
Artificial Intelligence 234 (2016) 1–25
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Solving QBF with counterexample guided refinement

Mikoláš Janota a,∗, William Klieber b, Joao Marques-Silva a,c, Edmund Clarke b

a IST/INESC-ID, Technical University of Lisbon, Portugal
b Carnegie Mellon University, Pittsburgh, PA, USA
c CASL, University College Dublin, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 July 2014
Received in revised form 2 January 2016
Accepted 8 January 2016
Available online 13 January 2016

Keywords:
QBF
Expansion
Counterexample guided abstraction
refinement (CEGAR)

This article puts forward the application of Counterexample Guided Abstraction Refinement
(CEGAR) in solving the well-known PSPACE-complete problem of quantified Boolean
formulas (QBF). The article studies the application of CEGAR in two scenarios. In the
first scenario, CEGAR is used to expand quantifiers of the formula and subsequently a
satisfiability (SAT) solver is applied. First it is shown how to do that for two levels of
quantification and then it is generalized for arbitrary number of levels by recursion. It is
also shown that these ideas can be generalized to non-prenex and non-CNF QBF solvers. In
the second scenario, CEGAR is employed as an additional learning technique in an existing
DPLL-based QBF solver. Experimental evaluation of the implemented prototypes shows that
the CEGAR-driven solver outperforms existing solvers on a number of benchmark families
and that the DPLL solver benefits from the additional type of learning.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

SAT solving has marked a considerable practical success by enabling efficient solving of large industrial NP-hard problems.
This motivates the study of computationally harder problems. Quantified Boolean formulas (QBFs) [1] naturally extend
the SAT problem by enabling quantification. The cost of this extension is that deciding QBF formulas is PSPACE-complete.
However, this also means that a larger set of problems can be targeted [2–5].

While nonrandom SAT solving has been dominated by the DPLL procedure, it has proven to be far from being a silver
bullet for QBF solving. Indeed, a number of solving techniques have been proposed for QBF [6–10], complemented by a
variety of preprocessing techniques [11–16].

Currently, QBF solving can be divided into search-based and expansion-based. Search-based solvers apply conflict and
solution-driven search throughout the formula’s assignments [17]. In contrast, expansion-based solvers transform the for-
mula into a propositional one by gradually rewriting quantifiers into the corresponding Boolean connectives [18,8,19,9]. This,
however, may lead to exponential blowup in the size of the formula. This article provides a technique that mitigates this
issue. Instead of always expanding quantifiers, they are expanded carefully, on demand. For such, we apply the well-known
paradigm of counterexample guided abstraction refinement (CEGAR) [20].

The article shows that CEGAR can be applied in two significantly different ways. The first approach gradually expands the
given formula into a propositional one. Once the formula is propositional, a SAT solver is applied in a blackbox-fashion. In
the spirit of CEGAR, the algorithm partially expands the formula and tests whether such expansion is sufficient. If it is not,

* Corresponding author.
E-mail address: mikolas@sat.inesc-id.pt (M. Janota).
http://dx.doi.org/10.1016/j.artint.2016.01.004
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:mikolas@sat.inesc-id.pt
http://dx.doi.org/10.1016/j.artint.2016.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.01.004&domain=pdf

2 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
the algorithm continues. The second approach employs CEGAR as an additional learning technique in an existing DPLL-based
QBF solver. At the price of higher memory consumption, this learning technique enables more aggressive pruning of the
search space than the existing techniques [17,21]. The experimental evaluation carried out demonstrates that CEGAR-based
techniques are useful for a large number of benchmark families.

This article builds on a previous paper on 2-level QBF solving [22] and solving of QBF of arbitrary levels [23]. This article
extends this work by showing that CEGAR-driven expansion can be also applied to QBF formulas that are both non-CNF and
non-prenex.

This article is organized as follows. Section 2 introduces concepts and notation used throughout the article. Section 3
shows a CEGAR-based algorithm for solving QBF formulas with two levels of quantification. Section 4 shows a CEGAR-based
algorithm for solving arbitrary formulas in prenex form; this is an extension of the previous section availing of recursion.
Section 5 extends the previous sections by showing an algorithm for solving formulas that are not necessarily in the prenex
form. Section 6 shows how CEGAR is integrated into an existing search-based solver as a form of learning. Section 7 provides
experimental evaluation of the implemented prototypes. Section 8 overviews related work and finally, Section 9 concludes
and provides pointers to future work.

2. Preliminaries

We overview basic notation and concepts used throughout the article; for further details see [1].
Throughout the paper we operate on Boolean variables (x, x1, etc.), which are composed into formulas by logical connec-

tives with their standard semantics (∧, ∨, ¬, ⇒, ⇔). A Boolean formula in conjunctive normal form (CNF) is a conjunction of
clauses, where a clause is a disjunction of literals, and a literal is either a variable or its complement. Whenever convenient,
a CNF formula is treated as a set of clauses. For a literal l, var(l) denotes the variable in l, i.e., var(¬x) = var(x) = x. We write
|φ| to denote the size of a formula φ, defined as the sum of the number of connective and variable occurrences in φ.

Variable assignments (τ , μ, etc.) are mappings from variables to the constants 0 and 1, represented as x/1, y/0 etc. The
constant 1 represents true and 0 represents false.

Notation. We write BY for the set of assignments to the variables Y .

For a Boolean formula φ and an assignment τ we write φ[τ] for the substitution of τ in φ. A substitution also performs
basic simplifications, e.g. (¬x ∨ y)[x/0] = (¬0 ∨ y) = 1. An assignment τ satisfies φ if φ[τ] = 1.

The set of Quantified Boolean Formulas (QBF) is the smallest set satisfying the following rules: any Boolean formula is a
QBF; if � is a QBF, then ∃x. � and ∀x. � are also QBFs. For ∃x. � we say that x is existentially bound in �; likewise ∀x. �
makes x universally bound in �. A variable not bound by any quantifier is called a free variable. A QBF with no free variables
is called closed. Without loss of generality, we assume that for any given formula, once a variable is quantified over, it is
never quantified over in the same formula nor it appears as free.

We extend the notion of substitution to QBF so that it first removes the quantifiers of substituted variables and then sub-
stitutes all occurrences with their assigned values. For instance, if τ is an assignment to a variable x, then (Q y Q xQ z. φ) [τ]
results in (Q y Q z. φ[τ]).

We define the semantics of QBF by assigning satisfying assignments to a formula. This is done inductively so that ∃x. �
has the same satisfying assignments as the formula �[x/0] ∨ �[x/1] and ∀x. � has the same satisfying assignments as the
formula �[x/0] ∧ �[x/1].

Notation. For a quantifier type Q we write Q̄ to denote the opposing quantifier type. In particular Q̄ denotes ∀ if Q =∃
and Q̄ denotes ∃ if Q =∀.

A QBF is in prenex form if it is in the form Q 1z1. . .Q nzn.φ where Q i ∈ {∀, ∃}, zi are distinct variables, and φ is a
propositional formula. The sequence of quantifiers is called prefix and the propositional formula matrix. The prefix is divided
into quantifier blocks, ∀x1 . . .∀xn , resp. ∃x1 . . .∃xn , which we denote by ∀X , resp. ∃X , where X = {x1, . . . , xn}. We assume that
such blocks are maximal. Hence a prenex QBF has the form Q 1 X1 . . . Q k Xk. φ with Q i ∈ {∃, ∀}, Q i
= Q i+1. A block Q i Xi is
referred to as level i.

Whenever convenient, parts of a prefix are denoted as P with possible subscripts, e.g., P1 ∀X P2. φ denotes a QBF with
the matrix φ and a prefix that contains ∀X . If the quantifier of a block Y occurs within the scope of the quantifier of another
block X , we say that variables in X are upstream of variables in Y and that variables in Y are downstream of variables in X .

The pseudocode throughout the article uses the function SAT(φ) to represent a call to a SAT solver on a propositional
formula φ. The function returns a satisfying assignment for φ, if such exists, and returns NULL otherwise. In practice SAT
solvers require formulas in CNF, which can always be guaranteed in linear time by standard techniques [24,25].

2.1. Game-centric view

An alternative view on QBF semantics is that a QBF is a game between the universal player and the existential player [26].
During the game, the existential player assigns values to the existentially quantified variables and the universal player

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 3
assigns values to the universally quantified ones. A player can assign a value to a variable only if all variables upstream of it
already have a value. The existential player wins if the formula evaluates to 1 and the universal player wins if it evaluates
to 0.

Example 1. Consider the formula ∃x∀u∃z. (u ⇒ (x ⇔ z)) ∧ (¬u ⇒ (¬x ⇔ z)). The game x = 0, u = 0, z = 0 is losing for
the existential player while x = 0, u = 0, z = 1 is losing for the universal player. In this formula the existential player can
always ensure that he wins. One possible winning strategy for the existential player is to play x = 1 and z = u. This is easily
verified, as once x is set to 1, the formula simplifies to ∀u∃z. (u ⇒ z) ∧ (¬u ⇒ ¬z). Now if the universal player sets u to 1,
then the formula simplifies to ∃z. (z), where the existential player satisfies the matrix by setting z to 1. The case when the
universal player sets u to 0 is analogous. �

We note that the order in which values are given to variables in the same block is unimportant. Hence, by a move we
mean an assignment to variables in a certain block. A concept useful throughout the article are the winning moves.

Definition 1 (Winning move). Consider a (nonprenex) closed QBF Q X . � and an assignment τ to X . Then τ is called a
winning move for Q X in Q X . � if Q =∃ and �[τ] is true, or, Q =∀ and �[τ] is false.

Notation. We write M(Q X . �) to denote the set of winning moves for Q X . �.

Definition 2 (Countermove). Consider a (nonprenex) closed QBF Q X Q̄ Y . � and an assignment τ to X and an assignment μ
to Y . We say that μ is a countermove to τ in Q X Q̄ Y . � if Q =∃ and �[τ][μ] is false or if Q =∀ and �[τ][μ] is true.

Observation 1. A closed QBF ∃X . � is true iff there exists a winning move for ∃X. A closed QBF ∀X . � is false iff there exists a winning
move for ∀X.

Observation 2. Let Q X Q̄ Y . � be a (nonprenex) closed QBF and τ be an assignment to X.

1. The assignment τ is a winning move for Q X iff there does not exists a countermove to τ .
2. An assignment μ to Y is a countermove to τ iff μ is a winning move for Q̄ Y in Q̄ Y . �[τ].

Example 2. Consider the formula � = ∀x∃y. y ∧(x ∨ ȳ), then the following holds. The assignment {x/0} is a winning move for
∀x, hence the formula is false from Observation 1. The assignment {y/1} is a winning move for ∃y in ∃y. (y ∧ (x ∨ ȳ))[x/1].
Hence, {y/1} is a countermove to {x/1} due to Observation 2(2). Since there exists a countermove to {x/1}, the assignment
{x/1} is not a winning move for ∀x in � due to Observation 2(1). �

3. 2-level QBF

This section focuses on prenex QBF with 2 levels of quantification, i.e., ∀X∃Y . φ or ∃X∀Y . φ. First we take a look at
an even simpler case and that is formulas with a single quantifier, i.e., ∀X . φ or ∃X . φ. Such formulas represent a 1-move
game, where only one of the players is allowed to make a single move upon which the game ends. The problem of deciding
1-quantifier formulas naturally translates to propositional satisfiability. In particular, there exists a winning move for the
formula ∃X . φ if and only if φ is satisfiable. Analogously, there exists a winning move for the ∀-player for the formula ∀X . φ
if and only if ¬φ is satisfiable. Further, the satisfying assignments of the respective formula are winning moves for the
corresponding player.

This observation motivates the following approach to solving QBF. Start eliminating quantifiers until only one is left at
which point invoke a SAT solver. The question is how to eliminate quantifiers. The approach we take here is by expansion,
in particular we apply the equivalences ∀x. � = �[x/0] ∧ �[x/1] and ∃x. � = �[x/0] ∨ �[x/1].

An observation, key to the CEGAR approach, is that in some cases a full expansion is not needed in order to decide the
given formula. Instead, we consider partial expansions that consider only certain values of variables. The following example
illustrates how partial expansions are useful.

Example 3. Let φ = (u ∨ e1) ∧ (ū ∨ e2) ∧ (ē1 ∨ ē2) and consider ∀u∃e1e2. φ. The formula is true and therefore there is no
winning move for the ∀ player. One could expand e1 and e2 with the all 4 possible assignments to e1 and e2. However,
we observe that considering only two is sufficient. In particular, considering the assignments {e1/1, e2/0} and {e1/0, e2/1}
yields (∀u. φ[e1/1, e2/0] ∨ φ[e1/0, e2/1]) = (∀u. ̄u ∨ u) = 1. �

A partial expansion may be sufficient to decide a formula but there are also partial expansions that are not sufficient as
illustrated by the following example.

