The logic permits the description of a program’s execution
history without the explicit introduction of program states or of time.
Moreover, important correctness properties such as mutual exclusion,
freedom from deadlock and absence of starvation can be elegantly
expressed in this system.

Specifically, we consider FIFO buffers (queues), LIFO buffers (stacks)
and unordered buffers (hags). The set of distinct messages that can be writ-
ten into the buffer is called the message alphabet. We specify a message buf-
fer by the set of all valid infinite input/output message sequences.

Characterizing a message buffer in temporal logic consists of obtaining a
formula that is true exactly on the set of sequences specifying the buffer.
We show that it is possible to characterize bounded buffers over a finite
alphabet in propositional linear temporal logic (PTL) and show how to
obtain such a characterization. Although such bounded buffers can be
characterized using w-regular expressions, it is not obvious that they can
be characterized in PTL since this logic is provably less expressive than w-
regular expressions [4]. Using first order temporal logic, we can give a
uniform characterization of bounded buffers which is independent of the
message alphabet. We also show that unbounded buffers are not charac-
terizable in PTL.

Since the formulae we obtain for bounded buffers may be quite com-
plicated, we introduce an extension of PTL in which certain atomic
propositions are designated as auxiliary. The auxiliary propositions are not
interpreted and are treated like existentially quantified monadic predicates.
We give simple and succinct formulae in the extended logic which charac-
terize bounded message buffers over a finite alphabet.

We also consider the problem of axiomatizing the various types of
message buffers. A model of a message buffer is an infinite sequence of
states denoting a series of Jegal read/write operations on the buffer. The
theory of a message buffer is the set of all PTL formulae which are true in
all models of the buffer. We say that a message buffer is axiomatizable iff
the theory of the buffer is recursively enumerable. A simple and complete
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axiom system for all the bounded buffers can be given using the charac-
terization of these buffers in PTL. We show that, in general. unbounded
FIFO buffers are not axiomatizable in PTL. We also show that unbounded
LIFO buffers and unbounded unordered buffers are axiomatizable in PTL
and in fact, we prove that the theories of these buffers are decidable.

One of our principal motivations for this work has been to study
possible axiomatizations of computational behavior by temporal logic, and
so we have formulated most of our results and indeed the title of this paper
in terms of axiomatizability. Nevertheless, the detailed structure of axiom
system actually plays no role in our results. All our non-axiomatizability
results are in [act proofs that various theories are not recursively
enumerable, and some of our axiomatizability results are proofs that the
corresponding theories are recursively enumerable.

The paper is organized as follows: Section 2 defines the syntax and
semantics of the linear temporal logic that we use in the remainder of the
paper. In Section 3 we specify precisely those properties of message buffers
that we would like to capture in temporal logic. Section 4 shows that boun-
ded buffers can be characterized in the logic and describes how uninter-
preted auxiliary proposition symbols can be added to simplify this con-
struction. We also prove that it is impossible to give a characterization of
unbounded message buffers in PTL. In Section5 we consider
axiomatization of message buffers in PTL. We show that unbounded FIFO
message buffers are not axiomatizable in PTL while unbounded LIFO and
unordered buffers are axiomatizable. The paper concludes in Section 6 with
a summary and discussion of our results.

2. LINEAR TEMPORAL LoGIC

The language of PTL uses certain symbols called atomic propositions
drawn from a finite set 2, the propositional connectives A, ~, and the
temporal modalities X (“next-time™), U (“until”), Y (“last-time”), S
(“since™), together with the parenthesis.

A well-formed formula in PTL is either an atomic proposition or is of the
form (~f1), (/1 A fo)h (Xf2) (L UL, (Y ), (f1812), where [y, f, are
well-formed formulae. We avoid parenthesis whenever the implied parsing
of the formula is understood from the context. In addition, we use the
following abbreviations:

(frvh)=~(~fin ~LH)(i2h)=~fivi,
Ff=(TrueUf), G f=~(F~f)

F, G are the “sometimes,” “always™ operators, respectively. A state is a
mapping from # into the set {True, False}. Let .# denote the set of all
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states. Noie that . # is finite. A model is a w-sequence of states. An inter-
pretation is an ordered pair (4, /), where 1 is @ model and 7120 is an integer
specifying the present state. We define the truth of a formula /in an inter-
pretation (¢, i) (7, |= '} inductively as follows:

ik P where £ is atomic iff
t{P)="True:
L A s reip frand e i} [
R iffnot (.7} fy):
i X/, ifle, i+ 1 = A

il U7, if there exists a & =7 such that 7, & }= /5
and for all j such that 7 =) <k,
’a I' |:' ‘}JI| 3

LiE YT, ffi=0and i~ 1 }= 1);

LIE T ST, il there exists a A <iv, k = /> and
forall jsuch thatk <j=i6,j 1= /i

11 is to be noted that (7. 7) p= b /) f there exists j= 7 such that (1, J) = /.
and (1. = G T for all j=10 (1, /) = /2 A Tormula is sarisfiable iff it is
true in some interpretation and it is vafid ifl it is true in all interpetations. A
consistent and complete axtomatization for the set of validities of PTL is
presented in [ H4]. In J10] such an axiomatic system is presented for a
restricted PTL that uses X, ) as the only temporal modalities.

3. MODELLING MESSAGLE BUFFERS

We characterize a message buffer by the set of legal read/write sequences
allowed on the bugger. A write operation writes a message into the buffer; a
read operation reads a message {from the buffer and deletes it. At most one
read or write operation is permitied al any instant of time. In the case of
bounded buffers a write request will be rejected when the bufler s lull;
similarly, a read request on an empty buffer will be rejected. Rejected
read/write requests are not inctuded in the sequences of legal operations
characterizing the buffer. We consider below three types of message buffers:
FIFO buffers (guenes), 11FO bullers (siacks). and unordered buffers
(bags). In FIFO buffers the carliest written message currently in the buffer
is the ouput for the next read request; with LIFQ buffers the laresr written
message currently in the buffer is used; and with unordered buffers any
message present in the buffer may be output.
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Let & be ihe message alphabet and 2 be the set of atomic propositions
TR oe Xl W, oed} such that £ < .2 Let ST={¢| ¢:# - |True,
False ) such that ¢(P)=="True for at most one #in 2, 1 If R, (W, ) is true
in a state, then it indicates that the message o is read (written) from (into)
the buffer in that state. Note that at most one operation (a read or a write)
oceurs in any state in ST,

Let re STHO ST and i, < i, < .., be all the instances at which some
messages o, 6. are read from the buffer, ve., ¢, (R, )= True for £z0.
Then n,{r) denotes the sequence (ay, o,.....). Similarly, we define =, (7).
Intuttively, s (7) (z,14)) denotes the sequence of messages read from the
buffer (written nto the buffer) i . Let 7]7] denote the sequence
(tgs Tyens ;) then ab(i) = length{n ([ ])) - lengthin (¢[i1)) 1s the number
of messages in the bufter just after the instance 7.

