Theoretical Computer Science 59 (1988) 115-131 115
North-Holland

CHARACTERIZING FINITE KRIPKE STRUCTURES
IN PROPOSITIONAL TEMPORAL LOGIC *

M.C. BROWNE, E.M. CLARKE and 0. GRUMBERG

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, U.5.A.

Abstract. We show that if two finite Kripke structures can be distinguished by some CTL* formula
that contains both branching-time and linear-time operators, then the structures can be distin-
guished by a CTL formula that contains only branching-time operators. Our proof involves
showing that, for any finite Kripke structure M, it is possible to construct a CTL formula Fy, that
uniquely characterizes M. Since one Kripke structure may be a trivial unrolling of another, we
use a notion of equivalence between Kripke structures that is similar to the notion of bisimulation
studied by Milner [15].

Our first construction of Fy, requires the use of the nexttime operator. We also consider the
case in which the nexttime operator is disallowed in CTL formulas. The proof, in this case,
requires another notion of equivalence—equivalence with respect to sturtering and is much more
difficult since it is possible for two inequivalent states to have exactly the same finite behaviors
(modulo stuttering), but different infinite behaviors. We also give a polynomial algorithm for
determining if two structures are stuttering equivalent and discuss the relevance of our results for
temporal logic model checking and synthesis procedures.

1. Introduction

The gquestion of whether branching-time temporal logic or linear-time temporal
logicis best for reasoning about concurrent programs is one of the most controversial
issues in logics of programs. Concurrent programs are usually modelled by labelled
state-transition graphs in which some state is designated as the initial state. For
historical reasons such graphs are called Kripke structures [11]. In linear temporal
logic, operators are provided for describing events along a single time path (i.e.,
along a single path in a Kripke structure). In a branching-time logic the temporal
operators quantify over the futures that are possible from a given state (i.e., over
the possible paths that lead from a state). It is well known that the two types of
temporal logic have different expressive powers [6, 12]. Linear temporal logic, for
example, can express certain fairness properties that cannot be expressed in branch-
ing-time temporal logic. On the other hand, certain practical decision problems like
model checking [5,20] are easier for branching-time temporal logic than for linear
temporal logic.

* This research was partially supported by NSF Grant MCS-82-16706. The third author, O. Griimberg,
is currently on leave from Technion, Haifa and is partially supported by a Weizmann postdoctoral
fellowship.

0304-3975/88/83.50 (© 1988, Elsevier Science Publishers B.V. (North-Holland)

116 M.C. Browne, E.M. Clarke, O. Griimberg

In this paper we provide further insight on which type of logic is best. We show
that if two finite Kripke structures can be distinguished by some formula that
contains both branching-time and linear-time operators, then the structures can be
distinguished by a formula that contains only branching-time operators. Specifically,
we show that if two finite Kripke structures can be distinguished by some formula
of the logic CTL* (i.e., if there is some CTL* formula that is true in one but not
in the other), then they can be distinguished by some formula of the logic CTL.
The logic CTL*[5, 6] is a very powerful temporal logic that combines both branching-
time and linear-time operators; a path quantifier, either A (““for all paths”) or E
(**for some paths™) can prefix an assertion composed of arbitrary combinations of
the usual linear-time operators G (“always”), F (“sometimes”), X (“nexttime™),
and U (“until”). CTL [2,4] is a restricted subset of CTL* that permits only
branching-time operators—each path quantifier must be immediately followed by
exactly one of the operators G, F, X, or U.

Our goal is to show that, for any finite Kripke structure M, it is possible to
construct a CTL formula F,, that uniquely characterizes M. Since one Kripke
structure may be a trivial unrolling of another, we use a notion of equivalence
between Kripke structures that is similar to the notion of bisimulation studied by
Milner [15]. We say that states s and s’ are equivalent if they have the same labelling
of atomic propositions and for each transition from one of the two states to some
state t there is a corresponding transition from the other state to a state t' that is
equivalent to r. Two Kripke structures are equivalent if their initial states are
equivalent. It is not difficult to prove that if two Kripke structures are equivalent,
then their initial states must satisfy the same CTL* formulas.

An obvious first attempt to construct Fy, is simply to write a CTL formula that
specifies the transition relation of M. For each state s in M we include in Fy a
conjunct of the form

AG(&”(S):}/\ EXZ(s;) A AX(\/ .S.V(s;)))

where s,, ..., s, are the successors of s and .#(1) is the labelling of atomic proposi-
tions associated with state t. It is easy to see, however, that this simple approach
cannot work in general: several states in M may have exactly the same labelling of
atomic propositions.

Instead, we first show that it is possible to write a CTL formula that will distinguish
between two states in the same structure that are not equivalent according to the
above definition. Two inequivalent states may have exactly the same labelling of
atomic propositions, they may even have corresponding successors, but the computa-
tion trees rooted at those states must differ at some finite depth. The difference in
the computation trees can be exploited to give a CTL formula that distinguishes
between the states. Since equivalent states satisfy the same CTL* formulas, it follows
that if two states can be distinguished by a CTL* formula, they can be distinguished
by a CTL formula. Once we can distinguish between inequivalent states in the same

Characterizing finite Kripke structures in PTL 117

structure, we can write a single CTL formula that encodes the entire Kripke structure;
this formula is the F,, that we seek.