4 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Algorithm 1: CEGAR Algorithm for 2QBF.

input : Q X Q̄ Y . φ
output : ν if there exists a winning move ν for Q X ,

NULL otherwise

1 ω ← ∅
2 while true do
3 α ← (Q = ∃) ? ∧μ∈ω φ[μ] : ∨

μ∈ω φ[μ] // build abstraction
4 τ ← (Q = ∃) ? SAT(α) : SAT(¬α) // find a candidate
5 if τ = NULL then return NULL // no winning move
6 μ ← (Q̄ = ∃) ? SAT(φ[τ]) : SAT(¬φ[τ]) // find a countermove
7 if μ = NULL then return τ // no countermove
8 ω ← ω ∪ {μ} // refine

Example 4. The formula ∀u∃e. (u ∨ e) ∧ (ū ∨ ē) is true. Expanding e only by {e/0} gives ∀u. u, which is false. Similarly,
expanding e only by {e/1} yields ∀u. ̄u, which is also false. �

The key question is, how to discover the right expansions? This is where CEGAR comes into play: Start by a small
partial expansion and gradually enlarge it until it becomes sufficient. To this effect, an abstraction corresponds to a partial
expansion parameterized by the sets of values which are used to carry out the expansion.

Definition 3 (ω-abstraction). Let X, Y be sets of variables and ω ⊆ BY .
The ω-abstraction of the closed formula ∀X∃Y . φ is ∀X .

∨
ν∈ω φ[Y /ν].

The ω-abstraction of the closed formula ∃X∀Y . φ is ∃X .
∧

ν∈ω φ[Y /ν].

For an abstraction to be useful, it must in some sense approximate the original problem. This is indeed the case for
ω-abstraction because for any ω, the set of winning moves of the ω-abstraction is a superset of the winning moves of
the original formula. Adding more countermoves to ω decreases the abstraction’s set of winning moves. Consequently, if ω
contains all possible countermoves, the abstraction becomes equivalent to the formula.

Observation 3. Let ω, ω1, ω2, ⊆ BY .

1. M(∀X∃Y . φ) =M(∀X .
∨

μ∈BY φ[μ])
2. M(∃X∀Y . φ) =M(∃X .

∧
μ∈BY φ[μ])

3. If ω1 ⊆ ω2 then M(∀X .
∨

μ∈ω2
φ[μ]) ⊆M(∀X .

∨
μ∈ω1

φ[μ])
4. If ω1 ⊆ ω2 then M(∃X .

∧
μ∈ω2

φ[μ]) ⊆M(∃X .
∧

μ∈ω1
φ[μ])

5. M(∀X∃Y . φ) ⊆M(∀X .
∨

μ∈ω φ[μ])
6. M(∃X∀Y . φ) ⊆M(∃X .

∧
μ∈ω φ[μ])

Observation 3 motivates how to use ω-abstraction in a CEGAR loop. The loop first finds a winning move of the current
ω-abstraction and then it tests whether that move is also a winning move of the formula being solved. If it is, we are done.
If however the winning move for the abstraction is not a winning move of the original formula, the abstraction needs to be
refined. To facilitate the discussion, a winning move of an abstraction is referred to as a candidate.

Two questions remain. How do we know that a candidate is a winning move of the original formula? How is the
abstraction refined if the candidate is not a winning move? The first question is directly answered by Observation 2, i.e.,
a candidate τ is a winning move for ∀X in ∀X∃Y . φ iff there is no winning move for ∃Y in ∃Y . φ[τ]. Analogously, a candidate
τ is a winning move for ∃X in ∃X∀Y . φ iff there is no winning move for ∀Y in ∀Y . φ[τ]. This also gives an answer to the
second question, i.e., if there is a countermove μ to a candidate τ under some ω-abstraction, the countermove μ is added
to ω.

Algorithm 1 shows the above-presented ideas in pseudocode. The algorithm maintains a set of countermoves ω, ini-
tialized to the empty set (line 1). In each iteration of the loop it first constructs an abstraction according to Definition 3
(line 3). Note that upon initialization ω = ∅ and therefore we have α = 1, if Q = ∃, since the empty conjunction is se-
mantically equal to 1; analogously, the initial α = 0 if Q = ∀. Subsequently, the algorithm tries to find a winning move for
the abstraction (line 4). If no candidate is found, it means that there is no winning move for the given formula Q X Q̄ Y . φ
due to Observation 3 and thus the algorithm terminates. If on the other hand a candidate τ was found,1 a SAT solver is
used to find a countermove for it (line 6). If there is no countermove, then τ is indeed a winning move and the algorithm
terminates. If there is a countermove μ, this countermove is added to the set ω (line 8).

1 Note that in the first iteration, τ is just a random assignment. It is possible to use heuristics to find initial assignment [27].

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 5
Example 5. Consider the formula ∃e1e2∀u1u2. φ, where φ = (e1 ∨ (u1 ∧ u2)) ∧ (e2 ∨ (ū1 ∧ ū2)). The following is one possible
run of Algorithm 1. Initial ω-abstraction for ω = ∅ is α1 = 1. The first SAT call yields the candidate τ 1 = {e1/0, e2/0}.
Subsequently, another SAT call is issued to obtain a countermove SAT

(¬φ[τ 1]), which returns μ1 = {u1/0, u2/0}. This
countermove yields the refinement α2 = (α1 ∧ e1) = e1. The second iteration produces a candidate SAT(α2) = τ 2 with
τ 2 = {e1/1, e2/0} and a countermove SAT

(¬φ[τ 2]) = μ2 with μ2 = {u1/0, u2/1}. The corresponding refinement is α3 =
(α2 ∧ e2) = (e1 ∧ e2). The candidate in the third iteration is inevitably τ 3 = {e1/1, e2/1}, which is a winning move for ∃e1e2
as there are no countermoves to it, i.e., SAT(¬φ[τ 3]) = NULL. �

To conclude the description of this algorithm, we would like to make an important remark about how the expansion is
done. Recall that the main motivation for expansion was to get rid of one of the quantifiers in order to enable the use of a
SAT solver. Now observe that Algorithm 1 always expands the innermost quantifier. So a natural question would be, why not
expand the outermost quantifier? While this would be sound, it would not be useful. To illustrate why not, let us consider
the case when � = ∃X∀Y . φ. Expanding the first quantifier by the set of assignments ω yields

∨
τ∈ω(∀Y . φ[τ]). Observe that

the disjuncts (∀Y . φ[τ]) are independent from one another. So � is true iff there exists a τ for which (∀Y . φ[τ]) is true.
Consequently, if � is true, it is unnecessary to construct the expansion because it is sufficient to come upon the right τ . If,
on the other hand, � is false, none of the disjuncts is true for any ω. Hence, in such case it would be necessary to consider
the full expansion, i.e., ω = BX .

3.1. Properties

Let us now discuss correctness and several other important properties of Algorithm 1. The behavior of the algorithm
largely hinges on the following property of ω-abstraction. Once a countermove is included into an ω-abstraction, the ab-
straction prohibits this countermove. This is formalized by the following lemma.

Lemma 1. Let � = Q X Q̄ Y . φ and ω ⊆ BY . If τ is a winning move of the ω-abstraction and μ ∈ ω then μ is not a countermove to τ
in �.

Proof. Consider the case Q = ∃. The ω-abstraction is equal to ∃X .
(∧

ν∈ω φ[ν]). Since μ ∈ ω, the abstraction is also equal
to ∃X .

(
φ[μ] ∧ ∧

ν∈ω φ[ν]). Since τ is a winning move for the abstraction, then also φ[μ][τ] is true (note that φ does
not have any other variables besides X and Y). For contradiction, let μ be a countermove to τ in �, i.e., the assignment
μ is a winning move for ∀Y in ∀Y . φ[τ]. From definition of a winning move, it holds ¬φ[τ][μ]. This is an immediate
contradiction because φ[τ][μ] = φ[μ][τ] as τ and μ are assignments to disjoint sets of variables. The case Q = ∀ is shown
analogously. �

Lemma 1 lets us derive that candidates in the CEGAR loop cannot repeat.

Proposition 1. Consider a run of Algorithm 1 on a formula � = Q X Q̄ Y . φ . Let τi and τk be candidates found in the i-th and k-th
iterations of the loop, respectively, where i < k. Then τi
= τk.

Proof. Let ωk be the value of ω at the beginning of the k-th iteration. Let μi be a countermove found in the i-th iteration.
Since μi ∈ ωk , from Lemma 1, μi is not a countermove to τk but at the same time μi is a countermove to τi , hence
τi
= τk . �

Proposition 1 itself would be sufficient to show termination of the algorithm but Lemma 1 lets us derive another impor-
tant property of Algorithm 1, which is that countermoves cannot repeat in the algorithm’s loop.

Proposition 2. Consider a run of Algorithm 1 on a formula � = Q X Q̄ Y . φ . Let μi and μk be countermoves found in the i-th and k-th
iterations of the loop, respectively, where i < k. Then μi
= μk.

Proof. Let τk be a candidate found in the k-th step and ωk be the value of ω at the beginning of k-th iteration. Since
μi ∈ ωk , due to Lemma 1, μi is not a countermove to τk in �. Since μk is a countermove to τk , it must be that μi
= μk . �

Proposition 1 and Proposition 2 tell us that neither candidates nor countermoves can repeat in the iteration loop, which
yields the following upper bound on the total number of iterations.

Proposition 3. Consider a run of Algorithm 1 on a formula Q X Q̄ Y . φ . Let k = min(|X |, |Y |), then Algorithm 1 performs at most 2k

iterations of the loop. Consequently, Algorithm 1 requires at most 2 ·2k SAT calls. Excluding the space required in SAT calls, the algorithm
requires at most O (|φ| · 2k) space.

6 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Fig. 1. Candidate–countermove relation.

Proof. There are 2|X | possible candidates and 2|Y | possible countermoves. Since due to Proposition 1 and Proposition 2
neither candidates nor countermoves repeat, the loop of Algorithm 1 can perform at most 2min(|X |,|Y |) iterations.

In each iteration of the loop of Algorithm 1 the current ω-abstraction is augmented by φ[μ], with μ the countermove,
and it holds that |φ[μ]| ∈ O (|φ|). �

While the theoretical upper bound given by Proposition 3 is rather crude, we observe that Proposition 1 and Proposi-
tion 2 give us some further insights. A refinement by a countermove μ prevents the algorithm from finding any candidates
to which μ is also a countermove.

This is illustrated by Fig. 1, which depicts a situation where we have possible candidates τ1, . . . , τk, . . . , τm such that
μ1 is a countermove to the candidates τ1 . . . , τk and μ2 is a countermove to the candidates τk, . . . , τm . Now consider a
scenario when Algorithm 1 finds a candidate τ1 and subsequently the countermove μ1. Upon refinement, due to Lemma 1,
τ1, . . . , τk are excluded from further search since they cannot be winning moves of the abstraction, which now contains μ1.
Hence, the next iteration of the algorithm must consider one of the candidates τk+1, . . . , τm . Let’s say it considers τm and
subsequently it finds the countermove μ2. Once μ2 is included into the abstraction, the algorithm terminates because the
abstraction does not have any winning moves.

What we observe is that the space of possible candidates is diminished more if the countermove just found is a counter-
move to many possible candidates. This is useful in both situations when there exists a winning move for the given formula
or when there does not exist a winning move. If there does not exist a winning move, the algorithm needs to find such
set ω of countermoves that covers all the possible candidates (the full set of assignments). If there exists a winning move,
the algorithm is more likely to find the winning one if the possible space of candidates is small. The following example
illustrates this idea.

Example 6. Let � = ∃xy∀q. ((x ∧ q) ∨ (x ∧ ¬q)) ∧ ((y ∧ q) ∨ (y ∧ ¬q)) and consider the following run of the algorithm. The
first candidate is τ 1 = {x/0, y/0} and countermove μ1 = {q/1} with the corresponding refinement α2 = x ∧ y. Inevitably,
the second candidate τ 1 = {x/1, y/1} is a winning move. Observe that μ1 is a countermove to all candidates that are not
winning moves. �

3.2. Solving 2-level quantification with CNF matrices

So far we have only required formulas to be in prenex form and there were no restrictions imposed on the matrix.
This section looks in more detail at solving formulas where the matrix is in CNF. CNF is a popular form in SAT and QBF
since it enables simple and efficient data structures. An important property of QBF with CNF matrices is that it is sufficient
to consider prefixes that end with an existential quantifier block. This is because if there are universal variables at the
innermost level, the corresponding literals can be removed from the formula.2

Lemma 2. Let x be a variable and φ a CNF. Define φ′ as φ after removing all occurrences of literals containing x. The QBFs ∀x. φ and φ′
have the same set of satisfying assignments.

Proof. Let C be a clause not containing the variable x and let φ′ be such that φ = φ′ ∧ (C ∨ x). We show that x can be
removed safely from the clause C ∨x. It holds that ∀x. (C ∨x) ∧φ = ((C[x/0] ∨x[x/0]) ∧φ[x/0]) ∧((C[x/1] ∨x[x/1]) ∧φ[x/1]) =
C ∧ φ[x/0] ∧ φ[x/1] = ∀x. C ∧ φ. �

In the light of Lemma 2, for two-level QPCNF it is only meaningful to consider formulas in the form ∀X∃Y . φ. Hence,
we are always looking for a winning move for the universal quantifier. Note that this is equivalent to looking for such
assignment τ to X that makes φ[X/τ] unsatisfiable.

