
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Combining Local and Global Model Checking

Armin Biere� a�b�c Edmund M� Clarke� b�c Yunshan Zhu b�c

a Institut f�ur Logik� Komplexit�at und Deduktionssysteme �ILKD��

University of Karlsruhe� Postfach ����� ��	
� Karlsruhe� Germany

b Computer Science Department� Carnegie Mellon University�

���� Forbes Avenue� Pittsburgh� PA 	�
	�� U
S
A

c Verysys Design Automation� Inc� �
��� Lawrence Place� Fremont� CA �����

Abstract

The veri�cation process of reactive systems in local model checking ����� and in

explicit state model checking ������� is on�the��y� Therefore only those states of a

system have to be traversed that are necessary to prove a property� In addition� if

the property does not hold� than often only a small subset of the state space has

to be traversed to produce a counterexample� Global model checking �	�
�� and� in

particular� symbolic model checking ���

� can utilize compact representations of the

state space� e�g� BDDs ���� to handle much larger designs than what is possible with

local and explicit model checking� We present a new model checking algorithm for

LTL that combines both approaches� In essence� it is a generalization of the tableau

construction of ��� that enables the use of BDDs but still is on�the�
y�

� Introduction

Model Checking ������ is a powerful technique for the veri�cation of reactive

systems� In particular� with the invention of symbolic model checking ������

very large systems� with more than 	
�� states� could be veri�ed� However� it

is often observed� that explicit state model checkers ���	�� outperform symbolic

model checkers� especially in the application domain of asynchronous systems

and communication protocols �	
�� We believe that the main reasons are the

following
 First� symbolic model checkers traditionally use binary decision

diagrams �BDDs� ��� as an underlying data structure� BDDs trade space for

time and often their sheer size explodes� Second� depth �rst search �DFS� is

used in explicit state model checking� while symbolic model checking usually

traverses the state space in breadth �rst search �BFS�� DFS helps to reduce the

space requirements and is able to �nd counterexamples much faster� Finally�

global model checking traverses the state space backwards� and can� in general�

not avoid to visit non reachable states without a prior reachability analysis�

c����� Published by Elsevier Science B� V�

34



Biere� Clarke and Zhu

In ��� a solution to the �rst problem� and partially to the second problem�

was presented� by replacing BDDs by SAT �propositional satis�ability check�

ing procedures�� In this paper we propose a solution to the second and third

problem of symbolic model checking� Our main contribution is a new model

checking algorithm that generalizes the tableau construction �	� of local model

checking for LTL and enables the use of BDDs� It is based on a mixed DFS

and BFS strategy and traverses the state space in a forward oriented manner�

Our research is motivated by the success of forward model checking �	��	���

Forward model checking is a variant of symbolic model checking in which

only forward image computations are used� Thus it mimics the on�the��y

nature of explicit and local model checking in visiting only reachable states�

Note that �	�� presented a technique for the combination of the BFS� used

in BDD based approaches� with the DFS of explicit state model checkers� It

was shown that especially this feature enables forward model checking to �nd

counterexamples much faster� However� only a restricted class of properties�

i�e� path expressions� can be handled by the algorithms of �	��	���

Henzinger et� al� in �	�� partially �lled this gap by proving that all proper�

ties speci�ed by B�uchi Automata� or equivalently all ��regular properties� can

be processed by forward model checking� In particular� they de�ne a forward

oriented version of the modal ��calculus �	��� called post��� and translate the

model checking problem of a ��regular property into a post�� model checking

problem� Because LTL �linear temporal logic� properties can be formulated

as ��regular properties ����� their result subsumes that all LTL properties can