The above construction requires the use of the nexttime operator in specifying
Fy;. In reasoning about concurrent systems, however, the nexttime operator may
be dangerous since it refers to the global next state instead of the local next state
within a process [13]. What happens if we disallow the nexttime operator in CTL
formulas? The proof, in this case, requires another notion of equivalence—
equivalence with respect to stuttering. We say that two state sequences correspond if
each can be partitioned into finite blocks of identically labelled states such that
each state in the ith block in one sequence is equivalent to each state in the ith
block of the other sequence. Thus, duplicating some state in a sequence any finite
number of times will always result in a corresponding sequence. We say that two
states are equivalent if for each state sequence starting at one there is a corresponding
state sequence that starts at the other. Under this second notion of equivalence the
proof of the characterization theorem becomes much more complicated since it is
possible for two inequivalent states to have exactly the same finite behaviors (modulo
stuttering), but different infinite behaviors.

Equivalence under stuttering turns out to be quite useful for reasoning about
hierarchically constructed concurrent systems. In determining the correctness of
such a system by using a technique like temporal logic model checking [1, 3, 4, 5,
14, 16, 19, 20, 21], it is often desirable to replace a low-level module by an equivalent
structure with fewer states. Our results show how this can be done while preserving
all of those properties that are invariant under stuttering. We give polynomial
algorithms both for determining if two structures are equivalent with respect to
stuttering and for minimizing the number of states in a given structure under this
notion of equivalence.

Finally, our results have some interesting implications for the problem of synthesiz-
ing finite-state concurrent systems from temporal logic specifications [4,17]. In
order to guarantee that any Kripke structure can be synthesized from a specification
in linear temporal logic, Wolper [22] was forced to introduce more complicated
operators based on regular expressions. Our results show that (at least in theory)
no such extension is necessary for branching-time temporal logic. Any Kripke
structure can be specified directly by a formula of branching-time logic.

The expressive power of various temporal logics has been discussed in several
papers; see [6, 12], for example. Hennessy and Milner [9], Hennessy and Stirling
[10], Graf and Sifakis [8], and Pnueli [18] have all discussed the relationship
between temporal logic and various notions of equivalence between models of
concurrent programs. However, we believe that we are the first to show that it is
possible to characterize Kripke models within branching-time logic and to investigate
the consequences of this result.

Our paper is organized as follows: In Section 2 we describe the logics CTL and
CTL*. In Section 3, we state formally what it means for two states in a Kripke
structure to be equivalent and prove that equivalent states satisfy exactly the same

118 M.C. Browne, E.M. Clarke, O. Griimberg

CTL* formulas. Section 3 also contains the first of the two main results of the paper:
we show how to characterize Kripke structures using CTL formulas with the nexttime
operator. Section 4 introduces the second notion of equivalence (equivalence with
respect to stuttering) and shows that if the nexttime operator is disallowed, then
equivalent states again satisfy exactly the same CTL* formulas. We also extend the
characterization theorem of Section 3 to Kripke structures with the new notion of
equivalence. In Section 5 we give a polynomial algorithm for determining if two
states are equivalent up to stuttering. The paper concludes in Section 6 with a
discussion of some remaining open problems.

2. The logics CTL and CTL*

There are two types of formulas in CTL*: state formulas (which are true in a
specific state) and path formulas (which are true along a specific path). Let AP be
the set of atomic proposition names. A state formula is either:
® Aif A AP;

@ if f and g are state formulas, then —1f and f'v g are state formulas;

® if [is a path formula, then E(f) is a state formula.

A path formula is either

® a state formula;

® if /and g are path formulas, then —f, fv g, X/, and fUg are path formulas.

CTL* is the set of state formulas generated by the above rules.

CTL is a subset of CTL* in which we restrict the path formulas to be
e if / and g are state formulas, then X/ and fUg are path formulas;
® if f is a path formula, then so is —f.

We define the semantics of both logics with respect to a structure M =(S, R,),
where
® S is a set of states;
® R < §5xSisthetransition relation, which must be total; we write s, = s, to indicate

that (s, s.)e R;
® 4:5- P(AP) is the proposition labelling.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We only consider transition relations where every state is reachable from the
initial state. We define a path in M to be a sequence of states, = =s,, 5, ... such
that, for every i=0, s,~s,,,. 7 will denote the suffix of = starting at s,.

We use the standard notation to indicate that a state formula f holds in a structure:
M, s&=f means that f holds at state s in structure M. Similarly, if f is a path formula,
M, m=f means that f holds along path = in structure M. The relation = is inductively
defined as follows (assuming that f; and f are state formulas and g, and g, are
path formulas):

(1) sEAS Ae F(s).
(2) sE=Efiskf,.

Characterizing finite Kripke structures in PTL 119

(3) s=fiviesEf or sEfs.

(4) sE=E(g,)<there exists a path 7 starting with s such that =F=g,.

(5) m=f,< s is the first state of & and s=f,.

(6) =g & whg,.

(7) =g v g or wheg,.

(8) m=Xg, & n'Eg,.