The pseudo-code is presented by Algorithm 2. The structure of the algorithm remains the same as Algorithm 1 but
several important implementation improvements can be achieved. The workings of the algorithm is greatly influenced by
the interface of modern SAT solvers. The vast majority of modern SAT solvers accept formulas in CNF and therefore our
objective is to construct formulas passed to the SAT solver in this form. Further, modern SAT solvers enable incremental SAT
solving; that is, the same SAT solver can be invoked multiple times and the input formula can be strengthened in between
the calls. In this fashion incremental SAT solving enables the SAT solver to reuse any information that the solver has learned

2 The rule of universal reduction [28] is a generalization of this property.

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 7
Algorithm 2: Two-level CNF solving.
input : ∀X∃Y . φ , where φ in CNF
output : τ if there exists τ s.t. ∀Y . ¬φ[X/τ], NULL otherwise

1 ρ ← {}
2 clauseMap← {}
3 while true do
4 τ ← SAT(ρ) // find a candidate
5 if τ = NULL then return NULL // no candidate
6 μ ← SAT (φ[X/τ]) // find a countermove
7 if μ = NULL then return τ // candidate is winning

// refine
8 Cr ← 0
9 foreach C ∈ φ do

10 C ′ ← C[Y /μ] // substitute
11 if C ′ = 1 then continue
12 (zC , ρ, clauseMap) ← EncodeNeg(C ′, ρ, clauseMap)

13 Cr ← Cr ∨ zC

14 ρ ← ρ ∪ {Cr}

Algorithm 3: Clause negation with caching.

1 Function EncodeNeg(C, φ, clauseMap)

2 begin
3 if C = (l) then return ¬l
4 if clauseMap[C] = k then return k
5 zC ← fresh variable
6 φ ← φ ∧ ∧

l∈C (¬zC ∨ ¬l)
7 clauseMap[C] ← zC

8 return (zC , φ, clauseMap)

about the formula. CEGAR-based solving can take advantage of incremental SAT solving because the constructed abstraction
is always being strengthened by refinement.

Let us look more closely and how refinement is realized in Algorithm 2. Recall that our objective is to obtain a winning
move for ∀X . Consequently, to obtain a candidate from an abstraction α, we wish to issue the call SAT(¬α). At the same
time, each refinement corresponds to disjoining to the current abstraction the formula φ[μ], where μ is the current coun-
termove. In order to implement this behavior, we observe that the abstraction α does not need to be explicitly constructed
and we will rather directly construct its negation.

For such, Algorithm 2 maintains a set of clauses ρ , which is a CNF representation of the negation of the abstraction. The
variable ρ is initialized to the empty set of clauses, i.e., semantically it is equal to the constant 1. Since the abstraction is
weakened with φ[μ] in each refinement, the negation is strengthened with ¬φ[μ]. However, because φ is in CNF, its negation
is in DNF. In order to translate ¬φ[μ] to CNF, the standard technique of introducing new variables, sometimes called Tseitin
variables, is used [24]. Additionally, we take advantage of the formula’s specific form, and we use the Plaisted–Greenbaum
transformation [25], which introduces implications between the new variables and the encoded structures only in one
direction.

Using this standard CNF encoding techniques, one could simply augment ρ with the encoding of ¬φ[μ]. But there is
another improvement stemming from the fact that clauses in φ[μ] may reappear in different refinements. This is realized
in the function EncodeNeg (Algorithm 3). The function is invoked on each of the clauses of φ[μ]. During the course of the
algorithm, the function maintains a mapping (clauseMap) from clauses to literals, where the mapped literal represents
that the clause is false. If EncodeNeg is given a clause C that consists of a single literal, it simply returns the negation
of this literal. If EncodeNeg is given a clause C that is already mapped to some Tseitin variable, this variable is returned.
Otherwise, EncodeNeg creates a fresh variable zC and adds to ρ the clauses forcing ¬C whenever zC is true. Consequently,
constructing the clause Cr = ∨

C∈φ[μ] EncodeNeg(C, ρ) represents that one of the clauses from φ[μ] must be false, i.e.,
¬φ[μ] must be true. Note that any clauses that are reduced to true by the assignment μ are ignored.

Since the above-described refinement only adds clauses to ρ , the actual implementation maintains the clauses of ρ in a
SAT solver and new clauses are added via the interface of the SAT solver.3

Incremental SAT interface can also be utilized for computing countermoves. Given a candidate τ , we wish to issue the
SAT call SAT(φ[τ]). For such, an implementation can avail of the assumption-based SAT call. In particular, an instance of a
SAT solver is constructed at the beginning of the run of the algorithm and is populated with the clauses of φ. Whenever a
countermove is needed, this SAT solver is called with assumptions representing the assignment τ .

3 In the SAT solver minisat2.2 this is done by the method addClause.

8 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
3.3. Heuristics

The CEGAR loop relies on two calls to a SAT solver and either of these two calls may yield different models for the same
abstraction or candidate, respectively. While the correctness of the algorithm is not affected by which of these models is
returned, the overall efficiency of the algorithm may be affected. Here we propose two heuristics. One that discriminates
between the possible candidates and one that discriminates between the possible counterexamples.

To formulate the heuristic we avail of the partial MaxSAT problem [29]. The partial MaxSAT problem is specified by two
sets of clauses: a set of hard clauses φh , and a set of soft clauses φs . A solution to the problem is an assignment that satisfies
all the hard clauses and maximizes the number of satisfied soft clauses.

Example 7. Consider the MaxSAT problem with hard clauses φh = {(x ∨ y ∨ z), (¬z ∨ w)} and the soft clauses φs =
{(¬x), (¬y), (¬z), (¬w)}. The assignment {x/1, y/0, z/0, w/0} is a possible solution, which satisfies 3 soft clauses. In con-
trast, {x/0, y/0, z/1, w/1}, satisfies all the hard clauses but it is not a solution to the problem because it satisfies only 2
soft clauses. Note that solving this problem is equivalent to finding a satisfying assignment to φh and minimizing the
sum x + y + z + w . �

Candidate heuristic The objective of the heuristic used in computing a candidate (the call SAT(ω) in Algorithm 2) is to find
such candidates that are likely to be winning moves for the universal player in the formula ∀X∃Y . φ. Recall that a complete
assignment τ to X is a winning move for the universal player if φ[X/τ] is unsatisfiable. Motivated by the intuition that
larger formulas are more likely to be unsatisfiable than smaller ones, we pick such candidates that maximize the number of
clauses of φ[X/τ]. In another words, we wish to compute such τ that does not satisfy as many clauses as possible. Hence,
the call SAT(ω) is replaced by the following MaxSAT problem:

φh = ω ∪ {¬zC ∨ ¬l | zC is a fresh variable, C ∈ φ, l ∈ C, var(l) ∈ X}
φs = {zC | C ∈ φ}

Whenever zC is true, all X literals of C are false. Hence, maximizing the number of variables zC set to true achieves the
objective.

Counterexample heuristic In the refinement step we consider only those clauses that are not satisfied by the counterexam-
ple μ, i.e., such C ∈ φ that C[Y /μ]
= 1. Hence, the clause

∨
zC , added in line 7, has less literals the more clauses of φ

are satisfied by μ. Since, in general, short clauses represent stronger constraints than long clauses, we propose a heuristic
that looks for those counterexamples that maximize the number of satisfied clauses in φ. Hence, the satisfiability problem
SAT (φ[X/ν]) is replaced by the following MaxSAT problem:

φh = {C[X/ν] | C ∈ φ}
φs = {

C ′ | C ∈ φ, C ′ = {l | l ∈ C, var(l) ∈ Y }}
Implementing heuristics In both of the aforementioned heuristics the corresponding SAT problem is transformed into a
MaxSAT problem. Solving these MaxSAT problems in each iteration of the CEGAR loop is not feasible because typically a
large number of iterations is required (up to hundreds of thousands) and MaxSAT is significantly more time-consuming
than SAT. Hence, in the implementation we compute an approximate solution to the MaxSAT problems by skewing the
default decision polarity and variable activity of a SAT solver. Hard clauses are given to the SAT solver as standard clauses
without any change. Each soft clause C is represented by the clause rC ∨ C where rC is a fresh variable. The polarity of
the variable rC is set to 0 and the activity increased. This instructs the SAT solver to set rC to 0 as soon as possible in
the search for a satisfying valuation, which then enforces C to be satisfied. While this approach does not guarantee the
optimum, it is commonly used in modern MaxSAT and PB solvers and has been successfully applied to SAT solving with
preference [30].

4. Prenex QBF with arbitrary number of quantification levels

This section generalizes algorithm from Section 3 for an arbitrary number of quantifier levels. This generalization fol-
lows the basic structure of Algorithm 1 and uses recursion to cope with the multiple levels. The recursion follows the
prefix of the given formula starting with the most upstream variables progressing towards more downstream variables. It
tries to find a winning move (Definition 1) for variables in a certain block by making recursive calls to obtain winning
moves for the downstream variables. The base case of the recursion, i.e., a QBF with one quantifier, is handled by a SAT
solver.

We begin by generalizing the observations and concepts introduced in the previous section. A quantifier can be expanded
into a propositional operator (disjunction of conjunction) and a partial expansion lets us approximate a set of winning
moves. An abstraction of a QBF with at least two quantifiers is obtained by partially expanding the second quantifier. Just
as before, a candidate refers to a winning move of an abstraction.

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 9
Algorithm 4: Basic recursive CEGAR algorithm for QBF.

1 Function Solve (Q X . �)
input : Q X . � is a closed QBF in prenex form with no adjacent blocks with the same quantifier
output : a winning move for Q X . � if there is one, NULL otherwise

2 begin
3 if � has no quantifiers then return (Q = ∃) ? SAT(�) : SAT(¬�)

4 ω ← ∅
5 while true do

6 α ← (Q = ∃) ?
(
∃X .

∧
μ∈ω �[μ]

)
:
(
∀X .

∨
μ∈ω �[μ]

)
7 τ ′ ← Solve(Prenex(Q X . α)) // find a candidate solution
8 if τ ′ = NULL then return NULL // no winning move
9 τ ← {

l | l ∈ τ ′ ∧ var(l) ∈ X
}

// filter a move for X
10 μ ← Solve(�[τ]) // find a counterexample
11 if μ = NULL then return τ // no counterexample
12 ω ← ω ∪ {μ} // refine

Observation 4. Let � be QBF with free variables in X ∪ Y and ω1, ω2 the subset of BY .

1. M(∀X∃Y . �) = M(∀X .
∨

μ∈BY �[μ])
2. M(∃X∀Y . �) = M(∃X .

∧
μ∈BY �[μ])

3. If ω1 ⊆ ω2 then M(∀X .
∨

μ∈ω2
�[μ]) ⊆M(∀X .

∨
μ∈ω1

�[μ])
4. If ω1 ⊆ ω2 then M(∃X .

∧
μ∈ω2

�[μ]) ⊆M(∃X .
∧

μ∈ω1
�[μ])

Definition 4 (ω-abstraction). Let ω be a subset of BY .
The ω-abstraction of a closed QBF ∀X∃Y . � is the formula ∀X .

∨
μ∈ω �[μ].

The ω-abstraction of a closed QBF ∃X∀Y . � is the formula ∃X .
∧

μ∈ω �[μ].

Note that the above observation and definition are generalizations of Observation 3 and Definition 3, which were aimed
at formulas with a two-level prefix, while Observation 4 and Definition 4 hold for an arbitrarily long prefix.

Algorithm 4 presents a pseudocode utilizing the above-introduced concepts. The algorithm is presented as a recursive
function Solve(Q X . �) that accepts a QBF in prenex form with maximal quantifier blocks. The function returns a winning
move for Q X , if such exists, it returns NULL otherwise.

If � does not contain any quantifiers (it is a propositional formula), a SAT solver is used to find a winning move (line 3).
In the general case, utilizing this CEGAR paradigm, it initializes the set of countermoves ω to the empty set (line 4) and
grows it by encountered countermoves (line 12).

In contrast to the 2-level case, the ω-abstraction cannot be directly solved. This is due to the abstraction not being in
prenex form. Hence, before invoking the recursive call to obtain a candidate (line 7), the algorithm must compute a prenex
form of the abstraction. Consequently, the prenexed version of the abstraction contains some fresh variables. These need to
be filtered out in order to obtain values for the X variables only.

Let us look at this process in more detail. Consider the case for ∃X . � (the case Q = ∀ is analogous) and consider that
� has at least two levels of quantification. Hence, the input formula is of the form ∃X∀Y ∃ZP . φ, where P is the rest of the
prefix of the formula and φ is its matrix. Note that P is empty or it starts with the universal quantifier.

Further, let us assume that the CEGAR loop carried out k iterations and thus set ω contains k countermoves, i.e.,
ω = {μ1, . . . , μk}. The abstraction constructed on line 6 is equal to ∃X .

∧
i∈1..k �[μk]. Prenexing this abstraction means

introducing for each i ∈ 1..k a fresh set of variables Z i for the variables Z and introducing fresh variables for the variables
appearing in the prefix P . Hence, the prenexed form is equal to the following.

∃X Z 1 . . . ZkP1 . . .Pk.
∧

i∈1..k

�[μi, Z/Z i,P/P i] (1)

where Z/Z i stands for the substitution of each variable of the set Z with the corresponding (fresh) variable from Z i .
Similarly, P i is the i-th fresh copy of the prefix P and P/P i stands for replacing the corresponding variables with their
fresh copies.

If formula (1) has a winning move τ ′ , it will contain values for the freshly introduced variables Z i . Observe that once
these values are filtered out from τ ′ (line 9), this is a winning move for the unprenexed version of the abstraction.

Example 8. Consider the QBF ∃v w. �, where

� = ∀u∃xy. (v ∨ w ∨ x) ∧ (v̄ ∨ y) ∧ (w̄ ∨ y) ∧ (u ∨ x̄) ∧ (ū ∨ ȳ),

10 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Algorithm 5: Recursive CEGAR algorithm for multi-games.