be checked by forward model checking�

The fact� that LTL can be checked by forward model checking� can also

be derived by applying the techniques of �	��� in the special case of FairCTL

properties� to the tableau construction of ���� However� this construction and

also �	�� do not allow the mixture of DFS and BFS� as in the layered approach

of �	��� In addition� DFS was identi�ed as one major reason for explicit state

model checking to outperform symbolic model checking on certain examples�

The contribution of our paper is the following� First we present a new

model checking algorithm that operates directly on LTL formulae� For ex�

ample �	�� requires two translations� from LTL to B�uchi Automata and then

to post��� A similar argument applies to ������ Second it connects the local

model checking paradigm of �	� with symbolic model checking in a natural

way� thus combining BDD based with on�the��y model checking� Finally our

approach shows� that the idea of mixing DFS with BFS can be lifted from

path expressions �	�� to LTL�

Our procedure is correct and complete for all of LTL� If we consider ex�

istential model checking problems with no eventualities� then the size of the

generated tableaux is linear in the number of states� Checking eventualities

may result in an tableau with exponential size in the number of states� We

are currently working on an extension that remains complete for all of LTL

and produces tableaux with size linear in the number of states�

35



Biere� Clarke and Zhu

Our paper is organized as follows� In the next section our notation is

introduced� Section � presents our new tableau construction� The following

section considers an essential optimization� followed by a discussion of the

complexity and the comparison with related work� Finally we address open

issues�

� Preliminaries

A Kripke structure is a tuple K � ������ �� �� with � a �nite set of states�

�� � � the set of initial states� � � � � � the transition relation between

states� and �
 � � p�A� the labeling of the states with atomic propositions�

As temporal operators we consider� the next time operator X� the �nally

operator F� the globally operator G� the until operator U� and its dual� the

release operator R� We use the standard semantics of CTL� as in �		�� We

further assume the formulae to be in negation normal form� as in �	������ Thus

negations only occur in front of atomic propositions� This restriction does not

lead to an exponential blow up because we included theR operator that ful�lls

the property ��f U g� � �f R �g�

� Tableau Construction

In this section we present a new model checking algorithm for solving exis�

tential LTL model checking problems� In particular� given a Kripke structure

K and an LTL formula f � the algorithm determines whether �� j� Ef � where

S j� Ef i� there exists a path � � �� with ��
� � S and � j� f � A proce�

dure for generating counterexamples� in case �� j� Ef does not hold� is also

included�

The algorithm is based on a tableau construction� Each tableau node is a

sequent � that contains a set of states S � � and an LTL formula f �written

S � E�f��� The rules for the construction of the tableau are very similar to

those in �	��� which is the dual construction of �	� for LTL with an existential

path quanti�er�

The main di�erence to �	�	�� is also the main idea of our paper� We use

sets of states instead of single states as one part of the sequent� With this

modi�cation we are able to represent set of states symbolically and use e�cient

BDD algorithms�

For the rest of the paper let S � � be a set of states and E� � E
V
�i be

a conjunctively decomposed ELTL formula� We also use the notation E��� f�

with the semantics E��
V
�i� � f�� Further� for S � �� p � A� we de�ne

Sp 
� fs � S j p � ��s�g� S
�p 
� fs � S j p �� ��s�g

Img�S� 
� ft � � j 	s � S� �s� t� � �g

Given an initial set of states S �e�g� ��� and an ELTL formula f we construct

36



Biere� Clarke and Zhu

RU 


S � E��� f U g�

S � E��� g� S � E��� f�Xf U g�

R� 

S � E��� f � g�

S � E��� f� g�

RR


S � E��� f R g�

S � E��� f� g� S � E��� g�Xf R g�

R� 


S � E��� f 
 g�

S � E��� f� S � E��� g�

RF

S � E���Ff�

S � E��� f� S � E���XFf�
RG 


S � E���Gf�

S � E��� f�XGf�

RX 

S � E�X��� � � � �X�n�

Img�S� � E���� � � � ��n�

RA� 

S � E��� p�

Sp � E���

Rsplit

S � E���

S� � E��� S� � E���
S� � S� � S RA� 


S � E����p�

S�p � E���

Fig� �� Tableau rules�

a tableau by repeatedly applying the rules of Figure 	 starting with the root

S � E�f��

We continue the application of the rules until no new sequents can be

added� In the resulting graph� which we call a tableau� every sequent occurs

only once� Note that a tableau may be cyclic and� in general� is not uniquely

de�ned�

Following �	� we �rst de�ne a successful path in the tableau
 A �nite path

through the tableau that ends with a sequent S � E��� is called successful

i� S �� � and � � �� An in�nite path X is called successful i� for every

Fg � X�i�� and every f U g � X�i� there exists a j 
 i with g � X�j��

A tableau is called successful if it contains a successful path� From this

successful path we can construct a witness for the existential model checking

problem associated with the root sequent of the tableau�

The following theorem shows that� no matter in which order we apply

the tableau rules� the resulting tableau is successful i� the root sequent is

satis�able� We call a sequent S � E�f� satis�able i� S j� Ef �

Theorem ��� Let K be a Kripke structure� Ef an ELTL formula� and T a

tableau with root �� � E�f�� Then �� j� Ef i� T is successful�

The proof consists of the combination of the following Lemma with the

correctness and completeness results of �	�	��� We call a path x of sequents

singleton path i� every sequent in x contains only a singleton set of states�

37



Biere� Clarke and Zhu

A B

Y

1 2
3

5
6

Z

4

Fig� 
� Example for witness �resp� counterexample� generation�

Further let X � �S� � E�f��� S� � E�f��� � � �� be a �nite or in�nite path� then

a singleton path x � �fs�g � f�� fs�g � f�� � � �� matches X i� si � Si and if

X�i�	� is the result of applying RX to X�i�� i�e� X�i�	� � Img�X�i��� then

�si� si��� � R�

Lemma ��� Let X be a successful path for the root sequent S � E�f�� Then

there exists s � S and a successful singleton path x for the root sequent fsg �

E�f� that matches X�

The Lemma is proven by constructing a matching singleton path from a

successful path� What follows is a sketch of this algorithm for an in�nite path

X � Y � Z�� A sequent � is called an X�sequent i� the RX rule is applicable

to �� i�e� all formulae on the right hand side of � are pre�xed with the next

time operator X� For the purpose of constructing a singleton path only the

X�sequents of X are considered� We pick an arbitrary state s out of the �rst

X�sequent in Z� Note that s is also contained in X�j � 	� with X�j� an

X�sequent and j 
 jY j� jZj�

Now we traverse the X�sequents of Z until the last X�sequent of Z is

reached� During this traversal we choose an arbitrary successor state from the

following X�sequent� We can not choose a successor state in the immediate

successor sequent� since this successor state might be eliminated by the ap�

plication of the RA rule before the next X�sequent is reached� When the last

X�sequent in Z is reached then we check if the state chosen initially can be

reached in one step from the current state� If this is the case� then we found

a singleton cycle and continue to search a pre�x singleton path for this cycle

in Y �

Otherwise we repeat the traversal of Z� starting from an arbitrary image

state of the last state� that is contained in the �rst X�sequent of Z� until

such a cycle is found� Because � and thus the number of di�erent sequents is

�nite� the algorithm has to terminate� The resulting singleton path obviously

matches the original path and is successful if the original path was successful�

Consider the example of Figure � where each ellipsis depicts an X�sequent�

The arrows between the single states are transitions of the Kripke struc�

ture� We start with 	� transition to � and pick � as successor of �� The next

38



Biere� Clarke and Zhu

transition� from � to �� brings us back to the �rst X�sequent of Z but no cycle

can be closed yet� We continue with � and � and �nally reach � again� From

there we �nd a pre�x �A�B�� that leads from the initial state A to the start of

the cycle at �� The resulting singleton path is �A�B� � ��� �� ���� Note that this