(9) w=g Ug,< there exists a k=0 such that m'E=g, and, forall 0<j <k #'Eg,.
We will also use the following abbreviations in writing CTL* (and CTL) formulas:

® fag="(7fvg), ® Ff=true Uf,

® A(f)="E(f), ® Gf=Ff

3. Equivalence of Kripke structures

Given two structures M and M’ with the same set of atomic propositions AP, we
define a sequence of equivalence relations E,, E,,... on Sx 5" as follows:
® 5 F,s'if and only if #(s5)=#(s");
e s F ., s if and only if

- F(s)=Z%(s'),

— Vs [s=>5=>3si[s"=> 575, E,51]], and

- Vsi[s'»s1=3s,[s= 5,5 E, 51]]

Now, we define our notion of equivalence between states: s Es' if and only if
s E;s' for all i=0. Furthermore, we say that M with initial state s, is equivalent to
M’ with initial state s{, iff s, Es{. Two paths s, s,,... and s', 5|, ... correspond if
s Es"and Vi[s; E s}]. Also note that if two paths correspond, so do all the respective
pairs of tails.

Lemma 3.1. Let 5 E s'; then for every path starting from s there exists a corresponding
path starting from s', and for every path starting from s' there exists a corresponding
path starting from s.

Proof. Note first that E,,, < E, for all n=0. Since E, is finite, there must be a k
such that E,,,= E, = E. Thus, we can substitute E for E, in the definition of E;
giving s E 5" if and only if
& F(s)=2(s"),
® Vs, [s—s5,=3si[s'>s]as, Esi]], and
e Vsi[s'>si=3s[s—>s5, a5, Esi]]

The remainder of the proof is a straightforward induction on the position in the
path. [J

120 M.C. Browne, E.M. Clarke, O. Griimberg

Theorem 3.2. If s Es', then Vfc CTL*[s=fos'=f].
This theorem is a consequence of the following lemma.

Lemma 3.3. Let h be either a state formula or a path formula. Let m=s,s,,... be a
path in M and 7w'=5s', s\, ... be a corresponding path in M'. Then

(i) seh<s'=hif his a state formula, and

(i) wEhe w'=h if his a path formula.

Proof. We prove the lemma by induction on the structure of h.
Base: h= A. By the definition of E, sEA&S s'=A.
Induction: There are several cases.
(1) h=—h,, a state formula.

sEh © s#h,
< s’ h, (induction hypothesis)
< s'Eh

The same reasoning holds if h is a path formula.
(2) h=h,v h,, a state formula.

s=Eh & s=h, or sEh,
< s'=h, or s'=h, (induction hypothesis)
< s'Eh

We can also use this argument if h is a path formula.

(3) h=E(h,), a state formula. Suppose that s&=h. Then there is a path, 7, starting
with s such that 7 =h,. By Lemma 3.1, there is a corresponding path =} in M’
starting with s". So, by the induction hypothesis, 7 /=h,< wi=h,. Therefore,
sE=E(h,)=s'=E(h,). We can use the same argument in the other direction.

(4) h=h,, where h is a path formula and h, is a state formula. Although the
lengths of h and h, are the same, we can imagine that h = path(h,), where path is
an operator which converts a state formula into a path formula. Therefore, we are
simplifying h by dropping this path operator. So now

mEh & sEh,
< s'=h, (induction hypothesis)
= w'E=h

The reverse direction is similar.

(5) h=Xh,, a path formula. By the definition of the nexttime operator, ='=h,.
Since 7 and 7' correspond, so do 7' and #''. Therefore, by the inductive hypothesis,
7"'"Eh,, so 7'=h.

Characterizing finite Kripke structures in PTL 121

We can use the same argument in the other direction.

(6) h=h,Uh,, a path formula. Suppose that w=h,Uh,. By the definition of the
until operator, there is a k such that 7*F=h, and for all 0=<j<k, #w/=h,. Since =
and 7’ correspond, so do 7/ and 7" for any j. Therefore, by the inductive hypothesis,
7'*=h, and 7" h, for all 0<j < k. Therefore, 7'=h.

We can use the same argument in the other direction. [J

Another property of two equivalent states is that they both have corresponding
computation trees. For every s € S, Tr,(s) is the computation tree of depth n rooted
at s. Formally, Tr,(s) consists of a single node which has the same label as s. Tr,, , 1(5)
has as its root a node m with the same label as s. If s has successors T
the Kripke structure, then node m will have subtrees Tr,(s,),..., Tr,.(s,).

Two trees Tr,(s) and Tr,(s’) correspond (denoted Tr,(s)=Tr,(s")) if and only
if both of their roots have the same label and for every subtree of depth n—1 of
the root of one, it is possible to find a corresponding subtree of the root of the other.

in

Lemma 3.4. s E, s" if and only if Tr;(s)=Tr,(s") for all j< n.

Lemma 3.5. Given a finite set of states s, ..., s,, there exists a ¢ such that if two
states s; and s; are not E-equivalent, then Tr.(s;) and Tr.(s;) will not correspond.

We will call the minimal such value of ¢ for S the characteristic number of the
structure.
We associate a CTL formula with a tree Tr,(s) as follows:
® FTro(s)]1=(pin---ap)n(g -+ 7gq,), where #(s)={p,,...,p,} and
=& () =G50 odaks
® F[Tr,\(s)]=(A, EXF[Tr,(s)]) A AX(V, Z[Tr,(s:)]) A F[Try(s)], where s; is a
successor of s.

Lemma 3.6. s=%[Tr,(s)] for all n=0.
Lemma 3.7. If s=#[Tr,(s')], then Tr,(s)=Tr,(s’).