Let FIFO ., be the set of all infinite sequences of states which denote
legal series of read write operations on a FIFO buffer of size &, Similarly,
fet LIFO, . UNOR. , be the corresponding sets of sequences for LIFO
and unordered buffers, respectively. Unbounded buffers will be denoted in
this scheme of notation by A= «. For k=0,

FIFO,, = tre ST Tor all iz0, m(r]/]) is a prefix of n (7]i]) and
ah(i)<=k !

LIFO, = 1e STV for all iz0, 0<nb(i)<k and if for some g€l
(e, )| R, then there exists a j<</ such that (/) W, and
nb(jy=mnb{i— 1) and lor all / such that j</<inabtYyZub(j)};

UNOR, , = {reSTY| for all iz0, 0=abti) £k and for all o€, the
number of writes of the message o up to /= the number of reads of the
message o up to i}

For a finite alphabet 20 a formula /" in PTL characterizes a FIFO
message bulfer of size & ll () (6,0) = /') =FIFO, .. Similarly, we definc
what it means to characterize LIFO and unordered bullers.

We say that a sequence 1 is a behavior of a FIFO (LITO or unordered)
bulfer with fiveness property iff r 1s a legal sequence as defined above and
the buffer becomes empty infinitely often in . That is, nh(i)=0 in ¢ for
infinitely many values of i This property guarantees that every message
written into the buller is eventually read which is a liveness property. As
above we define what 1t means to characterize a message buffer with
liveness property.

A madel or fustory of a message bufler is an infinite scquence of states
denoting a legal series of read/write operations on the buffer, as defined
above. The theory of a message buffer is the set of all PTL formulae which
are true iu all interpretations of the form (1, 0), where ¢ is a model of the
buffer. We say that a message buller i1s axiomatizable in PTL Aff the theory
of the bulffer is recursively enumerable.
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4. CHARACTERIZING MESSAGE BUFFERS

4.1. Direct Characterization in PTL

In this section we show how we can characterize bounded bulfers over a
finite alphabet using PTL. We let fby, Iby, uby, respectively, denote for-
mulae in PTL characterizing FIFO, LIFO, and unordered message buffers
of size k over the finite message alphabet X. First we describe how to
obtain the formulae for the buffers with k=1 and k= 2.

Let X be a finite message alphabet, and #, = {R,|oe X} W {W, |oe z)
be the set of atomic propositions. Throughout this section we use the
following abbreviations:

w=\/ w,

R=\/ R,
1;‘.1-:( A ~(R,, A Rﬂz)) /\( A ~ (W, A w,,:)) A ~(W A R)
a|FE a) apFE <
1= G(EXx).

J asserts that at any instant at most onc operation occurs on the bufler.
In the case of buffer size = I, FIFO, LIFO, and unordered buffers are
identical and the buffer behavior is as follows:

1. The writes and reads occur alternately:
2. The message read in each read operation is the message written by
the previous write operation. Thus, fby=1A f, A 1), where

f,=G({W ~ XF(Rv W))o>X(~ WU R))
A G((R A XF(R v W))oX(~RU W),

/

fi=G( A (R,>(~ WS W)

cgel

The first (second) conjunct in f, asserts that every write (read) operation
which is not the last operation on the buffer is followed by a read (write)
operation before any other write (read) operation. 1t is easily seen that f,
and 7, assert properties (1) and (2), respectively.

Intuitively, the operation of a buffer of size two can be described as
follows. Initially, writes and reads occur alternately. This continues until
two writes occur successively without a read operation in between, and the
buffer becomes full (formula /, expresses this). Subsequently, reads and
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writes will again begin to alternate. After each read the buffer will have one
message and after each write operation the buffer becomes full. This may
continue forever, or until two reads occur successively without a write in
between, making the buffer empty (r, expresses this); now the previous
sequence repeats. This behavior is common for FIFO, LIFO, and unor-
dered buffers of size two. The formulae /,, r, are given below:

L=WnAX(~RUW)
Fa=RAY(~WSR)

In the remainder of this section we will frequently use the formula alt(p,-
q, ¢) given below:

alt(p, g, )=[(gUc)v Glgr ~e)]1 A [(~cUp)a(~qUp)],

where

g=(po2X(~pUg) A (g2[X(~qUp) v X(~(pvqg)Uc)])

The first conjunct in alt(p, ¢, ¢) asserts that either there is a future instance
at which ¢ occurs and until this instance p,q occur alternately, or
throughout the future p, ¢ occur alternately without ¢ occurring anywhere.
The second conjunct asserts that if p occurs then it occurs before ¢. Thus,
the previous intuitive description of the behavior of the buffer of size two is
captured by the formula by given below.

bo=alu(W, R, 1,) A G[l,oXalt(W, R, r;)] A GLry>Xall(W, R, ;) 1;

hv asserts that /., r, occur alternately with alternating read and writes
occuring in between. Any read after I, but before any following r, is on a
buffer containing one message. Any read after an r, but before any follow-
ing 1, and any read before the first [/, are on a buffer containing one
element. The formulae read-on-full, read-on-single given below characterize
reads on a full buffer and reads on a buffer with one message, respectively.

read-on-full = R A (~r,81,)
read-on-single = R A [(~/,Sry) v ~(True S 5,)].

For FIFO buffers, a read on a full buffer reads the message written by
the write before the previous write.

fha=IAboAgnh,
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where
\

7
g=G [ read-on-full - /\‘ (R, ~WS(HWAY(~IS W )),

7 N

h=G (rcud-mrsim__{lc 5 /\ [ R, (~WS W) )

The formula on the feft side of = in ¢ is true when reads occeur on a full buf-
fer, while the formula on the right side asserts that the message read ai
these instances is the message written by the last but one wrire operation; A
asserts that read operations on a buffer containing u single message, read
the message written by the previous write operation.

THEOREM 4.1 For any orsequence of states 1, 1,0 |= fb. iff 1€l (FOy s,

Let 1€ LIFO L, I 2,7 }= 7y, then there exists j< i such that ¢, j F=1,. The
message read at the instance 7 is the message written at the instance FAR it
tif= R and 1, if ~r,. then the message read at the instance i is the
message written in the previous write operation. These properties are
expressed by ¢ and /', respectively,

¢ =G((r,o /\ [ R, ~LS{L AW )]

Vs N

W=G({~r, A Ry> N\ [R, e ~WS§ H;I).