algorithm is actually used for the generation of a witness for the root formula

�or a counterexample for the negation of the root formula��

The theorem follows by the observation that every successful singleton path

can be interpreted as a successful path in the sense of �	�	�� and vice versa�

This mapping has to take into account the split rule Rsplit but otherwise just

maps a singleton set into the single state contained in the set� Note that the

tableaux for x and X� in general� are di�erent�

For instance consider the Kripke structure K with two states 
 and 	� both

initial states� and two transitions from state 
 to state 	 and from state 	 to

state 
� Both states are labeled with p� the only atomic proposition� The

tableau for checking EGp looks as follows

f
� 	g � E�Gp�

f
� 	g � E�p�XGp�

f
� 	g � E�XGp�

0 1

pp

and the application of RX to the leaf sequent leads back to the root sequent�

The tableau represents one successful path that contains only one image calcu�

lation� However both matching singleton paths need two image computations

before the loop can be closed


f
g � E�Gp�

f
g � E�p�XGp�

f
g � E�XGp�

f	g � E�Gp�

f	g � E�p�XGp�

f	g � E�XGp�

f	g � E�Gp�

f	g � E�p�XGp�

f	g � E�XGp�

f
g � E�Gp�

f
g � E�p�XGp�

f
g � E�XGp�

Again the application of RX to the leaf nodes yields the root� In general�

matching singleton paths may require longer closing cycles than a matched

path�

��� Algorithm

A more detailed description of the tableau construction is presented in this

section� The overall approach expands open branches in DFS manner and

stops when a successful path has been generated� In this case the formula can

be ful�lled� If no successful path can be found and the tableau has been fully

generated then the algorithm stops reporting that no witness has been found�

39



Biere� Clarke and Zhu

1 2 3

Fig� �� Example Kripke structure�

If a leaf of a tableau is expanded and a sequent is generated that already

occurred in the tableau then we found a successful path if the previous occur�

rence is on the path from the root to the expanded node and all eventualities

on this path are ful�lled� If the new sequent occurs in the tableau but not

on the path from the root to the expanded leaf� the parent of the new se�

quent� then we already have proven that the new sequent is unsatis�able�

In the remaining case� the new sequent occurs on the path from the root to

the expanded node and at least one eventuality is not ful�lled� the strongly

connected components of the tableau have to be considered� as in �	��

During the construction we have to remember the sequents that already

occurred in the tableau� This can be accomplished by a partial function

mapping a sequent to a node� To implement this we can sort the sequents in

the tableau� use a hash table� or simply an array� Hash tables work very well

in practice�

Our intention� of course� is to represent set of states with BDDs� We

associate with each formula E��� the list of sequents in the tableau that

contain E���� To check if a sequent already occurred� we just go through the

list of corresponding formulae and check whether the BDDs representing the

sets of states are the same� We can also combine several nodes on unsuccessful

branches with the same formula by computing the disjunction of the BDDs�

But keeping the BDDs separate results in a partitioning of the search space

and hopefully results in small BDDs� Note that the same approach works for

the optimization discussed in section � with the only modi�cation that we

check for non empty intersection instead of checking for equality�

��� Heuristics

The rule Rsplit is not really necessary but it helps to reduce the search space�

i�e� the size of the generated tableau� For instance consider the construction of

a tableau for the formula EFp� This formula is the negation of a simple safety

property� In this case a good heuristics is to build the tableau by expanding

the left successor of the rule RF �rst� Only if the left branch does not yield

a successful path� then the right successor is tried� If during this process a

sequent �� � S � � E�Ff� is found and a sequent ��� � S �� � E�Ff� occurs

on the path from the root to �� and S � � S �� then we can remove the set S �

from S �� by applying Rsplit with S� � S � and S� � S �� � S �� The left successor

immediately leads to an unsuccessful in�nite path and we can continue with

the right successor�

40



Biere� Clarke and Zhu

f	g � E�Fp�
RF

f	g � E�p�
fg � E�p�

f	g � E�XFp�
f	� �g � E�Fp�

Rsplit

f	g � E�Fp�

�

f�g � E�Fp�
RF

f�g � E�p�
fg � E�p�

f�g � E�XFp�
f�� �g � E�Fp�

Rsplit

f�g � E�Fp�f�g � E�Fp�

�

RF

f�g � E�p�
fg � E�p�

f�g � E�XFp�
f	� �g � E�Fp�

Rsplit

f	g � E�Fp� f�g � E�Fp�

Fig� �� Example for the usage of the split rule Rsplit�

Applying this heuristics essentially computes the set of reachable states in a

BFS manner while checking on�the��y for states violating the safety property�

An example of this technique is shown in �gure � using the Kripke structure

of �gure ��

Another heuristic is to avoid splitting the tableau as long as possible� This

is one of the heuristics proposed in ���� for the construction of small tableau

as an intermediate step of translating LTL into the modal ��calculus with

the algorithm of ���� In general� these heuristics are also applicable in our

approach�

� Optimization

The number of di�erent left hand sides of sequents is exponential in j�j� the
number of states of the Kripke structure� If we only consider LTL properties

that do not contain eventualities� then we can apply an optimization that

reduces the maximal number of di�erent left hand sides� occurring in the

tableau� to j�j� 	� This reduction can be achieved by modifying the tableau

construction in such a way that all sequents with the same formula contain

mutually exclusive set of states�

The tableau is built with DFS� The construction is stopped immediately

if a successful path has been found� Otherwise the still open branches are

expanded� If there are no more open branches the construction terminates

with failure�

Assume that the result of applying a rule is a new sequent � � S � E�f�
and there is another sequent �� � S

� � E�f� with the same formula already in

the tableau� First� if �� is not on the path from the root to � �this is a cross

edge in terms of DFS�� then we already have proven that all states s � S
�

41



Biere� Clarke and Zhu

can not ful�ll s j� Ef � This allows us to remove all states in the intersection

S � S
�
and we use S � S

� � E�f� instead of � as new tableau node�

Second let �
�
be a predecessor of �� Then we have to check if there is a

self loop of a state in the intersection S � S
�
along the segment� If this is the