1 Function RAReQS (Q X . {�1, . . . ,�n})
2 output: a winning move for Q X . {�1, . . . ,�n} if there is one; NULL otherwise

3 begin
4 if �i have no quantifiers then // base case
5 return Q = ∃ ? SAT(

∧
i �i) : SAT(¬(

∨
i �))

6 α ← Q X . {}
7 while true do
8 τ ′ ← RAReQS(α) // find a candidate
9 if τ ′ = NULL then return NULL

10 τ ← {
l | l ∈ τ ′ ∧ var(l) ∈ X

}
// filter a move for X

11 for i ← 1 to n do
12 μi ← RAReQS(�i [τ]) // find a countermove
13 if (μi = NULL for all i ∈ {1..n}) then return τ
14 let l ∈ {1..n} be s.t. μl
= NULL
15 α ← Refine(α, �l, μl) // refine

and the candidates {v/1, w/1} and {v/0, w/0}, and corresponding counterexamples {u/1} and {u/1}. Refinement yields the
abstraction ∃v w.�[u/1] ∧ �[u/0], with the prenex form ∃v wxyx′ y′. (v ∨ w ∨ x) ∧ (v̄ ∨ y) ∧ (w̄ ∨ y) ∧ (ȳ) ∧ (v ∨ w ∨ x′) ∧
(v̄ ∨ y′) ∧ (w̄ ∨ y′) ∧ (x̄′) with no winning move and the algorithm terminates with the return value NULL. �

4.1. Improving recursive CEGAR-based algorithm

The 2-level algorithm already has a significant memory consumption since in each iteration of the loop the abstraction
is increased by the size of the input formula. We will show that recursive calls may further exponentially amplify this
behavior. Consider the following formula.

∃X1∀Y1∃Z∀Y2P. φ (2)

where P is the rest of the quantifier prefix and φ the matrix of the formula. Further consider an ω-abstraction of (2) for
ω = {μ1

1, . . . , μ
1
n1

} corresponding to n1 iterations of the CEGAR loop, which upon prenexing is equal to the following.

∃X1 Z 1, . . . , Zn∀Y 1
2 . . . , Y n

2P
1 . . . ,Pn.

∧
i∈1..n1

φ[Z/Z i, Y /Y 1,P/P i] (3)

The algorithm subsequently invokes the recursive call on formula (3) on line 7 in order to obtain a candidate. The
recursive call operates on a matrix whose size is in O (n1|φ|), i.e., n1-times bigger than the original matrix. If the recursive
call performs n2 iterations of the CEGAR loop, it will produce an abstraction that will be n1n2 bigger than the original
matrix φ. In general, if the algorithm iterates ni times at a recursion level i, the abstraction at level k is of the size
O (n1 · · ·nk · |φ|).

Clearly, such blowup would prohibit any practical application of the algorithm for larger number of quantification levels.
To cope with this issue, we exploit the form of the formulas that the algorithm handles. In the case of the existential
quantifier, the abstraction is a conjunct and it is a disjunct in the case of the universal quantifier. For the sake of uniformity,
we bridge these two forms by introducing the notion of a multi-game where a player tries to find a move that wins multiple
formulas simultaneously.

Definition 5 (Multi-game). Let Q be a quantifier and X be a set of variables. Let �1, . . . , �n be a set of prenex QBFs such
that each �i starts with Q̄ or has no quantifiers. Additionally, the free variables of each �i must be in X and all �i have
the same number of quantifier blocks. A multi-game is the expression Q X .{�1, . . . , �n}. We refer to the formulas �i as
subgames and Q X as the top-level prefix.

A winning move for a multi-game is an assignment to the variables X such that it is a winning move for each of the
formulas Q X . �i .

Observe that the set of winning moves of a multi-game Q X .{�1, . . . , �n} is the same as the set of winning moves of
the QBF ∀X . (�1 ∨ · · · ∨ �n) for Q = ∀ and it is the same as ∃X . (�1 ∧ · · · ∧ �n) for Q = ∃. And, any prenex QBF Q X . �
corresponds to a multi-game with a single subgame Q X .{�}.

Algorithm 5 shows an algorithm to solve multi-games. Just as Algorithm 4, this algorithm is represented as a recursive
function named RAReQS. As input the algorithm accepts a multi-game and the abstraction it constructs is again a multi-
game.

To determine whether a candidate τ is a winning move, it tests whether it is a winning move for the subgames in turn.
If it finds a subgame �i such that the opponent Q̄ wins �i[τ] by a move μi , then �i[μi] is used to refine the abstraction.

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 11
Since an abstraction is a multi-game, it seems natural to add �i[μ] to the set of its subgames. This, however, cannot be
done right away because the formula �i[μi] is not in the right form. In particular, for a multi-game, all the subgames must
start with the opposing quantifier with respect to the top-level prefix. Hence, if �i is of the form Q̄ Y Q X1. �i and μi ∈ BY ,
then �i[μi] = Q X1. �i[μi]. To bring the formula into the right form, we introduce fresh variables for the variables X1 and
move them into the top-level prefix. More precisely, the function Refine(α, �l, μl) is defined as follows (observe that the
subgames remain in prenex form).

Refine
(

Q X .{�1, . . . ,�n}, Q̄ Y Q Z .�, μ
) := Q X Z ′.{�1, . . . ,�n,�[μ, Z/Z ′]}

where Z ′ are fresh duplicates of the variables Z

Refine
(

Q X .{ψ1, . . . ,ψn}, Q̄ Y .ψ, μ
) := Q X .{ψ1, . . . ,ψn,ψ[μ]}

where ψ is a propositional formula (and no variable duplicates are needed)

Similarly to Algorithm 4, after the refinement, the abstraction’s top-level prefix contains additional variables besides the
variables X . Hence, values for these variables are filtered out if a winning move for the abstraction is found.

4.2. Properties of the algorithms

Similar properties to the ones for 2QBF (see Section 3.1) can be derived for Algorithm 4 and Algorithm 5. Following the
same argumentation as in Section 3.1, we can derive that once a counterexample μ is found in Algorithm 4, μ cannot be a
countermove to any assignment that is a winning move for the future forms of the abstraction. Consequently, no candidate
or counterexample repeats. From which follows that the loop is terminating and for a formula Q X Q̄ Y . � the number of its
iterations is bounded by the number of possible assignments to the variables X and Y , i.e., min(2|X |, 2|Y |). In the worst case,
in each iteration the abstraction grows by the size of �.

For a multi-game Q X . {�1, . . . , �n} in the CEGAR loop of Algorithm 5 no candidates repeat but counterexamples may
repeat. However, for a given i ∈ 1..n, a counterexample μi does not repeat. More precisely there are no two distinct iterations
of the loop with the corresponding candidates and counterexamples τ1, μ1, τ2, μ2, such that μ1 = μ2 and μ1 is a winning
move for both �i[τ1] and �i[τ2] for some i. This demonstrates termination with the upper bound for the number of
iterations as min(2|X |, n · 2|Y |). In the worst case, in each iteration the abstraction grows by the maximum of the sizes of the
subgames �1, . . . , �n . Soundness and completeness of the Algorithms 4 and 5 are direct consequences of Observation 4.

4.3. Implementation details

We have implemented a prototype4 of RAReQS in C++, supporting the QDIMACS format, with the underlying SAT solver
minisat 2.2 [31].

The implementation has several distinctive features. In Algorithm 5, an abstraction computed within a sub-call is forgot-
ten once the call returns. This may lead to repetition of work and hence the solver supports maintaining these abstractions
and strengthening them gradually, similarly to the way SAT solvers provide incremental interface. This incremental approach,
however, tends to lead to unwieldy memory consumption and therefore, it is used only when the given multigame’s sub-
games have 2 or fewer quantification blocks.

If an assignment τ is a candidate for a winning move that turns out not to be a winning move, the refinement guarantees
that τ is not a solution to the abstraction in the future iterations of the CEGAR loop. This knowledge enables us to make
the subcall for solving the abstraction more efficient by explicitly disabling τ as a winning move for the abstraction. We
refer to this technique as blocking and it is similar to the refinement used in certain SMT solvers [32,33].

Throughout its course, the algorithm may produce a large number of new formulas, either by substitution or refinement.
Since these formulas tend to be simpler than the given one, they can be further simplified by standard QBF preprocessing
techniques. The implementation uses unit propagation and monotone (pure) literal rule [34]. These simplifications introduce
the complication that in a multi-game Q X .{�1, . . . , �n} the individual subgames might not necessarily have the same
number of quantifier levels. In such case, all games with no quantifiers are immediately put into the abstraction before the
loop starts.

5. Non-CNF, non-prenex QBF

In order to construct a non-CNF solver, we build on the ideas of multi-games, which were introduced in the previous
section. Recall that a multi-game ∀X .{∃Y . �1, ∃Y . �2} corresponds to the formula ∀X . (∃Y . �1) ∨ (∃Y . �2). So in fact, multi-
games are a special cases of non-CNF QBFs. In multi-games, we were able to play each subgame separately and also refine
by one subgame at a time and thus mitigating space explosion of the abstractions being constructed (see introduction to
Section 4.1).

4 Available from http :/ /sat .inesc-id .pt /~mikolas /sw /areqs.

http://sat.inesc-id.pt/~mikolas/sw/areqs

12 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Fig. 2. Grammar for Alternating form.

Algorithm 6: Non-prenex and non-CNF solving.

1 Function RAReQS-NN (Q X . φ)

2 begin
3 if φ has no quantifiers then return (Q = ∃) ? SAT(φ) : SAT(¬φ)

4 ω ← ∅
5 while true do
6 α ← Abstract(Q , φ, ω) // build abstraction
7 τ ′ ← RAReQS-NN(Prenex(Q X . α)) // find a candidate
8 if τ ′ = NULL then return NULL // no winning move
9 τ ← {

l | l ∈ τ ′ ∧ var(l) ∈ X
}

// filter a move for X
10 R ← Test(Q , φ, τ) // test candidate
11 if r = NULL then return τ // no counterexample
12 ω ← ω ∪ R // refine

In the non-CNF case, we take this idea one step further. We consider a QBF Q X . � where � is a tree (or a directed acyclic
graph) with internal nodes representing Boolean operators (∧, ∨) and leaves representing QBFs with the opposite quantifier
(Q̄). So for instance, we consider ∃X . (∀Y . �1) ∧ (∀Z . �2) but not ∃X . (∀Y . �1) ∧ (∃Z . �2). To construct an abstraction of a
QBF in this form, we construct a tree with the same internal nodes but replace the leaves with their partial expansions.

Let us now look at the above presented ideas more precisely. We consider QBFs in the form given by the grammar in
Fig. 2. As opposed to an arbitrary QBF, the grammar forces quantifiers to alternate, i.e., if some quantification Q X2 is in the
scope of quantification Q X1, there must be another quantification Q̄ Z in the middle of the two. Further, negations must
be only used on variables5 and we require the top-level expression to be a quantifier. Since this form requires quantifiers to
alternate, we name it alternating form.

To convert an arbitrary QBF to alternating form, all negations are pushed inwards by using standard equivalences
(¬∃X . � = ∀X . ¬� , etc.) and non-alternating quantifiers are brought together by prefixing. So for instance the formula
∃x.¬(∀y. y ∨x) ∧ (∀y. y ∧x) becomes ∃xy′. (ȳ′ ∧ x̄) ∧ (∀y. y ∧x). Note that alternating form also requires that the top-level ex-
pression is a quantifier which can always be guaranteed by adding a “dummy” existential quantification, i.e., (∀x. x) ∧ (∃y. y)

becomes ∃z. (∀x. x) ∧ (∃y. y).
Having a quantifier at the top level simplifies presentation of the algorithm because the definition of a winning move still

applies (Definition 1) and we can decide a given formula by determining whether there is a winning move for the top-level
quantification. Algorithm 6 presents an algorithm for formulas in alternating form with several facets not yet explained.
These will be discussed in the following sections. Algorithm 6 provides the big picture at this point.

The structure of the algorithm is almost identical to the algorithms we have seen so far. An abstraction α is constructed
from the given formula and a parameter ω. The parameter ω is explained later but the intuition behind it is that it deter-
mines how the opponent’s quantifiers are expanded (similarly as abstraction was parameterized by the set of countermoves
in previous sections). Then the algorithm finds a winning move for the abstraction and subsequently tests whether this is
really a winning move for the given problem. If the abstraction has no winning move, the given problem also does not have
a winning move. If the winning move for the abstraction is a winning move for the given problem, the algorithm terminates.
Otherwise, the algorithm refines the abstraction. To fully explain the algorithm the following facets need to be addressed:

1. form of the abstraction (function Abstract)
2. test that a given move is a winning move (function Test)
3. refinement

Before we look at these aspects of the algorithm, we introduce the following notation, which enables us to unify certain
operations for the universal and existential quantifier.

Notation

ALL∃ = ∧
ALL∀ = ∨

SOME∀ = ∧
SOME∃ = ∨

�∃ = ⊥∀ = 1
�∀ = ⊥∃ = 0

5 In the actual implementation we relax this condition by allowing negations on expressions containing no quantifiers.

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 13
Algorithm 7: Compute raw abstraction.