\ - ’

Letiby=1n~bong Al

THEOREM 4.2, For amy or-sequence of states 1, 1,0 B= by iff 1e LIFO, 5.

Let 1e UNOR .. Then for every o€, for all i=0 the number of
messages of value o-written into the buffer up to the instance 7 is greater
than or equal to the number of messages of value o read from the buffer up
to the instance 4, and they do not differ by more than 2. For a given g, we
can obtain a formula hv, asserting the above property by repliacing R by
R,, Wby W, inbe. Let uby=1IA b A A, br,.

The following theorem can be easily proved:

THEOREM 4.3, For any  w-sequence  of  states 1, 1,0 b= ubs il
re UNOR, ,.

To characterize bounded buffers with the liveness property for buffers of
sizes one and two, we add a conjunct to the formula Ar by asserting that
the buffer becomes empty infinitely often; this can be done by asserting that
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whenever /. holds then there s o future instance where . holds, and
whenever there 1s a wrile operation it is eventually followed by a read
operation.

The above approach can be extended to characterize bounded buffers of
arbitrary size. However, this approach turns oul to be complex and cum-
bersome. For an account of this the interested reader is referred to [9].
Below we take a different approach to prove that all bounded buflers are
characterizable in PTL.,

4.2 Star-free Regular Sers and Bownded Bufjers

We assume that the reader is familiar with regular sets. Let 4 be a finite
alphabet. A star-free set U< A% s inductively defined as follows:

The singleton {6 is a star-free set over A where d e 4 or § is the empty
string. If 17, W are star-free sets over A, then 17 M, V' (the complement of
Porelative to A%), and - M7 (the concatenation of 1" and W) are star-free
sels over 4. A sel is star-free over 4 only by implication from the preceding
clauses.

A regular set 1< A% s a non-counting regular set over A il there is an
mteger /=0 such that for all v, v, ze A%,

vite iff sy e 1,

Iois proved in [ 7] that star-free sets are exactly the non-counting
regular sets.

Let /T, = {s]sis a prefix of some 1€ FIFO,. . ic., ¢ is a model of the
FIFO buffer!. Similarly let LT, ,. UT,,. respectively, be the sets of
prefixes of sequences in LIFO, . UNOR, .. We first prove that Ty,
LT, UT, , arc star-frec regular sets by proving that they are non-
counting regular sets. Remember that -4 is the set of states and is finite.

Lemva 4 For k+ 7 FT,,. LT, ,. UT., are non-counting regular
sets over H.

Proof. Clearly all  the above sets are regular  sets since  the
corresponding buffers have a finite number of possible states. First we
prove that F7', , is a non-counting set. We want to prove that for all x, y.
tELHE,

L5 - o S iff 57 2 € FT sy

For any o € 2" il v contains more reads of ¢ than writes of ¢ or vice versa,
then neither xi* "'z nor xy3* ' 2 is in 7, . Assume y has equal number of
reads and writes for cach o2, Let xp*''ze FT,,. n be the number of
messages in the bufler alter x, and 2. f, respectively, be the sequences of
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messages written and read from the buffer in y. Let |«| == |f}| == m. The non-
trivial case occurs when m, n>0. Let p=nmod m, a=o,a,, B=p.0,
where |fi,] = |a,] = p. Clearly n < k. We sec that all the messages in the buf-
fer after xy* are those written in y* and it is casily seen that after xp* the
buffer contains the sequence (a,?) for some ¢=0. Since a1 s a valid
sequence of operations we see that «, =f,, 2, =f,. Thus the buffer con-
tains the same sequence after xv* and after xy* ' '. From this it follows that
Arf 2 s a valid sequence of operations and the contents of the buffer after
o* P s same as that after xp**'. Hence xy¥'2ze FTy,. The same
argument proves that if xp* "z FT, then xp* " 'ze FTy .

As above, if v contains unequal number of reads and writes for any
o€ X, then neither xy** 'z nor xp¥ 'z is in LT, , or in UT ;. So assume y
has equal number of reads and writes for cach o€ 2. Let xy*tlze LT;,.
Since k=1, it is seen that the messages read in p correspond with the
messages written in y. Hence xp* ' *ze LT, . Similarly it is seen that if
xpF*22e LT, then x**'ze LT, ,. Since y has equal number of reads
and writes for every o € X, it casily follows that xy* *'ze UT'y , iff xp* "’z e
UTvi N

From the results of [7] and the above lemma it follows that FT.,,
LT, ,. UT., arc star-free regular sets.

Let L be the first-order languages of (N, <) with monadic predicates,
where N is the set of non-negative integers and < is the usual less than
relation. This language is shown to be expressively equivalent to PTL in
[10]. Hence it is enough if we show that all bounded buffers are charac-
terizable in L.

We assume that the predicate symbols in L are same as the propositional
symbols in PTL, ie. the elements of /. Now we want 10 prove that for
every star-free regular set, there is a formula in L which defines the star-free
regular set. From this it follows that FT', ;. LT.,. UT,, are definable in
L. Using this result we will prove that all bounded buffers are charac-
terizable in L.

Let f(x, 1) be a formula in L with free integer variables x, y. Now we
associate a language with f. Let M be an interpretation of x, y and the
predicate symbols, that is, M is a function which associates non-negative
integers with x, y and a subset of N with each predicate symbol. Let m=
M(x), n=M(y). For any i =0, let ¢;& . be the unique state such that for
all P,e#, ¢(P;)=True iff ie M(P;). With M we associate a f(M)e. 4*
defined as follows:

1(M) is undefined if n<m,
t(M) is the empty word if n=m,

FOr h<n, [(M) = ((ﬁm\ ¢'m Lol ] (/}n i )



98 SISTLA ET AL.

Define Z(N={t(M)| ME[}. L(f) is called the language associated
with f. It can easily be shown that the successor function given by y=x+1
is definable n L.

LeMMa 4.5, For any star-free regular set E over 4 there is a formula f;
in L such that E=%(fy)

Proof. By structural induction on £

if E is a singleton say {#,} then

femtr=x+1)a (A P) (A~2).
N I
where the first conjunct is over all P, such that to(P;)="True, and the
second conjunct is over all P; such that 7,(P;) = False;

If £= V-1 then
flz a:( .f.l'(-\_a :) A.fl{'(:1 ,]‘,):

If E=Vu W then fi.= (/v V)
If E=V then f= ~(f}).
It can easily be proved by induction that E=2(f). |

THEOREM 4.6.  All bounded buffers with or without the liveness property
are characterizable in PTL.