Proof. The proof is by induction on n. The basis case is trivial. Thus, we assume
that n>0. Let 5y, 55, ..., 5, be the sons of s in Tr,(s) and s}, 5%, ..., sy be the sons
of s in Tr,(s").

It is easy to see that s and s’ have the same labelling of atomic propositions.

We must show that Tr,_,(s;,) corresponds to some Tr, (s}). Since s&=F[Tr,(s')],
v)=AX(\/ F[Tr,_,(s})]). Since s,, is a successor of s, 5, =F[Tr, (s})] for some j,.
Hence, Tr,, 1(5;,) =Tr,_,(s}) by our inductive hypothesis.

Finally, we must show that Tr, ,(s;) corresponds to some Tr,_,(s;). Since
SEF[Tr,(s)], sl=/\j EX#[Tr,_,(s})]. Since s} is a successor of s/,
sFEX#[Tr, (s},)]. Therefore, there exists an i, such that s, =F[Tr, 1(sj,)]. Hence,
Tr, y(s;,) =Tr,_,(s},) by our inductive hypothesis. []

122 M.C. Browne, E.M. Clarke, O. Griimberg

Lemma 3.8. If s is a state in a Kripke structure M, then there is a CTL formula
€(M, s) that determines s up to E-equivalence within M, i.e., €(M, s) is true in s and
in every state in M that is E-equivalent to s, but false in every state in M that is not
equivalent to s.

Proof. We choose €(M, s) = F[Tr.(s)] where ¢ is the characteristic number of M.
‘¢ (M, s) is true in s and hence in all states E-equivalent to s. Let s’ be a state that
is not E-equivalent to s; then Tr.(s)#Tr.(s"). Hence, by Lemma 3.7,
sFE(M,s). O

Theorem 3.9. Given a Kripke structure M with initial state s, there is a CTL formula
F(M, s,) that characterizes that structure up to E-equivalence, i.e., M', s{=F(M, s,) &
sy E s)).

Proof. For any state s in M, let 5,,..., s, be the successors of 5. We define
G(M,s)= AG(%(M, s) = NEXE(M, s;)n AX Y € (M, s,}).

(G (M, s) describes all of the possible transitions from s. F(M, s,) is the formula
C(M, sg) A N, G{M, s). If two structures M, s, and M’, s/, are equivalent, then, by
Theorem 3.2, they satisfy the same formulas. Since M, s=F(M, s,), so does M’, si,.

For the other direction we show by induction on n that if M', si=F(M, s,), then
Tr,(sy)=Tr,(sy) for all n=0. By Lemma 3.4, the two structures are then E-
equivalent. [

Corollary 3.10. Given two structures M and M’ with initial states s, and s}, respectively,
sy E'siy if and only if Vfe CTL*[M, sy=f< M, si=f].

Corollary 3.11. Given two structures M and M' with initial states s, and s, respectively,
if there is a formula of CTL* that is true in one and false in the other, then there is
also a formula of CTL that is true in the one and false in the other.

We will illustrate our method of characterizing Kripke structures with the example
in Fig. 1. The characteristic number of this structure is 1 since Try(s,) # Tro(s.),
Tro(s,) # Try(s,), and Tr,(s,) # Tr,(s,). Let
® C(M, s,)=anrbrEX(aa—b)nEX(Tanb) A AX(ar—bvaanh),
® (M, s,)=anrbrEX(anr—b)rAX(aa—b),
® (M, s,)="1arbrEX(anr—1b)aAX(aab).

We can now state the formula that characterizes this structure:
F(M, s5y) = €(M, s,)
ANAG(E(M, 5,)=>EX€E(M, s,) \EXE(M, s.)
NAX(E(M, 5,)v C(M, 5,)))
ANAG(6(M, 5,)=>EXE(M, 5,) n AXE(M, 5,))
NAG(E(M, 5,)=>EX€(M, 5) A AXC(M, 5,)).

Characterizing finite Kripke structures in PTL 123

78N,

Sy S

Fig. 1. A Kripke structure in which every other state is labelled A.
4. Equivalence with respect to stuttering

We first define what it means for two Kripke structures to be equivalent with
respect to stuttering. Given two structures M and M’ with the same set of atomic
propositions, we define a sequence of equivalence relations E,, E,,... on $x 8§’ as
follows:
¢ s E, 5' if and only if £(5)=L(s").
® s F, ., s if and only if

(1) for every path 7 in M that starts in s there is a path =" in M’ that starts in

s', a partition B, B, ... of @, and a partition B{B%... of 7' such that, for all je N,

B; and Bj are both nonempty and finite, and every state in B, is E,-related to

every state in B}, and

(2) for every path 7' in M’ starting in s’ there is a path 7 in M starting in s that

satisfies the same condition as in (1).

We will say that two paths 7 and 7' s-correspond if they satisfy condition (1) above.

Our notion of equivalence with respect to stuttering is defined as follows: s E 5" if
and only if s E; s’ for all i=0. Furthermore, we say that M with initial state s, is
equivalent to M’ with initial state s, if s, E s/,

Lemma 4.1. Given two Kripke structures M and M', there exists an | such that
VsVs'[sE s iff s Es'].