1 Function RawAbstract (Q , �, ω)
2 begin
3 if � = l then return l

4 if � = ALLQ (�1, �2) then
5 return ALLQ (RawAbstract(Q , �1, ω), RawAbstract(Q , �2, ω))

6 if � = SOME Q (�1, �2) then
7 return SOMEQ (RawAbstract(Q , �1, ω), RawAbstract(Q , �2, ω))

8 if � = Q̄ Y . � then
9 ωY ← {μ | (i,μ) ∈ ω, i = ID(�)}

10 return ALLQ
μ∈ωY �[μ]

The intuition behind the operator is that in the formula Q X . ALLQ (�1, �2) the player Q must find a winning move for
both �1 and �2. In contrast, SOMEQ (�1, �2) means that Q must find a winning move for one of the �1, �2. In the same
spirit, the top and the bottom constants are defined for the two players. These are Boolean constants that correspond to
either of the players to win or lose, respectively. The operators ALLQ and SOMEQ are treated as prefix operators. Note that
the operators are commutative and associative.

Observation 5. Let �1 and �2 be QBFs and X a set of variables and τ a total assignment to X. The assignment τ is a winning
move for ∀X . ALL∀(�1, �2) iff �1[τ] and �2[τ] are both false; it is a winning move for ∃X . ALL∃(�1, �2) iff �1[τ] and �2[τ] are
both true. The assignment τ is a winning move for ∀X . SOME∀(�1, �2) iff one of �1[τ], �2[τ] is false; it is a winning move for
∃X . SOME∃(�1, �2) iff one of �1[τ], �2[τ] is true.

Observation 6. The following equations hold.

SOMEQ (φ,�Q) = �Q

ALLQ (φ,⊥Q) = ⊥Q
SOMEQ (φ,⊥Q) = φ

ALLQ (φ,�Q) = φ

5.1. Abstraction

As hinted above, the crux of the abstraction is to replace the opponent’s quantifiers by Boolean connectives. The following
equations are the basis for these expansions.

∀x.� = �[x] ∧ �[x̄] = ALL∃(�[x],�[x̄])
∃x.� = �[x] ∨ �[x̄] = ALL∀(�[x],�[x̄]) (4)

Equations (4) tell us that the opposing quantifier is expanded by the ALLQ operator. So in order to construct an abstrac-
tion of a formula Q X . � we find each expression Q Y . � and replace it by the expression ALLQ

τ∈ωY �[τ] where ωY is the
set of assignments that are considered for this expansion. Recall, however, that the algorithm operates on formulas in alter-
nating form. And, performing these expansions might violate this form. Hence, we split the computation of an abstraction
into two phases: the computation of a raw abstraction α′ and a prenexing operation that brings α′ to alternating form.

Throughout the computation, the algorithm remembers how the given formula has been expanded so far and expands it
further in refinements (Algorithm 6). To do so, it maintains a variable ω, which determines for each subexpressions of the
form Q̄ Y . � that is not within the scope of another quantifier how it should be expanded, i.e., the variable ω parameterizes
the abstraction. Now let us look more closely at the contents of ω.

We assume that each node in a formula is uniquely identified by an identifier which can be obtained by the function
ID. The variable ω comprises pairs (i, μ) where i is an identifier of some node Q̄ Y . � in the given formula and μ is a total
assignment to Y . Each such pair means that Y should be expanded with the assignment μ. The function RawAbstract
(Algorithm 7) realizes this idea by traversing recursively the given formula and expanding each quantified node with the
pertaining assignments. As noted before, such transformation constructs raw abstraction because it might not necessarily be
in alternating form. Hence, the function Abstract used in Algorithm 6 first calls RawAbstract and applies prefixing in
order to bring it into alternating form.

Fig. 3(a) shows an example of an abstraction of the formula ∀x. (x ∨ ȳ) ∧ (∃z. z). The node ∃z. z is expanded by the
assignments z/0 and z/1. Fig. 3(b) shows the same abstraction rewritten using the ALLQ and SOMEQ operators.

5.2. Winning move test

The function Test serves two purposes: the first purpose is to test whether a given candidate is a winning move; the
second purpose is provide how the current abstraction should be refined. More precisely, for a QBF Q X . � and a total
assignment τ to the variables X the function decides whether τ is a winning move for Q X in Q X . �. The function either

14 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Fig. 3. Abstraction example.

Algorithm 8: Testing if a given move is a winning move.

1 Function Test (Q , φ , τ)
input : φ is a QBF with all its free variables assigned by τ
output : refinement if τ is not winning move for Q in φ , NULL otherwise

2 begin
3 if φ = l then return (φ[τ] = �Q) ? NULL : {}
4 if φ = ALLQ (φ1, φ2) then
5 β1 ← Test(Q , φ1, τ)

6 if β1
= NULL then return β1

7 β2 ← Test(Q , φ2, τ)

8 if β2
= NULL then return β2

9 return NULL

10 if φ = SOMEQ (φ1, φ2) then
11 β1 ← Test(Q , φ1, τ)

12 if β1 = NULL then return NULL
13 β2 ← Test(Q , φ2, τ)

14 if β2 = NULL then return NULL
15 return β1 ∪ β2

16 if φ = Q̄ Y . ψ then
17 μ ← Solve(Q̄ Y . ψ[τ])
18 if μ = NULL then return NULL
19 return {(ID(φ), μ)}

returns NULL if τ is a winning move or it returns a set of pairs (i, μ), which are pairs that are eventually added to the
variable ω (see Algorithm 6). Effectively, if a pair (i, μ) is added to the return value, the node with identifier i is expanded
by the assignment μ.

Algorithm 8 shows pseudocode for the function Test. The function recursively traverses the given formula until it
reaches a quantified expression where it invokes the solving procedure to test whether this subexpression is won by τ .
Note that any quantified expression found must be of the opposing quantifier due to the formula being in alternating form.
If τ leads to a loss in some subexpression Q̄ Y . � , there is a winning move μ for Q̄ Y in Q̄ . �[τ]. This move μ is used
to expand this subexpression in the upcoming abstractions. This is very much similar to countermoves were used in the
algorithms for prenex QBFs.

Now let us look at how the function Test aggregates computed expansions in the internal notes of the formula. If the
function Test operates on a ALLQ node, it only needs to check whether one of the children needs to be refined. If τ leads
to a loss in one of the children, that child is expanded. Otherwise, NULL is returned (no refinement needed). However, in
the case of nodes of type SOMEQ , computing refinements is slightly more complicated. If τ yields a win for one of the
children, no expansion is needed in that subtree. In the opposite case, when τ loses for all the children, all these children
are expanded.

Observe that when children of ALLQ and SOMEQ nodes are treated, the operations are short-circuited. So for instance
once the function discovers that τ leads to a loss in some child of a ALLQ node, it does not evaluate the other children.
Analogously, if τ leads to a win in some child of a SOMEQ node, the function stops without producing an expansion.
This is also a motivation for why the aggregations of expansions are different for the two types of nodes. In the case of a
ALLQ node, there is a single child that calls for expansion. In the case of a SOMEQ node, the recursive calls have produced
expansions for all the children. It would be correct to randomly pick just one of the children for expansion. Like so, however,
the computed expansions would go to waste.

Remark When the given formula is given a single literal, τ might lead to a loss without generating any expansion to be
added to the abstraction. �

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 15
6. CEGAR as a learning technique in DPLL

The previous section shows that CEGAR can give rise to a complete and sound algorithm for QBF. In this section we
show that CEGAR enables us to extend existing DPLL solvers with an additional learning technique. We will employ the
ghost variables and game sequents techniques to more easily present this technique.

6.1. Ghost variables and sequent learning

In this subsection, we briefly describe the techniques of ghost variables and sequent learning. A more complete treatment
may be found in [35].

We employ ghost variables to provide a modification of the Tseitin transformation that is symmetric between the two
players. The idea of using a symmetric transformation was first explored in [36], which performed the Tseitin transformation
twice: once on the input formula, and once on its negation.

For each subformula of the original input formula, we introduce two ghost variables: an existentially quantified variable
g∃ and a universally quantified variable g∀ . We say that g∃ and g∀ represent the labeled subformula. Variables that occur in
the original input formula are called input variables, in distinction to ghost variables. Ghost variables are always downstream
of all input variables.

We now introduce a semantics with ghost variables for the game formulation of QBF. As in the Tseitin transformation,
the existential player should lose if an existential ghost variable g∃ is assigned a different value than the subformula that it
represents. Additionally, the universal player should lose if an universal ghost variable g∀ is assigned a different value than
the subformula that it represents.

As noted in Section 2, we write “φ[π]” to denote the result of substituting assignment φ into formula φ. The assignment
π may contain ghost variables, but a subformula labeled by a ghost variable is not replaced by the assigned value of the
ghost variable. For example, if g Q

1 represents x ∧ y and π1 = {g Q
1 /1}, then (x ∧ y)[π1] evaluates to (x ∧ y), and g Q

1 [π1]
evaluates to true.

Definition 6 (Consistent assignment to ghost literal). Let Q ∈ {∃, ∀}; let π be an assignment; let g Q be a ghost literal; and let
ξ be the formula represented by g Q . We say that g Q is assigned consistently under π iff g Q [π] = ξ [π]. We say g Q is
assigned inconsistently under π iff g Q [π] = ¬ ξ [π].

For example, if g Q
1 represents x ∧ y, then g Q

1 is assigned consistently under {g Q
1 /0, x/0}, while it assigned inconsistently

under {g Q
1 /0, x/1, y/1}. Under {g Q

1 /0}, g Q
1 is not said to be either consistently or inconsistently assigned.

Definition 7 (Winning under a total assignment). Given a formula �, a quantifier type Q ∈ {∃, ∀}, and an assignment π to
all the input variables and a subset of the ghost variables, we say “Player Q wins � under π ” iff both of the following
conditions hold true:

1. �[π] =
{

true if Q is ∃
false if Q is ∀

2. Every ghost variable owned by Q in vars(π) is assigned consistently.
(Intuitively, a winning player’s ghost vars must “respect the encoding”.)

For example, if � = ∃e∀u. (e ∧ u) and g labels (e ∧ u) then neither player wins � under {e/0, u/1, g∀/1, g∃/0}. The
existential player fails to win because �[π] = false, and the universal player fails to win because the ghost variable g∀ is
assigned inconsistently, since g∀[π] = true but the formula represented by g∀ (i.e., the conjunction e ∧ u) evaluates to false.

Definition 8 (Losing under an assignment). Given a formula � and an assignment π , we define the phrase “Player Q loses �

under π ” recursively. We say “Player Q loses � under π ” iff either:

1. Player Q does not win � under π and every input variable is assigned by π , or
2. there is an outermost unassigned input variable x such that either:

(a) Player Q loses � under both π ∪ {x/1} and π ∪ {x/0}, or
(b) Q ’s opponent owns x and Player Q loses � under either π ∪ {x/1} or π ∪ {x/0}.

For example, consider a formula � = ∀u∃e. u ∧ e. Then:

• Player ∃ loses � under {u/0, e/0}, by subpart 1 of Definition 8.
• Player ∃ loses � under {u/0}, by subpart 2(a) of Definition 8.
• Player ∀ loses � under {u/1}, by subpart 2(b) of Definition 8.

16 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Definition 9 (Game-state specifier, match). A game-state specifier is a pair 〈Lnow, Lfut〉 consisting of two sets of literals, Lnow

and Lfut . We say that 〈Lnow, Lfut〉 matches an assignment π iff:

1. for every literal � in Lnow , �[π] = true, and
2. for every literal � in Lfut , �[π]
= false (i.e., either �[π] = true or var(�) /∈ vars(π)).

For example, 〈{u}, {e}〉 matches the assignments {u/1} and {u/1, e/1} (because both conditions in Definition 9 are satis-
fied), but does not match the empty assignment (because condition 1 fails) or {u/1, e/0} (because condition 2 fails).

Note that, for any literal �, if {�, ¬�} ⊆ Lfut , then 〈Lnow, Lfut〉 matches an assignment π only if π does not assign �. The
intuition behind the names “Lnow” and “Lfut” is as follows: Under the game formulation of QBF, the assignment π can be
thought of as a state of the game, and π matches 〈Lnow, Lfut〉 iff every literal in Lnow is already true in the game and, for
every literal � in Lfut , it is possible that � can be true in a future state of the game.

Definition 10 (Game sequent). The sequent 〈Lnow, Lfut〉 |= (Q loses �) means “Player Q loses � under all assignments that
match 〈Lnow, Lfut〉.”

As an example, let � be the following formula:

∀u∃e. (e ∨ ¬u) ∧ (u ∨ ¬e) (5)

Note that sequent 〈{u}, {e}〉 |= (∀ loses �) holds true: in any assignment π that matches it, �[π] = true. However, 〈{u}, ∅〉 |=
(∀ loses �) does not hold true: it matches the assignment {u/1, e/0}, under which Player ∀ does not lose �.

For closed prenex instances, game sequents are isomorphic to the learned clauses/cubes; the differences are merely
cosmetic. With the learning algorithm in [35], whenever a new game sequent is learned for a closed prenex instance,
the literals owned by the winner all go in Lfut , and the literals owned by the loser go in Lnow . The relationship between
game-state sequents and learned clauses/cubes (for prenex instances) is as follows.

A learned clause (�1 ∨ . . . ∨ �n) is equivalent to the game sequent 〈Lnow, Lfut〉 |= (∃ loses �in) where Lnow contains all the
existential literals from {¬�1, . . . , ¬�n}, and Lfut contains all the universal literals from {¬�1, . . . , ¬�n}. Note that the literals
from the clause occur negated in the sequent.