Proof. First we prove that all bounded buffers without the liveness
property are characterizable in PTL. It is proved in [7] that the non-
counting regular sets are exactly the star-free sets. From this and
Lemma 4.4 it follows that FTy,, LTy, UTy, are star-free sets. Using
Lemma 4.5, we see that there is a formula f(x, p) in L such that &(f)=
FT.,. Let g(x)=Vpf(x, r) and M be any interpretation of predicate sym-
bols in L and the variable x such that M(x)=0. Let 7, = (to, 1y,.-) be the
model of PTL such that r(P,)=True iff ie M(P)). It is easily seen that
M |= g iff 1,,€ FIFO, . This is because g asserts that every finite prefix of
ty is in FT,,. It is proved in [10] that L and PTL are expressively
equivalent. From this it follows that there is a PTL formula, say A, such
that for all interpretations M, such that M(x)=0, M = g iff (15, 0) = h
Hence for any re.#, (1,0) = A il te FIFO 5. Thus h characterizes boun-
ded FIFO buffers of size k over the message alphabet X. Similarly it follows
that bounded LIFO and unordered buffers are characterizable in PTL.

It can easily be seen that Lemma 4.4 also holds for bounded buffers with
the liveness property. From this it follows that bounded buffers with the
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liveness property are characterizable in PUL. The details ace lelt to the
reader.  §

In the Appendix we give a constructive method tor obtaining a charac-
terization of bounded buffers. This method also uses the translation from !/
to PTL. However it is koown that this translation may caus¢ a non-
clementary blow up in the size of the formula Thus the length of PTL for-
mulae obtained may be non-clemcntary in the size of the buffer. Obtaining
a characterization dircctly in PTL (i.c.. without going through 1.) as given
in [9]. gives [ormulae of length exp(p{h)). where p is a fived polynomial
in k.

Using first order temporal logic, a uniform characterization of bounded
bullers can be piven, that is, we can give a lormula in [irst-order temporal
logic characterizing a bounded buffer of size k. which is independent of the
message alphibet 2.

43, Using Auxilary Propositions in PT1

Below we show thal by introducing auxiliary propositions we can
characterize bounded message buflers more clegantly and succinctly. The
syntix ol the well-formed formulae in this new logic is exactly the same as
in PTL. except that some propositions are designated  as  auxiliary
propositions and are not interpreted. Thus let .2 =.2,.4 be the set ol
atomic propositions, where .7, s the sel ol auxiliary propositions. As usual.
an interpretation is a pair (s, iy, where s is an o-sequence ol states
{5, 8 ...). cach state being a mapping from .4 into {True, False}. and i20
designates the present state. We define truth of a formula / in an inter-
pretation {s', i) (denoted by 5, i & 1) as follows:

s'. i ke fiff there exists a sequence s = {$g. 8- such that s, i t= f, where
for all j=0, s;:.# - {True, False} is an extension ol s7.

In this new logic we can characterize bounded buffers more concisely.
We show this for an FIFO buffer of size 2. An FIFO buffer of size 2 can bic
considered as two FilFO buffers cach of size 1 in tandem as shown in Fig. I

W, Ta Re
s = R s

FiGure 1

External writes come into the left buffer while external reads are from the
right buffer. Whenever the left buffer is full and the right buffer is empty the
message in the left buffer is internally read and is writien into the right buf-
fer. We consider this internal reading and writing to be occuring
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simultancously and capture it by the auxiliary propositions /, for o e 2. Let
Fh(W, RB,) be the formunla characterizing a buller of size 1, where W, R,
indicate vectors of propositions. The sequence of operations on the left buf-
fer is characterized by /b (W, 1), and the sequence of operations on the
right buffer is characterized by fb (I, . R,). Let

fhy = fh (W, 1) A b (1, R,

where the propositions in I are the auxiliary propositions.

LivMa 4.7. 5.0 | /by iff s€ FIFO. ;.

It is casily seen how we can extend the above approach to characterize

bounded FIFO buffers of size k. For characterizing LIFO and unordered
bulfers we take a different approach. We use auxiliary propositions
P, P,... P,. We will assert that P, 1s truc at an instance { iff the bufler has

J messages before the operation of the ith instance:

bAoA\ WP AW)DXP A

nete k

i

=G /‘\ ~{P AP

- sk

A UP A RVDXP, APy ~RYA (P2 ~W) | A PyAg.
Ik 5

where g==G [ ~(R v W)2( Aowe s (P> XP))]

The first clause asserts that no more than one P, is truc at any instance,
the second clause asserts that if P, is true at an instance and the operation
is & write operation then at the next instance P, is truc. the third clause
asscrts similar property for read operation, the Jast two clauses assert that
there are no writes on a lull buffer and no reads on an emply buffer. g
asserts that if both R and W do not hold in the present state then the set of
all 7, true in the present and next states are the same. Lel

h,=1nrl'n G ( A P2 AIR2(~P, (SIH, A P, 1)):])).
0=k N o 7
The last clause asserts that the message read at any instance when the buf-
[cr has / messages is same as the message written at the last instance when
the buller has /- 1 messages. The following theorem can be casily proved.

THeorEMm 4.5 1,0k b, iff te LSy,

Similarly we can obtain a formula for unordered buffers. Note that the
lengths of the formulae obtained above arc only linear in A.
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4.4, Characterizing Unbounded Buffers

Let .2 be a finite set of atomic propositions and s= (s, §,,..) be an
infinite sequence of states where each state is a mapping from s into {True,
False}. Let / be a formula in PTL and SF(/) denote the set of sublor-

[={geSF(f)ls i g}

LemMMA 49, Ler 0=<i<j he such thar [i],,=1jl,, Then 5 0= f iff
850 =1 where 8 =85, S 855 854 10874 2000 )

THEOREM 4.10.  Unbounded message  bujfers  (unordered, FIFO, or
LIFO) cannot be characterized in PTL.

Proof.  All the above unbounded buffers are identical in the case when
the message alphabet is a singleton. We prove that there is no formula in
PTL which characterizes an unbounded buffer over a message alphabet
which is a singleton. Assume to the contrary fis a such formula. Let s be a
model in which 7 messages are wrillen in the first n states and n messages
are read in the next » states. Choose n > 2" Now it is easily seen that
there are two integers i,/ such that 0<i<j<n such that [i] = [j],
Now by applying Lemma 4.9 we see that there is a sequence s” which has
fewer than 1 writes followed by n reads such that (s, 0) |= /. Clearly &' is
not a model of an unbounded buffer. This is a contradiction. §

Indeed, we can show that there is no uniform characterization of
unbounded buffers in first-order temporal logic. It can easily be seen that
there are partially interpreted first-order temporal logics in which unboun-
ded buffers can be characterized. For example, we can characterize
unbounded FIFO buffers in a first order temporal logic that uses history
variables ranging over sequences of messages, and the prefix relation (<)
among the sequences.