Proof. By the definition of E,,,, sE;,,s'=s5E s, so E,2E,2E,>--. Since M
and M’ are both finite, E, must be finite as well, so only a finite number of these
containments can be proper. Let E; be the last relation that is properly included in
E, . By the definition of proper containment, Vm=I[E,=E,], so s E;s'=sE,, s’
for m =1 Since

SErSF = SE(|.§" =4 SE; ES’ :>"-,
we have s E;s'=>Vm[s E,,s'], so s E;s'=s E s'. The other direction is trivial. (]

Theorem 4.2. If's Es', then for every CTL* formula f without the nexttime operator,

s=1iff s'=1.

124 M.C. Browne, E.M. Clarke, O. Griimberg
The proof is similar to that of Theorem 3.2.

Lemma 4.3. Given a Kripke structure M, for every state s € M there is a CTL formula
C(M, s) such that Vie M[t=€(M, s) iff s E t].

Proof. We will prove this by induction on [:
e [f —(sE), then there is a CTL formula d/(s t) such that Vve

M[s E;v=vEd (s, t)] and t#d,(s, t).
® For every state s€ M, there is a CTL formula €,(M, s) such that for every te M,

t=%,(M, s) iff s E; t.

d,(s, 1) is a formula that distinguishes between t and states equivalent to s within
the structure M, and €;(M, s) is a formula that characterizes E;-equivalence to state
s within M.

If we let 6,(M, s) be a conjunction of %, (M, s) and d,(s, t) for every t that is
not E-related to s, the second assertion follows easily. By Lemma 4.1, this condition
implies that the lemma is true. Now it is necessary to show how to construct d(s, t)
by induction on L

Basis (1=0): Let { p;} be the set of atomic propositions in .¥(s) and {g.} be the
set of atomic propositions in AP —%(s). Now, let

Go(M, s)=dy(s, t) =\ pin A\ RU/E
i i

It is clear that this formula is only true in states with the same labelling of atomic
propositions as s. Therefore, the base case is established.

Induction: Assume that the result is true for 1. We will show it for /+1.

Since —1(s E;, t), either there is a path from s without an s-corresponding path
from ¢, or vice versa. In the latter case, we will use the argument below to find a
di (1, s) such that tE=d;, (4, s) and s#d,, (1, s). We can negate this formula to get
the desired d,,(s, 1).

If there is a path from s without an s-corresponding path from ¢, we can divide
this path into blocks (B, B-...) such that

Vi[xe B; = xE=%,(M,first(B;)) and first(B;,) % (M, first(B;))].

Now, there are two cases: either there is a finite path from one state without an
s-corresponding path from the other, or there is an infinite path without an s-
corresponding path, but every finite prefix of this path has an s-corresponding path.

In the first case, the path from s is finite, so the blocks are finite and there are
only a finite number of them (say n). Consider the CTL formula:

dy, (s, 1) =€(M, first(B,)) »n E[€,(M, first(B,))U€,(M, first(B,))
AE[...U% (M, first(B,))] .. .].

It is clear that s&=d,, (s, 1) along the path B, B, ... B,. However, if t=d,, (s, t), then
there is a path that can be partitioned into blocks B{B% ... B!, such that Vi[ve B!=
=€ (M, first(B;))]. Since every state in B; satisfies €,(M, first(B;)), the inductive

Characterizing finite Kripke structures in PTL 125

hypothesis and the definition of E, gives B; E, B. Therefore, this path from ¢
s-corresponds to the path from s, a contradiction. We conclude that t#d,. (s, t).

In the second case, we start by showing that the path from s has only a finite
number of blocks by using an argument based on Kénig’s Lemma. We can construct
a tree rooted at ¢ such that 1, ... 1, is a path through the tree if and only if there
is a path in the Kripke structure

7R 11 SR 1 SR

that s-corresponds to a prefix of the path from s with B =(ru,... u,), Br=
(tyv;...v,), and so on. Now, if the path from s has an infinite number of blocks,
this tree must have an infinite number of nodes. Otherwise, if the tree had n nodes,
there could be ne path of length n+1, so the first n+1 blocks of the path from s
would have no s-corresponding path from t. Since the Kripke structure is finite, we
also know that this tree must be finitely branching. Therefore, by Konig’s Lemma,
there must be an infinite path through the tree. But this implies that there is an
infinite path from ¢ that can be divided into an infinite number of blocks that
correspond to the blocks of the path from s, so there is a path from ¢ s-corresponding
to the path from s, violating our assumption. Therefore, the path from s has only
a finite number of blocks.

So, suppose that there are n blocks, all of which are finite except the last. Consider
the CTL formula:

dpi(s, 1) =6 (M, first(B,)) A E[€,(M, first(B,))U€,(M, first(B,))
AE[.. . UEGY%,(M, first(B,))]. . .]

It is clear that sk=d,, (s, t) along the path B,B,... B,. However, if t=d,, (s, {), then
there is a path that can be partitioned into blocks BB ... B/, such that all of the
blocks are finite except B}, and Vi[v e B]=> v=6,(M, first(B;))]. Since every state in
B; satisfies €,(M, first(B;)), the inductive hypothesis and the definition of F; gives
B, E; B;. We can also divide the infinite blocks B, and B/, into an infinite set of
blocks containing one state each. Therefore, this path from t s-corresponds to the
path from s, so we have a contradiction. We conclude that t#d,, (s, t).

Now, these d; (s, t) describe the existence or nonexistence of a single path along
which some €, formulas hold. By the definition of s E,,, v, every path from s has
an s-corresponding path from v along which the same €, formulas hold and vice
versa. Therefore, s E;., v=>vFEd,, (s, t).