Likewise, a learned cube (�1 ∧ . . .∧ �n) is equivalent to the game sequent 〈Lnow, Lfut〉 |= (∀ loses �in) where Lnow contains
all the universal literals from {�1, . . . , �n}, and Lfut contains all the existential literals from {�1, . . . , �n}. Unlike the case for
clauses, the literals in a cube do not get negated for the corresponding sequent.

6.2. DPLL for 2-level QBF

Notation. Given an assignment π , let prop(π) be the assignment produced by adding literals that would be forced
in boolean constraint propagation (BCP) using the solver’s sequent database. For example, if the input formula contains a
subformula (x ∨ y) labeled by ghost variables g∃ and g∀ , then prop({x/1}) would contain x, g∃ , and g∀ .

To illustrate the basic idea of the CEGAR-in-DPLL technique, let � be a QBF of the form ∀X∃Y . φ. Let πcand be an assignment
to the variables in X such that prop(πcand) does not match any sequent in the solver’s sequent database. Let πcex be a
counterexample to πcand; i.e., let πcex be an assignment to the variables in Y such that φ[πcand ∪ πcex] = true. The goal of
the CEGAR learning is to produce a set of sequents such that, if these sequents are added to the sequent database, then for
every assignment π ′

cand to X for which πcex is a counterexample, some sequent in the database would match prop(π ′
cand).

This goal is accomplished as follows:

1. Substitute the assignment πcex into φ, yielding the formula φ[πcex].
2. Introduce ghost variables for any subformulas in φ[πcex] that are not already labeled by ghost variables. Add sequents

that relate these ghost variables to the subformulas that they represent, as described in Sec. 2.4.1 of [35].
3. Let g∀∗ be the universal ghost variable that labels the formula φ[πcex].
4. Learn the new sequent 〈{g∀∗}, πcex〉 |= (∀ loses �).

Consider an arbitrary assignment π ′
cand to X to which πcex is a counterexample. Then φ[πcand ∪ πcex] = true. To prove that

prop(π ′
cand) matches 〈{g∀∗}, πcex〉, we must prove (1) g∀∗ ∈ prop(π ′

cand) and (2) prop(π ′
cand) does not contain the negation of

any literal in πcex:

1. Since all the variables in the formula labeled by g∀∗ are assigned by π ′
cand, it follows that either the variable g∀∗ or its

negation must be a forced literal under π ′
cand. And since g∀∗ labels φ[πcex], and (φ[πcex])[πcand] = true, it follows that

the positive literal g∀∗ is forced, i.e., g∀∗ ∈ prop(π ′
cand).

2. A literal � is forced under an assignment π only if the owner of � is doomed to lose under π ∪ {�/0}. Since Player ∃
owns πcex and wins under π ′ ∪ πcex, it follows that no literals from πcex appear negated in prop(π ′).
cand cand

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 17
Algorithm 9: DPLL algorithm with CEGAR learning.

1 global πcur ←∅

2 Function DPLL-Solve(φin)

3 begin
4 while true do
5 while (πcur doesn’t match any database sequent) do
6 DecideLit()

7 Propagate()

8 DPLL-Learn()

9 if (learned seq has form 〈∅, Lfut〉 |= (�in ⇔ ψ)) then return ψ

10 if (last decision literal is owned by winner) then
11 CEGAR-Learn()

12 Backtrack()

13 Propagate() // learned information forces a literal

For example, consider the formula � = ∀X∃Y . φ where φ is:

φ = (¬u1 ∨ ¬e3) ∧ (¬u2 ∨ ¬e4) ∧ (u1 ∨ e3) ∧ (u2 ∨ e4) (6)

Suppose that πcand = {u1/1, u2/1} and πcex = {e3/0, e4/0}. Then φ[πcex] = u1 ∧u2. Let g∀
6 be the universal ghost variable for

u1 ∧ u2. The solver learns the sequent 〈{g∀
6}, {¬e3, ¬e4}〉 |= (∀ loses �), as well as sequents relating g∀

6 to the subformula
which it represents.

To add CEGAR learning to the DPLL-based solver GhostQ, we insert a call to a new CEGAR-learning procedure after
standard DPLL learning, as shown in Algorithm 9. As shown in Algorithm 9, CEGAR learning is performed only if the last
decision literal in πcur is owned by the winner. (The case where the last decision literal is owned by the losing player
corresponds to the conflicts that take place within the underlying SAT solver in RAReQS.)

6.3. DPLL for QBF with arbitrary quantification levels

Consider a QBF Q 1 Z1. . . . Q n Zn.φ. Suppose that the last decision literal belongs to the winner and is in the block Zi .
Then CEGAR learning would proceed as follows:

1. Let πcex be a total assignment to the variables in Zi . If a variable in Zi is assigned by πcur, it should have the same
value in πcex; if it does not appear in πcur, it can be assigned an arbitrary value in πcex.

2. Let guard be a subset of πcur that assigns a subset of variables in Z1, . . . , Zi−2. The choice of guard is heuristicly picked.
3. Let Z ′

i+1, . . . , Z
′
n be fresh variables corresponding to Zi+1, . . . , Zn , respectively.

4. Let φ′ be the result of substituting the assignment πcex ∪ guard into φ and replacing all occurrences of variables in
Zi+1,, Zn with Z ′

i+1, . . . , Z
′
n , respectively.

5. Introduce ghost variables for any formulas in φ′ not already labeled by ghost variables. Add sequents that relate these
ghost variables to the subformulas that they represent.

6. Let Q ∗ be Q̄ i . Let g Q ∗
∗ be the ghost variable that labels the formula φ′ (if Q ∗ is ∀) or the negation of this ghost variable

(if Q ∗ is ∃).
7. Learn the new sequent 〈guard ∪ {g Q ∗

∗ }, πcex〉 |= (Q ∗ loses �).

7. Experimental results

This section shows experimental evaluation of the presented algorithms. All experiments were carried out on Intel Xeon
5160 3 GHz machines, with 4 GB of memory.

7.1. Experimental results for 2-level QCNF

Two versions of AReQS were evaluated: one that does not use any heuristics (denoted AReQS) and the second that uses
the heuristics described in Section 3.3 (denoted AReQS-H). The solvers were compared to the CDCL solver DepQBF [37] and
the expansion-based solvers Nenofex [9] and Quantor [8].

A variety of benchmarks were chosen for the empirical evaluation. The sources for the benchmarks were: QBF li-
brary [38], QBF evaluation [39], and two well-known � P

2 and �P
2 complete problems. From the QBF library [38] we chose

the RobotsD2 benchmarks, from QBF evaluation the set of problems used in 2010 2QBF track. Since the family of RobotsD2
is disproportionally large, only a random sample of 150 instances was considered. Entailment in propositional circumscrip-
tion (circ) is a well-known �P

2 problem and instances from product configuration were used [40]. Implicate core (icore)
is the problem of deciding for a given clause C , a constant k, and a CNF φ whether there exists a clause C ′ ⊆ C , s.t. |C ′| < k

18 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Table 1
Numbers of solved instances.

Family AReQS AReQS-H DepQBF Quantor Nenofex

2QBF ’10 (65) 52 51 30 9 0
icore (75) 39 38 26 19 20
RobotsD2 (samp.) (98) 98 98 93 0 3
circ (38) 38 38 30 8 34

total 227 225 179 36 57

Fig. 4. Cactus plot for the overall results.

Fig. 5. Overview of the experimental results.

and φ ⇒ C ′; the problem is well known to be � P
2 -complete [41].6 Only problems of the form ∀∃ were considered from the

QBF library (this was true for all the problems in the 2QBF track of the QBF-Evaluation); the implicate core problem was
directly generated in its negated form (again producing the ∀∃ form). All benchmarks were preprocessed by the preproces-
sor bloqqer [16] and instances solved by the preprocessor alone were excluded from further analysis. The experiments were
obtained with a 800 s time limit and 2 GB memory limit.

Table 1 shows the number of solved instances for each set of benchmarks and solver. Fig. 4 shows a cactus plot for all
of the instances. Both versions of AReQS dominate the results and are followed by DepQBF. The expansion-based solvers
Nenofex and Quantor perform poorly.

The heuristics in AReQS-H do not seem to give a clear benefit. In fact, the heuristics implementation solves two instances
fewer. Figs. 5(a) and 5(b) provide a more detailed view. Fig. 5(a) compares the number of iterations that the solver performed
per instance. Fig. 5(b) compares the running times of the implementations. These figures do not show a clear advantage of
either of the versions. However, it seems that the heuristics pay off more in harder instances, i.e., in instances where both of
the solvers need a substantial amount of time or iterations. Hence, it would be interesting to explore a hybrid approach of
invoking the heuristics. Another observation to be made is that there are instances where AReQS performs a large number of

6 The problem is usually presented for an implicant rather than implicate, which is easily convertible to the implicate problem by negating the input
formula.

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 19
Fig. 6. Cactus plot of the overall results.

Table 2
N. of instances solved by RAReQS but not by a competing solver, and vice versa.

GhostQ GhostQ-CEGAR DepQBF Nenofex Quantor

Only RAReQS 832 632 561 1512 1437
Only competitor 275 311 101 21 36

iterations (order of 106); this suggests that the complexity of the investigated problems is not the underlying SAT problems
but the number of iterations overall.

7.2. Experimental results for PQCNF

Our objective was to analyze the effect of CEGAR on the different families of available benchmarks. Due to the large num-
ber of families in QBF-LIB [38], we have targeted families from formal verification and planning as two prominent applications
of QBF. We have also included the family of benchmarks used for the 2012 evaluation.7 Several large and hard families were
randomly sampled (terminator, tipfixpoint, Strat. Companies, traffic-controller, RobotsD3); the area
of planning contains four classes for robot planning, each counting 1000 instances with similar characteristics and thus only
one of these classes was selected (RobotsD3).

The solvers were compared to DepQBF [37] and the expansion-based solvers Nenofex [9] and Quantor [8]. GhostQ was
evaluated in two versions. One, the original version GhostQ [42,35] and second, with the CEGAR learning—GhostQ-CEGAR
(see Section 6). The time limit was 800 s and the memory limit 2 GB.

All the instances were preprocessed by the preprocessor bloqqer [16] and instances solved by the preprocessor alone
were excluded from further analysis. An exception was made for the family Debug where preprocessing turned out to be
infeasible and the family was considered in its unpreprocessed form.

Unlike the other solvers, GhostQ’s input format is not clause-based (QDIMACS) but it is circuit-based. To enable running
GhostQ on the targeted instances, the solver was prepended with a reverse-engineering front-end. This reverse-engineering
performs poorly on the bloqqer’s output, since the original structure is “scrambled” by preprocessing. Hence, GhostQ was
run directly on the instances without preprocessing. The other solvers were run on the preprocessed instances.

The relation between solving times and instances is presented by a cactus plot in Fig. 6; number of solved instances per
family are shown in Table 3; a comparison of RAReQS with other solvers is presented in Table 2.

On the considered benchmarks, RAReQS solved the most instances, approximately 29% more than the solver DepQBF.
RAReQS also turned out to be the best solver for most of the types of the considered instances. Table 2 further shows that
for each of the other solvers, there is only a small portion of instances that the other solver can solve and RAReQS cannot.

In several families the addition of CEGAR learning to GhostQ worsened its performance. However, with the exception of
RobotsD3, the performance was worse only slightly. Overall, GhostQ benefited from the additional CEGAR learning and
in particular for certain families. A family worth noting is irqlkeapclte, where no instances were solved by any of the
solvers except for GhostQ-CEGAR.

The usefulness of CEGAR was in particular demonstrated by the families incrementer-enc., conformant-
planning, trafficlight-controller, Sorting-networks, and BMC where RAReQS solved significantly more in-
stances than the existing solvers and GhostQ-CEGAR improved significantly over GhostQ. Most notably, for incrementer-
encoder only one instance was not solved by RAReQS, and for RobotsD3, blackbox-01X-QBF and trafficlight-
contr. RAReQS solved all instances.

7 Also used for the QBF Gallery 2014 http :/ /qbf .satisfiability.org /gallery/.

http://qbf.satisfiability.org/gallery/

20 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
Table 3
Number of instances solved within 800 seconds by each solver. “Lev” indicates the number of quantifier blocks (min–max) in the family of instances,
post-bloqqer.