5. AXIOMATIZING MESSAGE BUFFERS

Axiomatization of message buffers in PTL is a weaker notion than
expressiveness. We show that in general unbounded FIFO buffers are not
axiomatizable, while unbounded LIFO buffers and unbounded unordered
buffers are axiomatizable even though they are not characterizable in PTL.,

THEOREM 5.1, Bounded ¥FIFQ, LIFO, and unordered buffers over any
finite alphabet X are axiomatizable in PTL.
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Proof.  Let fb, be the formula in PTL characterizing the FIFO buffer of
size k over a finite alphabet X. Consider a consistent and complete
axiomatization for PTL as given in [ 14]. Let A be the set of axioms and [
be the set of inference rules in this system. Then the system with 4 { fb, |
as the set of axioms and [ as the set of inference rules forms a complete
axiomatization for FIFO buffers of size k over X. Similarly, we can give an
axiomatization for bounded LIFO and unordered buffers over a finite
alphabet. §

A finite state automaton M on infinite strings over an alphabet A is a 4-
tuple (@, 4, sy, £), where (0 is the set of states, d is the transition function,
ie, 8:0xA—29 s,eQ is the initial state, F< Q. The states in F are
called final states. A run y of M on an mnput re€ .4, is an w-sequence of
states (yg, y...) such that y,=s,, for all /=0, y,,,€d (y,,t;); y is an
accepting run iff some final state apears infinitely often in 7. An input 7 is
said to be accepted by M iff there is an accepting run of A/ on 1. For every
PTL formula / there is a finite state automaton M, over the alphabet . /#
such that (¢, 0} = fiff 1 is accepted by M,, where . # is the set of all map-
pings from # into |True, False] and # is the set of all propositions
appearing in /. Indeed, we can obtain such an automaton with number of
states exponential in the length of /. A procedure to obtain such an
automaton is given by [9]. We will be using this automaton frequently in
our proofs.

We assume familiarity with the hierarchy notation of [11]. 29 is the
class of recursively enumerable sets and 19 is the class of sets which are
complements of recursively enumerable sets. The class 2| and its com-
plement /7] reside low in the analytical hierarchy [11].

THEOREM 5.2, For any X such that card(3X) 22, the theory of unbounded
FIFO buffers over 2 is I1)-complete, the theory of unbounded FIFO buffers
with liveness property is TI9-complete, and hence neither of the theories is
axiomatizable.

Preof. First we prove below that for 2= {0, 1} the theory of unboun-
ded FIFO buffers is [7}-complete. From this result it automatically follows
that the above theory is not axiomatizable.

We first prove that the set of PTL formulac satisfiable over some model
of an unbounded FIFO buffer over {0, 1} is X'j-complete. We consider
deterministic Turing machines on infinite strings with one read-only infinite
input tape and one work tape. The set of encodings of all TMs on infinite
strings which accept at least one input is known to be X'}-complete. We will
reduce this set to the set of PTL formulae which are true on some model of
an unbounded FIFO buffer over 2. A Turing machine on infinite strings
works exactly like an ordinary Turing machine, but it takes infinite input
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strings and it never halts. 1t accepts an input string by goiug through o
final state infinitely often. Let M = (1, O, &, H) be such a1 uring machine,
where .1 s the alphabet (including both the input alphabet and the tupe
alphabet), @ is the sct of states, 0: Q@ xAxA > QxAx Heft, nght, 1 1s
the set of final states. Alter cach step the input head of Af moves right by
one cell. Il d(q.a,,0,)={q, a5, left), then whenever M s in state ¢ and
sees the symbol o, @, on the input and work tapes, respectively, then A7
moves into state ¢, writes o4 on the work tape and moves its head left, and
it moves its input head right by one cell. We show below that given the
encoding of A we can recursively obtain a formula f,, in PTL such that f,,
is satisfiable on an unbounded FIFQ buffer over [0, 1] ifT M accepts at
Jeast one input,

Let C=(Q %A w4 A partial id of A, is a sequence of values from €
contaiing exactly one symbol from (% .4). A partial id denotes the con-
tents of the work tape and the head position on the work tape and the
state of finite control in the vsual way. The formula [, will be satsfied il
there is a m-sequence of partial ids such that cach succeeding partial id 15
obtained from the previous partial id by one move of M reading some
input character. and there are infintely many partial ids in this sequence
containing a symbol of the form (g,. o), where ¢, is a final state. We call
such a sequence an aceepting sequence. Any such sequence denotes an
accepting computation of M. and for every accepting computation of M
there is such a sequence.

We fix a unary encoding of symbols from €' using the character 0 ¢ 2. An
encoding of a partial id is a sequence of encodings of the symbols in it
separated by the symbol 1. An encoding of a sequence of partial ids is the
sequence of encodings of the partial ids separated by (wo ¢ msecutive s,
The formula /., can easily be constructed from the following description.

The initial buffer history consists of a sequence of writes which places the
encoding of the initial partial id followed by two consecutive 1's. After
writing of the initial id. reading and writing of symbeols occurs alternately
{thus whenever a symbol is read, it is the symbaol of the previous id). Each
symbol written into the bufler is the value of the symbol in the new id
assuming some input symbol on the input tape (f,, can express this
because the value of a symbol in a new id depends only on the contents of
that cell and its neighbors in the previous id, and the assumed value of
input character). Two consecutive 1's are written at the end of each id.

Finally, £, also asserts tnat there are infiniely many places where a sym-
bol of the form (¢,. o) is written into the buller for some finai state ¢, It 15
clearly seen that /£y, is satisfiable on o model of an unbounded FIFO bufler
over 10, 11 ifl M accepts at least one input,

Now we give a reduction in the other direction. Let fbe a PTL formula
and M, be the finite stale automaton on infinite strings corresponding to 1.
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From M, we give a Turing machine A4 which operates as follows. A takes
each symbol in its input to be an cncoding of a function assigning truth
values to the set of atomic propositions. A/ simulates A7, on the input. and
at the same time it makes sure that the values of the propositions Ry, R,
W,, W, denote a valid F'1FO buffer hehavior. M accepts an input il M,
accepts it and the input sequence denotes a valid FIFO buffer behavior, 1t
is casily seen that M accepts at least one input iff /*is satisfiable at the
beginning of a model ol an unbounded FLFO bufler over 10,1}

It can easily be shown that the sct of encodings of TMs on infinite
strings that accept at least one input is 2-complete. Hence the set of for-
mulac in PTI. that are satisfiable on a model of an unbounded F1FO buffer
is 2’l-complete. From this it follows that the set of formulae. not satisfiable
on any model of an unbounded FIFO bufler over {0, 17 15 /I;-complete.
Henee the set of valid formulac is //}-compiete.