case a successful path has been found� since by our restriction the path does

not contain any eventuality� and we can terminate the search immediately�

Otherwise we can remove the intersection as in the previous case�

To check for a successful path� as in the last case� is similar to the gen�

eration of witnesses of Section �� We start with the intersection S � S
�
at

�
�
and compute all images along the segment restricting the image set to the

set of states occurring in the sequents along the segment� If we reach � and

the set of states has become empty� then no loop is possible� This conclu�

sion remains correct even if the path contains eventualities� Otherwise we

repeat the calculation with the intersection of the calculated set with S � S
�

restricting the images to previously calculated images� If we reach a �x point�

a set that yields the same result after one iteration� then a successful path

exists� A witness �resp� counterexample� can be extracted with the algorithm

of Lemma ����

If the optimization is applied without the restriction� i�e� the root formula

contains eventualities� then our optimized procedure becomes incomplete� but

the size of the tableau is linear in j�j� Incompleteness means� that a witness

for an existential model checking problem� found by the optimized procedure�

is indeed a witness� However if the procedure can not �nd a successful path�

applying the optimization� then the root sequent might still be satis�able�

� Complexity and Related Work

In this section we discuss the complexity of our algorithm� Then we compare

our approach with other local and global techniques for LTL model checking�

The size of a tableau with root �� � E�f�� not using the optimization of

the last section� is in O�exp�j�j� � exp�jf j��� The time taken is polynomial in

the size of the tableau� Thus the time complexity is �roughly� the same as the

space complexity�

The optimization of the last section generates a tableau with the property

that sequents with the same formula have mutually exclusive sets of states�

Because there are no more than j�j sets of states that are mutually exclusive�

any formula occurs in at most j�j sequents� Therefore the size of the resulting
tableau is linear in the number of states and exponential in the size of the

formula� Consequently our algorithm is polynomial in the number of states�

with a small degree polynomial� and exponential in the size of the formula�

However to achieve this complexity we have to restrict the class of properties

or give up completeness�

This result almost matches the worst case complexity of explicit state

model checking algorithms for LTL ��
�	�	��� which are linear in the number

42



Biere� Clarke and Zhu

of states and exponential in the size of the formula� However� with our ap�

proach we are able to use e�cient data structures to represent set of states

symbolically and thus can hope to achieve exponentially smaller tableaux and

exponentially smaller running times for certain examples�

The method of ��� translates an LTL formula into a tableau similar to the

tableaux in our approach� In ��� the nodes contain only formulae and no states�

The tableau can be exponential in the size of the LTL formula� The second

step is a translation of the generated tableau into a ��calculus formula that

is again exponential in the size of the tableau� Additionally� the alternation

depth of the ��calculus formula can not be restricted� With �	���	� this results

in a model checking algorithm with time and space complexity that is double

exponential in the size of the formula and single exponential in the size of the

model K�

In �	�� an ELTL formula is translated to a B�uchi automata with the method

of ����� This leads to an exponential blow up in the worst case� But see �	�� for

an argument why this explosion might not happen in practice� which also ap�

plies to our approach� The resulting B�uchi automata is translated to post��� a

forward version of the standard modal ��calculus� for which similar complexity

results for model checking as in �	���	� can be derived� This translation pro�

duces a ��calculus formula of alternation depth � which results in practically

the same complexity as our algorithm�

The LTL model checking algorithm of �	�� is also forward oriented� A

forward state space traversal potentially avoids searching trough non reachable

states� as it is usually the case with simple backward approaches� However�

it is not clear how DFS can be incorporated into symbolic ��calculus model

checking�

The method of ��� translates an LTL model checking problem into a FairCTL

model checking problem� With the result of �	�� this leads to a model checking

algorithm that is linear in the size of the model and exponential in the size of

the formula� Again� these complexity results are only valid for explicit state

model checking� If ��� is not combined with �	��	��� then it also shares the

following disadvantage with the LTL model checking algorithm of �	��� The

algorithm is based on BFS and it is not clear how to combine it DFS�

The work by Iwashita �	��	�� does not handle full LTL and no complexity

analysis is given� But if we restrict our algorithm to the path expressions of

�	��	��� then our algorithm subsumes the algorithms of �	��	��� even for the

layered approach of �	��� the combination of DFS and BFS�

� Conclusion

Although our technique clearly extends the work of �	��	�� and bridges the gap

between local and global model checking� we still need to show that it works

in practice� In addition� a formalization of the optimization in Section �

is necessary� We are also working on a complete tableau construction for

43



Biere� Clarke and Zhu

eventualities with linear tableau size in the number of states� Finally� we

want to investigate heuristics for applying the split rule� The approximation

techniques of ������� are a good starting point�

References

��� G� Bhat� R� Cleaveland� and O� Grumberg� E�cient on�the�
y model checking
for CTL�� In LICS���� IEEE Computer Society� �����

�
� A� Biere� A� Cimatti� Edmund M� Clarke� and Y� Zhu� Symbolic model checking
without BDDs� In TACAS���� LNCS� Springer� �����

��� R� E� Bryant� Graph�based algorithms for boolean function manipulation�
IEEE Transactions on Computers� ������ ���	�

��� J� R� Burch� E� M� Clarke� and K� L� McMillan� Symbolic model checking� ����

states and beyond� Information and Computation� ��� ���
�

��� E� Clarke� O� Grumberg� and K� Hamaguchi� Another look at LTL model
checking� In CAV���� LNCS� Springer� �����

�	� E� M� Clarke and E� A� Emerson� Design and synthesis of synchronization
skeletons using branching time temporal logic� In Logic of Programs� Workshop�
LNCS� Springer� �����

��� R� Cleaveland� Tableau�based model checking in the propositional mu�calculus�
Acta Informatica� 
�� �����

��� M� Dam� CTL� and ECTL� as fragments of the modal mu�calculus� Theoretical
Computer Science� �
	� �����

��� D� L� Dill� The Mur� veri�cation system� In CAV���� LNCS� Springer� ���	�

���� Y� Dong� X� Du� Y�S� Ramakrishna� C� T� Ramkrishnan� I� V� Ramakrishnan�
S� A� Smolka� O� Sokolsky� E� W� Starck� and D� S� Warren� Fighting livelock in
the i�protocol� A comparative study of veri�cation tools� In TACAS���� LNCS�
Springer� �����

���� E� A� Emerson and J� Y� Halpern� �Sometimes� and �Not Never� revisited� on
branching time versus linear time temporal logic� Journal of the Association

for Computing Machinery� ������ ���	�

��
� E� A� Emerson and C��L� Lei� Modalities for model checking� Branching time
strikes back� Science of Computer Programming� �� ���	�

���� R� Gerth� D� Peled� M� Y� Vardi� and P� Wolper� Simple on�the�
y automatic
veri�cation of linear temporal logic� In Proceedings 	�th Workshop on Protocol

Speci�cation� Testing� and Veri�cation� North�Holland� �����

���� Thomas A� Henzinger� Orna Kupferman� and Shaz Qadeer� From Pre�historic
to Post�modern symbolic model checking� In CAV���� LNCS� Springer� �����

44



Biere� Clarke and Zhu

���� G� J� Holzmann� The model checker SPIN� IEEE Trans
 on Software

Engineering� ��
��� �����

��	� H� Iwashita and T� Nakata� CTL model checking based on forward state
traversal� In ICCAD���� ACM� ���	�

���� H� Iwashita� T� Nakata� and F� Hirose� Forward model checking techniques
oriented to buggy design� In ICCAD���� ACM� �����

���� A� Kick� Generierung von Gegenbeispielen und Zeugen bei der Modellpr�ufung�
PhD thesis� Fakult�at f�ur Informatik� Universit�at Karlsruhe� ���	�

���� D� Kozen� Results on the propositional ��calculus� Theoretical Computer

Science� 
�� �����

�
�� O� Lichtenstein and A� Pnueli� Checking that �nite state concurrent programs
satisfy their linear speci�cation� In Symposium on Principles of Programming

Languages� New York� ����� ACM�

�
�� D� E� Long� A� Browne� E� M� Clarke� S� Jha� and W� R� Marrero� An
improved algorithm for the evaluation of �xpoint expressions� In CAV����
LNCS� Springer� �����

�

� K� L� McMillan� Symbolic Model Checking� Kluwer� �����

�
�� J� P� Quielle and J� Sifakis� Speci�cation and veri�cation of concurrent systems
in CESAR� In Proc
 �th Int
 Symp
 in Programming� �����

�
�� K� Ravi� K� L� McMillan� T� R� Shiple� and F� Somenzi� Approximation and
decomposition of binary decision diagrams� In DAC���� ACM� �����

�
�� K� Ravi and F� Somenzi� High�density reachability analysis� In ICCAD����
ACM� �����

�
	� F� Re�el� Modellpr�ufung von Unterlogiken von CTL�� Masterthesis� Fakult�at
f�ur Informatik� Universit�at Karlsruhe� ���	�

�
�� M� Y� Vardi and P� Wolper� Reasoning about in�nite computations�
Information and Computation� ������� �����

45