Family Lev. RAReQS GhostQ GhostQ-Cegar DepQBF Quantor Nenofex

Adder (28) 3–7 11 2 2 7 5 9
BMC (85) 1–3 73 26 46 45 65 64
Blocks (7) 3–3 7 6 7 7 7 7
Counter (58) 1–125 30 15 11 23 33 15
Debug (38) 3–5 3 0 0 0 24 6
Gent-Rowley (205) 7–81 52 68 68 82 2 0
Lin. Bitvec. Rank. Fun. (60) 3–3 9 0 0 2 0 0
Ling (8) 1–3 8 6 8 8 8 8
Logn (2) 3–3 2 2 2 2 2 2
Mneimneh-Sakallah (163) 1–3 110 150 150 69 3 22
RankingFunctions (4) 2–2 3 0 0 3 0 0
RobotsD3 sample (100) 2–2 100 41 29 97 3 2
Scholl-Becker (55) 1–29 37 43 40 35 32 27
Sorting networks (84) 1–3 72 25 33 52 38 38
Strat. Comp. (samp.) (150) 1–2 107 12 20 108 18 12
blackbox-01X-QBF (320) 2–21 320 142 123 232 3 4
blackbox design (27) 5–9 27 27 27 18 0 0
circuits (63) 1–3 8 4 6 5 9 8
conformant plan. (23) 1–3 17 8 15 11 13 12
evader-pursuer (15) 5–19 10 9 9 10 2 2
fpu (6) 1–3 6 6 6 6 6 6
incrementer-encoder (484) 3–119 483 275 446 285 51 27
irqlkeapclte (45) 2–2 0 0 44 0 0 0
jmc quant (10) 3–3 2 0 0 5 0 1
jmc quant squaring (10) 3–9 0 0 0 4 0 1
terminator sample (150) 2–2 98 104 101 35 25 0
tipdiam (121) 1–3 55 101 93 56 21 14
tipfixpoint sample (150) 1–3 26 130 124 27 5 6
toilet all (136) 1–1 134 133 132 132 135 133
traff.-contr. (samp.) (100) 1–263 100 30 36 83 60 57
uclid (3) 4–6 0 2 2 0 0 0
Eval 2012 (276) 1–142 128 114 137 129 67 64

total 2038 1481 1717 1578 637 547

Table 4
Number of instances solved for non-cnf, non-prenex benchmarks.

RAReQS CirQit GhostQ

semaphore (16) 16 16 16
ring (20) 20 20 20
possibility (120) 106 54 37
assertion (120) 108 56 47
counter (45) 43 42 45
dme (11) 6 11 11
consistency (10) 10 7 2

total (342) 319 206 178

CEGAR learning was also useful in GhostQ on the Evaluation 2012 benchmarks, where GhostQ-CEGAR solved sig-
nificantly more instances than other solvers—this was confirmed by the QBF Gallery 2014 [43].

7.3. Experimental results for non-prenex non-CNF QBF

A prototype of RAReQS-NN (Algorithm 6) was implemented in C++, supporting the qpro format [44], with the underlying
SAT solver minisat2.2 [31]. The whole set of qpro benchmarks from the QBF-LIB was used. The solvers CirQit [10,45]
and GhostQ were used for comparison. A timeout of 800 s was used along with a 2 GB memory limit. Table 4 shows how
many instances were solved by each solver for each of the families of benchmarks. Fig. 7 provides a cactus plot for all the
benchmarks. A more detailed overview can be found on the authors’ website.8 The solvers GhostQ and CirQit behave rather
similarly on the considered benchmarks. RAReQS-NN turned out to be very successful on families assertion and possibility.
In contrast, for the dme family, both CirQit and GhostQ perform significantly better.

8 http :/ /sat .inesc-id .pt /~mikolas /sw /areqs /qpro .html.

http://sat.inesc-id.pt/~mikolas/sw/areqs/qpro.html

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 21
Fig. 7. Cactus plot of non-cnf, non-prenex benchmarks.

8. Related work

CEGAR has proven useful in number of areas, most notably in model checking [20] and SMT solving [32,33]; more re-
cently it has been applied to handle quantification in SMT [46–48]. Special cases of QBF, with limited number of quantifiers,
have been targeted by CEGAR: computing vertex eccentricity [49], and nonmonotonic reasoning [50,51].

A SAT solver was used in [52] to guide DPLL search of a QBF solver and to cut out unsatisfiable branches. A notion of
abstraction was also used in QBF preprocessing [13]. This notion, however, differs from the one used in RAReQS as it means
treating universally quantified variables as existentially quantified.

An important feature of RAReQS is the expansion of the given QBF into a propositional formula, which is then solved by
a SAT solver. Expansion of quantifiers appear in number of solvers. In SAT and QBF preprocessing the technique of variable
elimination [18,12] replaces all clauses containing a certain variable with all their possible resolvents on that variable. This
is in fact existential expansion in disguise. Indeed, expanding ∃x. (φ1 ∨ x) ∧ (φ2 ∨ ¬x) gives us φ1 ∨ φ2 (assuming that φ1, φ2
do not contain x). If the original formula is in CNF, distributing ∨ gives us the result of all resolvents on x. Expansion of
the universal quantifier is also used in preprocessing [11,53].

Several existing solvers tackle QBF solving by expansion. Most notably QUBOS [54], Quantor [8], sKizzo [7] and
Nenofex [9]. Quantor and Nenofex apply expansion of quantifiers inside out and then invoke a SAT solver. While Quan-
tor maintains a CNF matrix by variable elimination, Nenofex operates on an non-CNF representation. sKizzo considers a
Skolemization of the original QBF, which in fact corresponds to expansion of all universal quantifiers and introducing fresh
variable for the existential ones. Specialized techniques are used in order to avoid space explosion. Just as RAReQS uses
multi-games, the above-mentioned solvers employ various techniques to mitigate the blowup of the expansion (besides
preprocessing). QUBOS uses miniscoping, Quantor tree-like prefixes, and Nenofex uses negation normal form.

The way the expansion is carried out in RAReQS is significantly different. The expansion in RAReQS is careful. In the
aforementioned solvers, once a variable is scheduled for expansion, both of its values are considered in the expansion.9 In
contrast, RAReQS only expands by an assignment to a block of variables at a time. This is an important factor for both time
and space complexity. For large formulas, the traditional expansion-based solvers are bound to generate unwieldy formulas
but the use of abstraction in RAReQS enables the solver to stop before this expansion is reached. This leads to generating
easier formulas for the underlying SAT solver and dramatically mitigates the problems with memory blowup. Similar careful
quantifier expansion also appears in SMT solving [48,47] and first order logic [55].

CNF search-based solvers can support non-CNF formulas by working on two representations of the formula: one in DNF
and one in CNF [36,56]. But dedicated solvers also exists [10,35].

Since the publication of the 2-level QBF algorithm (AReQS), several similar approaches were used in specific do-
mains [57–62].

8.1. Comparison to existing approaches

While the experimental results show that CEGAR-based solving gives us an approach that is often more efficient than
the existing ones, it is natural to further explore how the algorithms differ, and, ask if there is a fundamental difference
between them.

One approach how to compare solving algorithms is through proof systems. Q-resolution [28] is the proof system that
corresponds to conflict/solution driven (CSDCL) solving, e.g. as in DepQBF. Expansion was formalized as the proof system
∀Exp + Res [63]; this corresponds directly to RAReQS. Further generalizations of this proof system exist [64]. It has been

9 In Quantor, eliminating a single variable gives worst-case quadratic space increase.

22 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
shown that Q-resolution as well as its variants [65,66] are fundamentally different from expansion-based proof systems.
More particularly, separations were shown in both directions, i.e., there are families of formulas where Q-resolution gives
exponentially larger proofs than ∀Exp + Res but also the other way around [67,68]. Hence, even from a theoretical point of
view, CSDCL solving is fundamentally different from expansion-based solving.

In the remainder of this subsection, we present two example QBF formulas that showcase strengths of RAReQS. In the
first example, we compare RAReQS to the full-expansion algorithm used in Quantor. In the second example, we compare
RAReQS to a generic CSDCL solver.

8.1.1. Comparison to Quantor on a simple example
RAReQS may seem quite similar to expansion-based solvers like Quantor and Nenofex since RAReQS also performs ex-

pansion of quantifiers and subsequently calls a SAT solver. However, there is an important difference, RAReQS performs this
expansion gradually and tests whether such expansion is already sufficient. Note that in the worst case, however, it may
also perform a full expansion of the formula. The following example shows how gradual expansion as done by RAReQS can
be beneficial.

Consider the QBF formula (where ⊕ is the XOR function)

∃ x1 . . . xN︸ ︷︷ ︸
X

∀ z1 . . . zN︸ ︷︷ ︸
Z

∃ s t2 . . . tN︸ ︷︷ ︸
T

. φ

where

φ = tN ∧
(

s ⇔ ∨
i=1...N xi

)
∧ (

t2 ⇔ ((z1 ⊕ z2) ∨ s)
) ∧ ∧

i=3...N

(
ti ⇔ ((ti−1 ⊕ zi) ∨ s)

)
Note that φ can be efficiently converted to CNF without introducing any new variables. The algorithm used by Quantor [8]
has difficulty with this problem. At each step, this algorithm can take one of two actions: eliminate an innermost existential
variable by resolution, or eliminate a universal variable (of the second-to-innermost block) by expansion.

There are two end-game scenarios: (1) all the innermost T variables are eliminated, at which point all Z variables can
be dropped from all clauses by universal reduction, and the result given to a SAT solver, or (2) all universal variables Z are
expanded, at which point the formula is handed off to a SAT solver. Resolving on all the innermost T variables (without
expanding any of the universal variables) requires representing z1 ⊕ . . . ⊕ zN in CNF (without introducing new variables),
which requires space exponential in N . Now let us examine what happens when universal variables get expanded.

Consider what the formula looks like after variables V Z ⊂ Z have been expanded and variables V T ⊂ T have been
resolved. Let Res(ψ, V T) denote the result of eliminating existential variables in V T by resolution, as described in Section 3.1
of [8]. Then the formula has the following form:

∃X .∀(Z � V Z).
∧

π∈BV Z
∃(T � V T). Res

(
φ[π], V T

)
except that it must be converted to prenex form, which entails making 2|V Z | copies of the variables in T � V T . Note that,
for every assignment π to V Z , the formula Res(φ[π], V T) has an actual dependence on Z � V Z and T � V Z i.e., it does not
evaluate to true or false or an expression involving only the X variables. Thus, the size of the formula is at least O (2|V Z |).
So, eliminating all the universal variables would require space O (2N).

On the other hand, to eliminate all the innermost T variables, the algorithm must, as an intermediate step, construct a
formula where |V T | = |T | − 1. In this case, each Res(φ[π], V T) must represent an XOR of at least 1

2 (|V T | − |V Z |) variables
(either {z1, . . . , zi} � V Z or {zi+1, . . . , zN } � V Z , for some i), so it must have size O (2(|V T |−|V Z |)/2), and there are 2|V Z | of
them, so the total size is

O
(
2|V Z | · 2(|V T |−|V Z |)/2) = O

(
2(|V T |+|V Z |)/2) ⊆ O

(
2N/2)

So, regardless of whether all universal variables Z are eliminated or all innermost existential variables T are eliminated, the
full-expansion algorithm requires time and space exponential in N .

In contrast to Quantor, RAReQS solves this QBF quickly. One possible run of the CEGAR algorithm proceeds as follows:

1. Suppose we pick the candidate x1 = . . . = xN = false for the outermost existential block. Under this assignment, φ
simplifies to

tn ∧ (s ⇔ false) ∧ (
t2 ⇔ (z1 ⊕ z2)

) ∧ ∧
i=3...N

(
ti ⇔ (ti−1 ⊕ zi)

)
This formula can evaluate to true only if tn = z1 ⊕ z2 ⊕ . . .⊕ zN and tn = true. Accordingly, any assignment to z1 . . . zN in
which an even number of z variables are true is a winning move for the universal player and a counterexample to the
existential candidate x1 = . . . = xN = false.

2. Now the existential player must pick a candidate for the outermost block in which at least one xi is true. Under this
assignment, φ simplifies to

tn ∧ (s ⇔ true) ∧ (
t2 ⇔ true

) ∧ ∧ (
ti ⇔ true

)

i=3...N

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 23
Fig. 8. Walk-through of Algorithm 4. Indentation corresponds to depth in the call stack.

No universal variables occur in the above formula, so regardless of how the universal zi variables are assigned, a winning
move for the existential player is simply to assign true to all the variables in the innermost block.

Fig. 8 shows in greater detail how the recursive nature of Algorithm 4 (page 9) plays out for this example.

8.1.2. Comparison to CSDCL solver on a simple example
In contrast to RAReQS or Quantor, CSDCL solvers do not expand variables at all. As a consequence they can operate in

polynomial space whereas expansion-based solvers operate in exponential space. The following example exemplifies that
expansion can be beneficial ([67, Sec. 7] gives another example). Consider the QBF formula

∃X ∀z ∃Y . φ, where φ = hard(X) ∧ (
z ? easy1(Y) : easy2(Y)

)
where hard(X) is a hard problem that evaluates to false (such as the pigeon-hole problem with n pigeons and n − 1 holes)
over the X variables and each easyi(Y) is an easy (but not trivial) problem over the Y variables that evaluates to false.

In a traditional CSDCL solver, all outermost existential variables (X) must be assigned a value before the solver can
choose a decision variable from {z} or Y . Furthermore, it is easy to see that no variables from {z} or Y will get forced
during boolean constraint propagation (BCP) by a decision to an X variable. Thus, a traditional CSDCL solver will not finish
until it solves the hard problem.

In contrast, RAReQS, following Algorithm 4, quickly determines that the formula is false by solving the easy problem
without solving the hard problem.

1. RAReQS picks an assignment to X (line 7, with ω = ∅, so α = 1).
2. RAReQS finds a counterexample for z, say z = 0.
3. RAReQS tries to find another candidate for X . Substituting z = 0 into φ yields hard(X) ∧ easy2(Y), which RAReQS gives

to a SAT solver. The SAT solver is able to solve this by just solving the easy problem, and it quickly returns UNSAT.
4. Since the SAT solver returned UNSAT, there is no possible winning move for X , so RAReQS returns NULL, indicating

that the universal player wins.