Now we prove that the set of PTL formulae satisfiable on a model of an
FIFO buffer with liveness property is X-complete. From this it follows
that the set of PTL formulae valid on all models of FIFO buffers with
liveness property is /{{-complete.

Given a Turing machine M on jinite strings, analogous to before we can
obtain a PTL formula /', such that 3 accepts at least one input iff £, 18
satisfiable on a model of an F1FO buffer with hveness property. Now we
show that the set of PTL formulae satisfiable on an FIFO bufler with
liveness property is in X'V, Let /'be satisfiable on a model of an FIFO buller
with liveness property and M, be the automaton associated with /- Let
re. #" be such a model. Let 7= (30, 71 ) be an accepting run of M, on 1.
There are infinitely many values of 0, such that the buffer is emply
before 7, in 1. From this it follows that there are two instance i, j such that
(1) i<jand the buffer is empty at these instances in f, (2) 3,=17;, and (3)
there exists a & such that i<k <jand ~ is a final state of M, Now let
r'=a-f% where &= (Igsenr {; 1) B=lis ligysnty 1) 1UIS casily scen that
M, aceepts ¢ and hence /'is true at the beginning of 1. Now we can casily
give a Turing machine M on finite strings which takes a 12 I'L formula / and
checks il fis satisfiable on a model of an FIFO bufler with the liveness
property. M guesses o, f§ and verifies that M, accepls 1 a5 given above. M
halts iff M, accepts . The details of M are left to the reader. i

THEOREM 5.3, The theory of unbounded TIWFO buffers over a finite
alphabet is decidable. Similarly the theory of LIFQ buffers with the liveness
properly is decidable.

Proof.  Let f'be a formula in PT1 and M, be the automaton associated
with / as defined previously. From M, we can obtam a push down
automaton P, operating on infinite strings. P, uses its stack to make sure
that the sequence of read/write operations represented by the input string is
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a legal serics of read/write operations on the buffer, while at the same time
the finite state control of P, makes state transitions exactly as M,. P,
accepts an infinite string iff its finite state control goes through any of a set
of final states infinitely often. P, accepts an input riff 7€ LS, , and 1,0 }= /.
Thus f is satisfiable on a re LS, , iff P, accepts some input.

We now need to show that the question of whether P, accepts some
input is decidable. Assume that ¢ is an input accepted by P,. Consider an
accepting computation C of £, on the input. Let nb({), r(/), n,spectwely be
the number of messages in the stack and the state of the finite state control
of P, just before the /th step in C. It can easily be seen that there cxists an
infinite sequence of integers iy <i; <i,< -+ <i;< -+, such that for all
20, for all mzi,, nb(m)znb(i,), that is, from the i;th step onwards the
height of the stack never drops below nb(i;). Let I, m be integers such that
[<m, r(i;)=r(i,} =g and there exists a p such that /,<p<i, and r(p)is a
final state of P, Clearly /, m exist since P, goes through a final state
infinitely often in the computation C. Note that £, reads one input symbol
on each step. Let w=1i, v=1i, and a= ¢y, fy,r ly 1)y B=lys Ly 1remr
!, ;). We can also consider P,as a push down automaton on [inite strings.

Claim. P, accepts some infinite string iff there exists a state g such that

(a) there is a finite string o and there is a computation of P, on input
« reaching state ¢; and

(b) there is a finite string f# and there is a computation of P, starting
with initial state ¢ and empty stack and reaching g at the end but going
through a final state during this computation.

Proof of claim. Assume P, accepts an infinite input string. Then g, «,
as defined belore satisly (a) and (b). Assume (a) and (b) hold. Then it is
easily seen that P, accepts the infinite input o- .

Now it is easily seen how to decide if P, accepts at least one infinite
input. That is check if there is a state g for which (a) and (b) of the above
claim hold: (a)is the problem of deciding if a push down automaton on
finite strings accepts at least one inpul which is known to be decidable;
(b) can also be posed as such a problem and so is decidable. The above
argument also shows that the theory of unbounded LIFO buffers with
liveness property is decidable. |

We will show that the problem of deciding if a given PTL formula is
satisfiable on a model of an unbounded unordered buffer is reducible to
certain problems in vector addition systems. A vector addition system with
states of dimension k is a triple G=(V, E, L), where (I, I) is a directed
graph and L: E— N* where N is the set of integers. A configuration is a
pair (s, a), where se V, ae N*. A path is a finite or infinite sequence of
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length 22 of configurations ¢y, ¢,,..., ¢;, where ¢, = (s,, a;) and for all i=0
(i Siv 1 )EE, ajy (=a;+ L(s;, 8;,,). Let A< {1,..,k}. A path is said to be
positive with respect to A if for all /20, for all je A (a:),20. We say that a
path is positive if it is positive with respect to {1,.., k}. We say that a con-
figuration d is positively reachable with respect to A from the configuration
¢ if there is a positive path with respect to 4 with initial configuration ¢
and final configuration d; and if 4 = {1,... k} then we simply say that d is
positively reachable from c.

Let fbe a PTL formula and M, be the automaton associated with /. Let
G,=(V, £, L) be the vector addition system associated with f defined as
follows: ¥ is the set of states of M, and (s, s,) € E iff there is an « (a4 is a
function that assigns truth values to propositions) such that there is transi-
tion in M, from s, to s, on input «, and L(s,, 8,) = {a,, dy..... a; ), where for
all 7, 1=i<k,

a,= | ifa( W, )="True,
a;= -1 ifx(R,)="True,
e 1) otherwise.

It is easily seen that f is satisfiable on a model of an unordered buffer iff
there exists an infinite positive path in G, with initial configuration (g,, 0)
and containing infinitely many configurations of the form (gq,, a), where ¢,
1s the initial state and g, is a final state in M,.