Therefore, the lemma is true. [

Theorem 4.4. Given a Kripke structure M with initial state s, there is a CTL formula
F(M, s,) that characterizes that structure up to E-equivalence with respect to stuttering,
ie, M', s)EF(M, s))< s, E s).

Proof. For any state s in M, let s, ..., s, be the extended successors of s, where an
extended successor is a state that is not E-related to s and is reachable from s along

126 M.C. Browne, E.M. Clarke, O. Griimberg

a path consisting entirely of states that are E-equivalent to s. Next, we construct
G(M, s), which describes all of the transitions from s in M. In this construction, it
is convenient to use the weak until operator, A[fWg]=E[1gU—fag], which
differs from the ordinary until in that it permits an infinite path along which every
state satisfies the first argument. So now:

NE[C(M, s)UEC(M, 5,)]A Al:'(:'(M, s)W \/ €(M, s,-):| AEGE(M, s)

if sEFEG€(M, s),
G(M, s)=

ANE[C(M, s)UEC(M, s;)] A A|:'('(M, $IW V €(M, s[-):| ATEGE(M, 5)

otherwise.

Let F(M, s,) be the formula € (M, s,) n A, AG(€(M, s)=>G(M, 5)). The correctness
of F(M, s,) is an easy consequence of the next two lemmas and Theorem 4.2. [

Lemma 4.5. s=F(M, s).

Proof. Since every state is trivially equivalent to itself, s=€(M,s) is true by
Lemma 4.3. Therefore, if st F(M, s), then thereis a t € M such that s=EF(€ (M,) A
“1G(M, t)). Let v be a state reachable fre.a s that satisfies €(M,) A 1G(M, t). By
Lemma 4.3, this condition implies 1 Ev, so ¢ and v must satisfy the same CTL
formulas (Theorem 4.2). We will show that t#1G(M, t), giving a contradiction.
There are four cases.

(1) tFE[€(M, 1)U€(M, w)], for some extended successor of f, w. By the
definition of extended successor, there is a path from ¢ to w and the states on this
path are E-related to . By Lemma 4.3, these states must satisfy €(M, t). Since
wE=€(M, w) 1s trivial, this path satisfies €(M, 1)U (M, w), which is a contradiction.

(2) tFEGE(M,t). Since EGE(M, t) is a conjunct of G(M, ¢) if and only if
t=EG% (M, t), we have an immediate contradiction.

(3) t#=EG¥(M, t). Since "EGE (M, t) is a conjunct of G(M, t) if and only if
t#EGY (M, 1), we have an immediate contradiction.

(4) t#A[€(M, DWWV, €(M, w;}]. In this case

rhE[%‘(M, HU(EE(M, 1) a N\ €M, W.))}-

Let #t,...1, be this path, where t,=F1%6(M,t)aA, 7€M, w,) and Yi<n
[t=€(M, t)]. By Lemma 4.3, (1, E) and Vi < n[t; E t]. Therefore, 1, is an extended
successor of «. But since 1,F€(M, t,) is trivially true, t,F A\, 7%(M, w;) cannot be
true, so we have a contradiction.

Characterizing finite Kripke structures in PTL 127
Therefore, the lemma is true. [
Lemma 4.6. [fsEF(M,t) and s'=F(M, t), then sEs’'.

Proof. Since s Es"if and only if s E; s for all [=0, we will prove s=F(M, ¢) and
s'=EF(M, t) implies s E; s’ by induction on L

Basis (I=0): Since s=F(M, t), si=%(M, t) and therefore s=%,(M, t). Similarly,
S'EE(M, t), so F(s)=%(t)=¥(s"). Therefore, s E, s'.

Induction: Assume that the result is true for I. We will now show it for [+ 1.

We want to show that every path 7 from s has an s-corresponding path 7' from
s'. (The proof of the dual is identical.) We only need to consider finite paths since
an argument using Konig’s Lemma and similar to the one in the proof of Lemma
4.3 can be used to show that any infinite path without an s-corresponding path must
have a prefix without an s-corresponding path. We will use induction on the length
of 7 to prove the slightly stronger result: If || < n, then there is an s-corresponding
path 7' such that, for some ve M, last(7)F F(M, v) and last(7')=F(M, v).

Basis (|7|=1): In this case, 7 =(s). Let B,=(s) and ' = B} ={s'). By the outer
inductive hypothesis, s=F(M, 1) and s'=F(M, t) imply s E,; s, so B, E, B}. There-
fore, the paths s-correspond. Since the last states of each path satisfy F(M, t), the
base case is true.

Induction: Assume the result for |1r|f-:~i n. Suppose that 7 =ss,s....s,, a path of
length n+1. Now, ss;5,...5, ; is a path of length n, so, by the inner inductive
hypothesis, there is an s-corresponding path #' such that last(#')=F(M, v) and
s, &=F(M, v) for some ve M. Let BB,... B, and BB} ... B}, be the partitions
that show that these paths s-correspond. There are three cases.

(1) s,#€(M,v). Since s, =F(M,v), we can infer that s, FA[€(M, v)
WV, €(M, w,)], where the w, are the extended successors of v. Since s, s, is a
path along which €(M, v)W\/, €(M, w,) holds and since s, does not satisfy € (M, v),
we conclude that there must be an extended successor of v, x, such that s,=€(M, x).
Since s, is a successor of s, ,, it must satisfy all of the AG formulas that s, |
satisfies, so s,=F(M, x).