Let M=Nwi{w! and < be the extension of “less than” relation to
elements in M so that for each ie N, i <w. Also we extend the usual -+
operation so that for any ie M, i+w=w. Let a. he M*. Then a<b if
a;=b,; for each isuch that | £i<k. Let ¢ be any configuration. We define a
labelled tree T, as in [67]. Each node x in T is labelled with /(x}e M* and
1s recursively defined as follows:

The root r of T, is labelled with . that is, /(r)=c. Let v be a node in 7
with 1(y) = (s, a):

(a) I there is a proper ancestor v of v in T such that /(3) = {(x) then
v is a leaf, that is, y does not have any children; otherwise

(b) For each (s, ') € E such that L(s,s')+«a =720, there is a son =
with /(z) = (s, &), where A, is given as follows:

If there is an ancestor x of y such that /{x)= (s, d), where <% and
d;<y; then b, = w, otherwise b, =1,

In [6] it is proved that 7. is finite.

Lemma 54, The following are equitalent:

(@)  There is an infinite positive path in G with initial configuration ¢
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and containing infinitely many configuraiions of the jorm {g. d), where g is «
Jived state in 6.

(b)  There is w node in T, with label (q, a) satisfving the following
properiy.

Let A be the set of all i such that a, # @ and o € N* be such that for all
re A, a;=ua, and for all i not in A a,=0. Then there exists be N* sueh that
a'zhoand (g, h) iy positively veachable with respect 1o A Jrom (g, @),

Proof. (b=sa) Lelg, a b, A« beasgivenin (b). Let oy, ¢, e, bea
positive path with respect to A, with ¢, — (g, a’), e, (g, b) Let e, = (s,, d;),
and — (1) be the lower bound for all (/) for 0<i<p and for all j not in A,
Since (¢, a) is a node in 7 with «, = w for all j not in A, it can casily be
shown that there is a configuration (g. /) such that f, = «, for all j& 4, and
fizAforall jnotin A, and (. /) is positively reachable from ¢, ie., there is
a positive path ¢ with ¢, (¢, f'} being the initial and final configurations,
respectively. Let g be the sequence of slates corresponding to 7, and /i be
the sequence of states corresponding to ¢, Covne,. Now consider the
infinite sequence of states g - A, 1t is clearly seen that this sequence gives us
an infinite positive path satisfying the property given in (a).

{a==b) Let C=¢q, ¢y, be an inlimite positive path satisfying the
property given in (a). Lot ¢ = {5, «;) for all iZ0. We define an infinite
sequence dyd, ... d,.... as follows:

Forall iz 0 d,= (s, b)). where h;e M* is defined as foliows: by = a,. For
i=>0 we inductively define b, 3, M* as follows:

For any j. (7,);=w if (h; );=w, otherwise (3,);=(a;),. For all j,
ls/=k, (h),=w il there is an /< with s,=s,, b,<7,, and (hy); < (7,
otherwise (), = (y,);.

It is clearly seen that for cach iz 0. o, is the label of a node in 7', Now
the above sequence consists of an infinite subsequence o, o/, .... such that for
all /=0, 5, = ¢. From this subscquence pick up an infinite subsequence with
non-decreasing first coordinates of b,. By repeatedly doing this for all coor-
dinates, it can easily be shown that there is an infinite subsequence d,,,
dj sy such that for all /20, 5, =, h,=b;, . But from the way we defined
d,, it has to be the case that there is an », with the property that for all
[Zn, by=h, . Since Cis a positive path there exists /. m such that [<m
and a, = «, . Let 4 be the set of all / such that the jth coordinate of b, is not
o. Clearly for all je A, the jth coordinate of «,, a, . b, b, are all equal.

Let x=h; and f3, y& N* be such that f§,=y,=a, for all je A, and for all
notin A, fi,=0, y,= (jth coordinate of a, — jth coordinate of ay). Now it is
clearly seen that the configuration (¢, y) is positively reachable with respect
to A fiom the configuration (¢. ). Also it is clear that there is a node in 7,
with label (¢, ). Hence (b) is truc. §
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Lemma 5.5 follows dircetly from the results of [ 6 ].

LEMMA 5.5 Given a configuration ¢ = (g, a) it is decidable if there is u
configuration d=(q. h) with a<b such that d is positively reachable from ¢

i vector addition svstem G.

The prool of the above lemma can easily be extended to the following
femma,

LiEMMA 5.6, Given ¢=(g. a) and a ser A< 1.2 kY 1 is decidable 1f
there exists a configuration d=1(q. h) such that a«<b and d is positively
reachable with respect 1o 4 from . i

TueorEM 577, The theory of wnhounded wnordered buffers over any
alphaber 2 iy deciduble.

Proof. It is cnough il we show that the satisfiability problem is
decidable. Let / be a PTL formula and A7, be the automaton associated
with f, and G, be the veetor addition system with states ol dimension &
associated with /. Let ¢ = (54, 0), where s, is the initial state in A7, Then f
is satisfiable ifT there exists an infinite positive path in &, with initial con-
figuration ¢ and containing infinitely many configurations of the form
(¢, d), where ¢ is a final state in M, Now to check this condition we use
Lemma 54, We construct T, and for each pair (¢. @), where ¢ is a final
state and some node in 7', is labelled with this pair, we do the following:

Let 4 be the set of all 7 such that ¢, % w and ' € N* be such that for all
ied, a,=a,, and for all i not in A, «,=0. Verily il there is some b=’ such
that (g, h) is positively reachable with respect to 4 from (g, «'). This can be
done duce to Lemma 5.6,

Now from Lemma 5.4. [is satisfiable on a mode!l of an unbounded unor-
dered buffer iff there exists a pair (¢, @) which satisfies the above condition.
Thus satisfiability is decidable and hence the theorem follows.  J

The following problem is known as the reachability problem lor vector
addition systems with states: Given a vector addition system G with states,
and two configurations a, d of G, is b positively reachable from a in 7

Turorem 58, The theory of wnbounded wnordered huffers with the
liveness property over a finite alphabet X is axiomatizable {(and also
decidable) iff the reachability problen for vector addition systems with states
of dimension card(X)) is decidable.

Proof.  First we want to show that the set ol formulae satishable on a
model of an unbounded unordered buffer with the liveness property is
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recursively enumerable. To show this it is enough if we give a pa
decision procedure to check if /'is satisfiable on such a model. Let 1 be ¢
a model at the beginning of which fis true, and let M, be the autom:
associated with f. Since the buffer becomes emply infinitely often in

casily follows that there is a model of an unbounded unordered buffe
the form a- f, where «, § are finite strings such that the buffer is err
after o f' for all i=0 and fis true at the beginning of the above mo
Our partial decision procedure guesses a, B and verifies that they h
the above properties. 1t is easily scen that we can easily verify if o - 3
accepted by M.

Now it easily follows that the set of valid PTL formulae in all models
unbounded unordered buffers with the liveness property is axiomatizable
the set of satisfiable formulae over such models is decidable. We show t
the set of satisfiable formulae is decidable iff reachability problem for vec
addition systems with states is decidable.