From last(7'")= F(M, v) we can infer that last(w" Y= € (M, v) A
E[‘€(M, v)U€(M, x)]. Therefore, there is a path sisi...s) where s, =last(7'),
Vi< k[si=%(M, v)], and s\ €(M, x). Now let

T = BI R B,,,(S,,) and "T'-_' B; ST B:rl I<B:n= "I’]] S;\ I)('S;()‘

Since s, and s} both satisfy F(M, x}), the outer induction hypothesis gives (s,) E, (s}).
Similarly, since all the states in B,,, B, and (s%...s;) satisfy F(M, v), they are
all Ej-related to each other. Therefore, 7 and #' s-correspond with last(7)= F(M, x)
and last(7")= F(M, x).

(2) s,=€(M, v) and vEEG¥({M, v). Since s, must satisfy the same AG formulas
as s, 1, S,FF(M, v). Now, last(7")=F(M, v), so last(7"}=EG¥€ (M, v). Therefore,
last(') must have a successor s| which also satisfies € (M, v). Since this state must

128 M.C. Browne, EM. Clarke, O. Griimberg

also satisfy all of the AG formulas, s{=F(M, v). Therefore, by the outer induction
hypothesis, s, E; s;. So if we let B,,,, ={s,) and B}, =(s}), the paths s-correspond.

(3) s,F4(M,v) and v#EG¥(M, v). By the reasoning above, s,=F(M, v), so
s, E; last(B,). Therefore, 7 s-corresponds to 7' with the same partition except that
s, 1s added to B,,.

We must also show that the blocks of the partitions are finite. The only problem
is case (3), in which we might add an infinite number of states to a block of 7. In
this case, each of the states added to B,, satisfy F(M, v), so if we add an infinite
number of states to this block first(B,,)FEG€(M, v) must be true. But since
first(B,,)= F(M, v), first(B,,,)EEG4(M, v), so we have a contradiction. Therefore,
all of the blocks of the partition must be finite.

Therefore, the lemma is true. [

Corollary 4.7. Given two structures M and M' with initial states s, and s, respectively,
sy E siy if and only if, for all CTL* formulas [without the nexttime operator, M, s)=f<
M', siEf

Corollary 4.8. Given two structures M and M' with initial states s, and s/, respectively,
if there is a formula of CTL* without the nexttime operator that is true in one and
Jalse in the other, then there is also a formula of CTL without the nexttime operator
that is true in the one and false in the other.

5. Algorithm for stuttering equivalence

In this section we show how to compute the relation for equivalence with respect
to stuttering for states within a single Kripke Structure M. The method that we
suggest is polynomial in the number of states of M. To determine equivalence
between states in two different Kripke structures M, and M,, we form a Kripke
structure M, that is the disjoint union of these structures and check equivalence
between the corresponding states in the combined structure.

We construct a relation C on S x S that is identical to the relation E defined in
Section 4. C =), C, where C, is defined as follows:

o C,={(s,5) [;{(\) =2(s")};

® In order to define C,,, we must first define the set NExT,,,(s) of extended
successors of s. We define this set in terms of the set ST, ,(s) of stuttering states
of 5. ST,41(s)=J, ST5.,(s), where

(1) ST?H[(S):{S},
() STHI(s)=STru(s)u{s'|s 2STE (s) A s e ST, (s)[s"> 5] A s' C, 5}

NEXT,.(s)={s'|s'&ST,4,(s) AIs"€ ST, (s)[s"~> s']}.

Characterizing finite Kripke structures in PTL 129

We will also use a predicate Loop, (s) that is true iff there is a cycle containing
only states in ST, (s).
Now we can define C,,, as follows:

("n +1= {(Ss S")ILOOP,, t](S} L L()()Pn t I(Sr) AS C.-x Sr
AVs € NEXT, (5)3s1€ NeExT, (s[5, C, 1]
AV s e NEXT, (5)Ts, € NEXT, ()]s, C, s3]}

The proof that the relation C constructed above is actually equal to the relation
E defined in Section 4 is tedious but straightforward and will not be given in this
paper. Since the inductive structures of the definitions of the two relations are
different, it is necessary to split the proof into two parts: the first part shows that
Cc E, for every i; the second part shows that E < C; for every i. The intuition
behind the proof is easy to understand. ST, (s) gives the set of states that are
C,-equivalent to s and can be reached from s along a path containing states which
are all C,-equivalent. Given a path a starting at s, the first block of that path in
the definition of E is determined by the prefix of 7 in ST, (s).

Computing ST, requires time O(|S[*). Computing C,,, given C, requires time
O(|S[*) since at most |S| pairs of states must be checked and each pair requires
O(|S[’) time to check. The algorithm terminates as soon as C, = C,,,. Since at any
previous step k, the number of equivalence classes of (), is strictly greater than
the number of equivalence classes of C, and since C has at most |S| equivalence
classes, there are at most |S| steps in the construction of C. It follows that the
complexity of the entire algorithm is O(|S[’).

If we replace each equivalence class of C by a single state, this algorithm can
also be used to minimize the number of states in the structure.

6. Conclusion

The results of our paper have a number of surprising implications. For example,
if a specification of a finite-state concurrent program in CTL* is sufficiently detailed
so that there is only one program (modulo one of our notions of equivalence) that
meets the specification, then an equivalent specification could have been written in
CTL instead. Another surprising consequence is that if a CTL* formula is not
equivalent to any CTL formula, then it must have an infinite number of mutually
inequivalent finite models. To see that this result is true, we first observe that since
CTL* has the finite-model property, it must be the case that if two CTL* formulas
have the same finite models, they must have the same infinite models as well.
Otherwise, if f; had an infinite model M that was not a model of f5, f, A 1f> would
have an infinite model, but no finite models, contradicting the finite-model property
of CTL* [7]. Therefore, we can characterize a CTL* formula by the set of finite

130 M.C. Browne, E.M. Clarke, O. Griimberg

models in which it is satisfied. If a CTL* formula is satisfied by only a finite number
of equivalence classes of finite models, then the formula is equivalent to the
disjunction of the CTL formulas that characterize the individual equivalence classes.

There are a number of directions for further research. First, from our construction,
it appears that the characteristic formula of a Kripke structure might be quite large.
It would be nice to have a lower bound on the size of this formula in terms of the
size of the Kripke structure. Also, we conjecture that the O(|S[*) algorithm in Section
5 can be improved significantly. Finally, it would be interesting to see which of our
results carry over to Kripke structures with fairness constraints, i.e., Buchi automata.

References

[1] A. Arnold and P. Crubille, A linear algorithm to solve fixed-point equations on graphs, Tech. Rept.
1-8632, Université de Bordeaux, November, 1986.

[2] M. Ben-Ari, A. Pnueli and Z. Manna, The temporal logic of branching time, Acta Inform. 20 (1983)
207-226.

[3] M. Browne, E. Clarke, D. Dill and B. Mishra, Automatic verification of sequential circuits using
temporal logic, IEEE Trans. Comput. 35 (1986) 1035-1044,

[4] E.M. Clarke and E.A. Emerson, Design and synthesis of synchronization skeletons using branching
time temporal logic, in: Proc. Workshop on Logic of Programs, Yorktown-Heights, NY, Lecture
Notes in Computer Science 131 (Springer, Berlin, 1981) 52-71.

[5] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite-state concurrent systems
using temporal logic specifications, ACM Trans. Programming Languages and Systems 8 (1986)
244-263.

[6] E.A. Emerson and J.Y. Halpern, “Sometimes™ and *Not Never” revisited: on branching versus
linear time temporal logic, in: Proc. ACM Symp. on Principles of Programming Languages, Austin,
TX (1982) 127-140.

[7] E.A. Emerson and P. Sistla, Deciding full branching-time logic, in: Proc. 16th Ann. ACM Symp.
on Theory of Computing, Washington, DC (1984) 19-24.

[8] S. Graf and J. Sifakis, From synchronization tree logic to acceptance model logic, in: Logics of
Programs, Lecture Notes in Computer Science 193 (Springer, Berlin, 1985) 128-142.

[9] M. Hennessy and R. Milner, On observing nondeterminism and concurrency, in: Proc. 7th ICALP,
Lecture Notes in Computer Science 85 (Springer, Berlin, 1980) 299-309.

[10] M. Hennessy and C. Stirling, The power of the future perfect in program logics, Inform. and Control
67 (1985) 23-52.

[11] G.E. Hughes and M.J. Creswell, An Introduction to Modal Logic (Methuen, London, 1977).

[12] L. Lamport, “Sometimes™ is sometimes ““Not Never”, in: Proc. 7th Ann. ACM Symp. on Principles
of Programming Languages, Las Vegas, NV (1980) 174-185.

[13] L. Lamport, What good is temporal logic?, in: Proc. Internat. Federation for Information Processing
(1983) 657-668.

[14] O. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs satisfy their linear
specification, in: Conf. Record of the 12th Ann. ACM Symp. on Principles of Programming Languages,
New Orleans, LA (1985) 97-107.

[15] R.Milner, A Caleulus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1979).

[16] B. Mishra and E. Clarke, Hierarchical verification of asynchronous circuits using temporal logic,
Theoret. Comput. Sci. 38 (1985) 269-291.

[17] Z. Manna and P. Wolper, Synthesis of communicating processes [rom temporal logic specifications,
ACM Trans. on Programming Languages and Systems 6 (1984) 68-93.

[18] A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: Proc.
12th ICALP, Lecture Notes in Computer Science 194 (Springer, Berlin, 1985) 15-32.

Characterizing finite Kripke structures in PTL 131

[19] J.P. Quielle and J. Sifakis, Specification and verification of concurrent systems in CESAR, in: Proc.
Sth Internat. Symp. on Programming (1981) 337-350.

[20] A.P. Sistla and E.M. Clarke, Complexity of propositional linear temporal logics, J. Assoc. Comput.
Mach. 32 (1985) 733-749.

[21] M.Y. Vardi and P. Wolper, An automata-theoretic approach to automatic program verification, in:
Proc. Logic in Computer Science, Cambridge, MA (1986) 332-344.

[22] P. Wolper, Specification and synthesis of communicating processes using an extended temporal
logic, in: Proc. 9th Ann. ACM Symp. on Principles of Programming Languages, Albuguerque, NM
(1982) 20-33.