First we reduce reachability problem to satisfiability problem. |
G=(V, E, L) be a vector addition system with states of dimension & anc
is required to determine if (7, b) is positively reachable from (s, a). Let X
{01, 02,..0,}. We give a formula 7 such that there is a history /
UNOR, , . in which the buffer becomes empty infinitely often and su
that (4. 0) =7 iff (1, b) is positively reachable from (s, a) in G. We use
proposition P, for each we I The formula f asserts the following:

(i) Foreachi 1<i<k, mitially «, messages of value o, are writt
into the buffer; immediately after this P is true.

(i) The propositions P, (for ue V') are mutually exclusive. For u #
il P, is true at any instance { then the next proposition to be true in futu
at instance j will be P, . where (u, v) € E, and if (¢1s €a5ey €)= L{u, v) the
between i and j, for all / such that 1 </<k if ¢, is positive (negative) the
le,| number of messages of value o, are written into (read from) the bufie

(i) If P, is true at any instance, either (ii) holds or the followin
condition is satisfied. Immediately after P, is true, for all / such th:
1=/=k, b, messages of value o, are read from the buffer, and after this a
propositions are false forever.

(iv) There is a future instance from which point all propositions wil
be false forever.

It is easily seen how to obtain f. Thus if satisfiability problem i
decidable then reachability problem is also decidable.

Now assume that the reachability problem is decidable. Let f be a PTI
formula, and M,, G, be as defined before where Gy=(V,E L) Let g, I
the initial state in M,. The following is easily seen:

There is a 1e UNOR, , such that the buffer becomes empty infinitely
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often in 1 and (r,0) }= fiff there isa ge V and a q,€ F which is a final state
salislying

(i) (g, 0) is reachable from (g,,0) in G, and,

(it) (g, 0) is reachable from (g, 0) by passing through ¢,.

{it) is not a direct reachability problem; however, we can put it as a
reachability problem as follows: Introduce another copy of Gy, call it G},
and introduce a transition from ¢, in G to ¢/ in G, which is lubelled with 0.
Now (ii) is satisfied in G, iff (¢". 0) is reachable from (4, 0) in the new vec-
tor addition system.

Since we assumed reachability is decidable, we can casily decide if there
i 4 ¢ satisfying (i) and (ii).

6. CONCLUSION

We have examined the possibility of using linear temporal logic to
express the semantics of different message buffering systems. We have
shown that it is possible to characterize bounded message buflers in PTL
and that no such characterization is possible for unbounded buffers. We
have also considered the possibility of axiomatization of the theory of
various message buffer systems. We have shown that unbounded FIFO
buffers are not axiomatizable in PTL. However it may be possible to give
an axiomatization of thesc buffers in a logic weaker than PTL. This is still
an open problem. We have also shown that unbounded LIFO and unor-
dered buffers are axiomatizable in PTL. However to give a complete axiom
system for these bulfers in PTL is still an open problem. Some of these
problems will be addressed in a future paper.

APPENDIX

Below we give a constructive method for characterizing bounded buffers.

A Semi-automaton A is a triple (O ,, 44, M ;) where Q, is a finite set of
states, 4, is a finite alphabet, and A/ ,: Paxd, =0, Let 4=(0,. 4,
M) and B=(Q,, 4,, Mp). and §: QO xAd A, The cascade product of
A, B with mapping § is the semi-automaton ¢ = (Q.. 4., M), where
Q.=0,x0Qyu 4.=4, and for all PEQ . qeQp oed , M A(p, q),0)=
(P’ q"), where p'=M ,(p, o), ¢'= M plq, 3(p, o). The cascade product of
three or more automatons is defined by association to the lelt.

A reset is a semi-automaton A — (Q. 4. M) where Q= {0,1}, 4 is a dis-
joint union of 3 sets 4,,. Ay, 4, such that for all pe Q, ae d,. M(p,a)=0,
forall oed,, M(p,o)=1, and for all ged, Mip o)=p,



AXTOMATIZATION OF MESSAGE BUFFERS I

Let A=(0, 4, M) be a semi-aitomaton and let A4 be extended in
natural way to the domain 4% Now et 4,,=1o¢ A* | Mp, o) = gh M
proved in ([7.8]) that if 4 is a cascade product of resets then A,, 1s
star-free regular set. Indeed in (8] a constructive method js given
generate such a star-free regular sel. We give a construction below 1
simulate bounded buffers by a cascade product of resets,

TuroreMm.  Bounded V110 LIFO, and  unordered buffers can  py
sinudated by a cascade product of resety.,

Proof. Assume 1t message alphabet ¥ == 40, 1 {- It is easy to see how
our construction can be extended to any finite 2. Let & be the size of the
buffer. We informally describe the construction. We use a cascade produci
of 2k resets. The number of rescts i state 1 among the first & resets gives
the number of messages in the bulfer at any instance. The last & resets con-
tain the contents of the bulfer right justificd. Number the resets left to right
starting fiom 1 If the number of messages m the buffer is . then the resets
2k —m 41 through 2k contain the buffer contents, the latest being con-
tained in (2k — Dith reset and the oldest in 2kth reset.

Whenever a write operation occurs, then the firs resel in state 0 among
the first & resets is changed to state 1. Whenever a read operation occurs
then the first reset in state 1 among the first 4 resets ig changed fo state (),
Overflow and underflow can be easily detected

In addition to the above update, a write operation places the new
message in (2k — m)th reset if there are 71 messages already in the buffer,

In case of FIFO buffers, a read operation transfers the state of ith reset
to (i-+ 1)th reset for all i such that 24 m+1=i<2k In case of LIFO buf-
fers decrementing of the counter in the first & resets is cnough. In case of
unordered buffers, a read operation on a message o transfers the state of ith
reset 1o (7 + ith reset for ali i such tha 2k —m+ 12i<j, where Jis the
first resct with state o. The detailed designs of the resets are left to the
reader. Finally, we can use another reset and handle error conditions, In
this case if there is an crror operation on the buffer then the (24 + 1)th
reset goes into state | indicating an error state. |

Let A be the cascade product of rescts as constructed in the above
theorem. Let 0 be the state of 4 with all resets being in state 0. Let
B=union of all A4, Where g is a non-crror state of Aand p 0. Using the
construction given in [8] we can obtain a star-frec regular event
corresponding (o B, and using the translation given in Lemma 4.5 we can
obtain a characterization of bounded buffers in the language L. From this
and using the translation given in [10] we can obtain 2 characterization of
bounded buffers in PTL.
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