24 M. Janota et al. / Artificial Intelligence 234 (2016) 1–25
9. Conclusions and future work

This article studies applications of the CEGAR paradigm in the context of QBF solving. It introduces the algorithm RAReQS,
which gradually expands the given formula into a propositional one and applies a SAT solver on it. RAReQS is a recursive
extension of the 2QBF algorithm AReQS, which has since its original publication inspired specialized algorithms for number
of problems in the second level of polynomial hierarchy.

In its workings, RAReQS is close to expansion-based solvers (e.g. Quantor, Nenofex) but with the important difference that
the expansion is done step-by-step, driven by counterexamples. Thus, the solver builds an abstraction of the given formula
by constructing a partial expansion. The downside of this approach is that if in the end a full expansion is needed, then
RAReQS performs the same expansion as a traditional expansion-based solver but with the overhead of intermediate tests.

However, the approach has important advantages. Whenever there is no winning move for the partial expansion, then
there is no winning move for the given formula. This enables RAReQS to quickly stop for formulas with no winning moves.
For formulas for which there is a winning move, RAReQS only needs to build a strong-enough partial expansion whose
winning moves are also likely to be winning moves for the given formula. The experimental results demonstrate the ability
of RAReQS to avoid the inherent memory blowup of expansion solvers, and, that careful expansion outperforms a traditional
DPLL-based approach on a large number of practical instances.

We have shown that abstraction-refinement as used in RAReQS is also applicable within DPLL solvers as an additional
learning mechanism. This provides a more powerful learning technique than standard clause/cube learning, although it
requires more memory. Experimental evaluation indicates that this type of learning is indeed useful for DPLL-based solvers.

In the future we plan to further develop our DPLL solver so that it supports the full range of CEGAR learning exploited
by RAReQS and to investigate how to fine-tune this learning in order to mitigate the speed penalty for the cases where
the learning provides little information over the traditional learning. This can not only be done by better engineering of
the solver but also devising schemata that disable the learning once deemed too costly. Conversely, in the future we plan
to integrate learning techniques into RAReQS. This is likely to be important in formulas with large number of quantifi-
cation levels. Techniques used in other solvers should also be considered. In particular, more aggressive preprocessing as
used in Quantor and techniques for finding commonalities in formulas used in Nenofex, and dependency detection as in
DepQBF [37].

Acknowledgements

This work is partially supported by SFI PI grant BEACON (09/IN.1/I2618), CMU-Portugal grant AMOS (CMUP-EPB/
TIC/0049/2013) and the FCT grant POLARIS (PTDC/EIA-CCO/123051/2010), and multiannual PIDDAC program funds PEst-
OE/EEI/LA0021/2013.

References

[1] H. Kleine Büning, U. Bubeck, Theory of quantified Boolean formulas, in: [71], 2009, pp. 735–760.
[2] M. Benedetti, H. Mangassarian, QBF-based formal verification: experience and perspectives, J. Satisf. Boolean Model. Comput. 5 (1–4) (2008) 133–191.
[3] J. Rintanen, Asymptotically optimal encodings of conformant planning in QBF, in: AAAI Conference on Artificial Intelligence, AAAI Press, 2007,

pp. 1045–1050.
[4] M. Schaefer, C. Umans, Completeness in the polynomial-time hierarchy: a compendium, SIGACT News 33 (3) (2002) 32–49.
[5] E. Giunchiglia, P. Marin, M. Narizzano, Reasoning with quantified Boolean formulas, in: [71], 2009, pp. 761–780.
[6] E. Giunchiglia, P. Marin, M. Narizzano, QuBE 7.0 system description, J. Satisf. Boolean Model. Comput. 7 (2010) 83–88.
[7] M. Benedetti, Evaluating QBFs via symbolic skolemization, in: International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,

LPAR, Springer, 2004, pp. 285–300.
[8] A. Biere, Resolve and expand, in: International Conference on Theory and Applications of Satisfiability Testing, SAT, 2004, pp. 238–246.
[9] F. Lonsing, A. Biere, Nenofex: expanding NNF for QBF solving, in: International Conference on Theory and Applications of Satisfiability Testing, SAT,

Springer, 2008, pp. 196–210.
[10] A. Goultiaeva, F. Bacchus, Exploiting QBF duality on a circuit representation, in: AAAI Conference on Artificial Intelligence, AAAI Press, 2010, pp. 71–76.
[11] U. Bubeck, H. Kleine Büning, Bounded universal expansion for preprocessing QBF, in: International Conference on Theory and Applications of Satisfia-

bility Testing, SAT, 2007, pp. 244–257.
[12] E. Giunchiglia, P. Marin, M. Narizzano, sQueezeBF: an effective preprocessor for QBFs based on equivalence reasoning, in: [69], 2010, pp. 85–98.
[13] F. Lonsing, A. Biere, Failed literal detection for QBF, in: [72], 2011, pp. 259–272.
[14] H. Samulowitz, J. Davies, F. Bacchus, Preprocessing QBF, in: International Conference on Principles and Practice of Constraint Programming, CP, Springer,

2006, pp. 514–529.
[15] H. Samulowitz, F. Bacchus, Binary clause reasoning in QBF, in: International Conference on Theory and Applications of Satisfiability Testing, SAT,

Springer, 2006, pp. 353–367.
[16] A. Biere, F. Lonsing, M. Seidl, Blocked clause elimination for QBF, in: International Conference on Automated Deduction, CADE, 2011, pp. 101–115.
[17] L. Zhang, S. Malik, Conflict driven learning in a quantified Boolean satisfiability solver, in: International Conference on Computer-Aided Design, ICCAD,

2002, pp. 442–449.
[18] G. Pan, M.Y. Vardi, Symbolic decision procedures for QBF, in: International Conference on Principles and Practice of Constraint Programming, CP,

Springer, 2004, pp. 453–467.
[19] M. Benedetti, sKizzo: a suite to evaluate and certify QBFs, in: International Conference on Automated Deduction, CADE, 2005, pp. 369–376.
[20] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, J. ACM 50 (5) (2003)

752–794.
[21] R. Letz, Lemma and model caching in decision procedures for quantified Boolean formulas, in: Automated Reasoning with Analytic Tableaux and

Related Methods, TABLEAUX, 2002, pp. 160–175.

http://refhub.elsevier.com/S0004-3702(16)00011-4/bib42656E6564657474694A5341543038s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib52696E74616E656E414141493037s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib52696E74616E656E414141493037s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib556D616E732D7369676163743032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6769756E636869676C69613230313073797374656Ds1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F6C7061722F42656E6564657474693034s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F6C7061722F42656E6564657474693034s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F42696572653034s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F4C6F6E73696E67423038s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F4C6F6E73696E67423038s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F616161692F476F756C746961657661423130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F42756265636B423037s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F42756265636B423037s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F63702F53616D756C6F7769747A44423036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F63702F53616D756C6F7769747A44423036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F53616D756C6F7769747A423036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F53616D756C6F7769747A423036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F636164652F42696572654C533131s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F69636361642F5A68616E674D3032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F69636361642F5A68616E674D3032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib50616E56617264692D43503034s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib50616E56617264692D43503034s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F636164652F42656E6564657474693035s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F6A61636D2F436C61726B65474A4C563033s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F6A61636D2F436C61726B65474A4C563033s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6C65747A2D7461626C656175783032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6C65747A2D7461626C656175783032s1

M. Janota et al. / Artificial Intelligence 234 (2016) 1–25 25
[22] M. Janota, J. Marques-Silva, Abstraction-based algorithm for 2QBF, in: [72], 2011, pp. 230–244.
[23] M. Janota, W. Klieber, J. Marques-Silva, E.M. Clarke, Solving QBF with counterexample guided refinement, in: International Conference on Theory and

Applications of Satisfiability Testing, SAT, 2012, pp. 114–128.
[24] G.S. Tseitin, On the complexity of derivation in propositional calculus, Stud. Constr. Math. Math. Log. 2 (1970) 115–125.
[25] D.A. Plaisted, S. Greenbaum, A structure-preserving clause form translation, J. Symb. Comput. 2 (3) (1986) 293–304.
[26] C.H. Papadimitriou, Computational Complexity, Addison–Wesley, 1994.
[27] N. Narodytska, A. Legg, F. Bacchus, L. Ryzhyk, A. Walker, Solving games without controllable predecessor, in: Computer Aided Verification, CAV, Springer,

2014, pp. 533–540.
[28] H. Kleine Büning, M. Karpinski, A. Flögel, Resolution for quantified Boolean formulas, Inf. Comput. 117 (1) (1995) 12–18.
[29] C.M. Li, F. Manyà, MaxSAT, hard and soft constraints, in: [71], 2009, pp. 613–631.
[30] E.D. Rosa, E. Giunchiglia, M. Maratea, Solving satisfiability problems with preferences, Constraints 15 (4) (2010) 485–515.
[31] N. Eén, N. Sörensson, An extensible SAT-solver, in: [73], 2003, pp. 502–518.
[32] L.M. de Moura, H. Rueß, M. Sorea, Lazy theorem proving for bounded model checking over infinite domains, in: International Conference on Automated

Deduction, CADE, Springer, 2002, pp. 438–455.
[33] C.W. Barrett, D.L. Dill, A. Stump, Checking satisfiability of first-order formulas by incremental translation to SAT, in: Computer Aided Verification, CAV,

Springer-Verlag, 2002, pp. 236–249.
[34] M. Cadoli, A. Giovanardi, M. Schaerf, An algorithm to evaluate quantified Boolean formulae, in: National Conference on Artificial Intelligence, John

Wiley & Sons Ltd, 1998, pp. 262–267.
[35] W. Klieber, Formal verification using quantified Boolean formulas (QBF), Ph.D. thesis, Carnegie Mellon University, 2014, http://www.cs.cmu.edu/

~wklieber/thesis.pdf.
[36] L. Zhang, Solving QBF by combining conjunctive and disjunctive normal forms, in: AAAI Conference on Artificial Intelligence, AAAI Press, 2006,

pp. 143–150.
[37] F. Lonsing, A. Biere, DepQBF: a dependency-aware QBF solver, J. Satisf. Boolean Model. Comput. 7 (2–3) (2010) 71–76.
[38] QBF-library, The quantified Boolean formulas satisfiability library, http://www.qbflib.org/, 2010.
[39] QBF-evaluation, QBF solver evaluation portal, http://www.qbflib.org/index_eval.php, 2010.
[40] M. Janota, G. Botterweck, R. Grigore, J. Marques-Silva, How to complete an interactive configuration process?, in: International Conference on Current

Trends in Theory and Practice of Computer Science, SOFSEM, Springer, 2010, pp. 528–539.
[41] C. Umans, The minimum equivalent DNF problem and shortest implicants, J. Comput. Syst. Sci. 63 (4) (2001) 597–611.
[42] W. Klieber, S. Sapra, S. Gao, E.M. Clarke, A non-prenex, non-clausal QBF solver with game-state learning, in: [69], 2010, pp. 128–142.
[43] F. Lonsing, M. Seidl, A. Van Gelder, The QBF gallery: behind the scenes, CoRR, arXiv:1508.01045.
[44] M. Seidl, The qpro input format, available at http://qbf.satisfiability.org/gallery/qpro.pdf, 2009.
[45] A. Goultiaeva, F. Bacchus, Exploiting circuit representations in QBF solving, in: [69], 2010, pp. 333–339.
[46] C.M. Wintersteiger, Y. Hamadi, L.M. de Moura, Efficiently solving quantified bit-vector formulas, in: Formal Methods in Computer-Aided Design, FMCAD,

IEEE, 2010, pp. 239–246.
[47] C.M. Wintersteiger, Y. Hamadi, L.M. de Moura, Efficiently solving quantified bit-vector formulas, Form. Methods Syst. Des. 42 (1) (2013) 3–23.
[48] D. Monniaux, Quantifier elimination by lazy model enumeration, in: Computer Aided Verification, CAV, 2010, pp. 585–599.
[49] M.N. Mneimneh, K.A. Sakallah, Computing vertex eccentricity in exponentially large graphs: QBF formulation and solution, in: [73], 2003, pp. 411–425.
[50] B. Browning, A. Remshagen, A SAT-based solver for Q-ALL SAT, in: ACM Southeast Regional Conference, ACM, 2006, pp. 30–33.
[51] M. Janota, R. Grigore, J. Marques-Silva, Counterexample guided abstraction refinement algorithm for propositional circumscription, in: European Con-

ference on Logics in Artificial Intelligence, JELIA, 2010, pp. 195–207.
[52] H. Samulowitz, F. Bacchus, Using SAT in QBF, in: International Conference on Principles and Practice of Constraint Programming, CP, Springer, 2005,

pp. 578–592.
[53] U. Bubeck, Model-based transformations for quantified Boolean formulas, Ph.D. thesis, University of Paderborn, 2010.
[54] A. Ayari, D.A. Basin, QUBOS: deciding quantified Boolean logic using propositional satisfiability solvers, in: Formal Methods in Computer-Aided Design,

FMCAD, Springer, 2002, pp. 187–201.
[55] K. Korovin, Instantiation-based automated reasoning: from theory to practice, in: International Conference on Automated Deduction, CADE, Springer,

2009, pp. 163–166.
[56] A. Goultiaeva, M. Seidl, A. Biere, Bridging the gap between dual propagation and CNF-based QBF solving, in: Design, Automation & Test in Europe,

DATE, EDA Consortium, 2013, pp. 811–814.
[57] W. Dvořák, M. Järvisalo, J.P. Wallner, S. Woltran, Complexity-sensitive decision procedures for abstract argumentation, in: International Conference on

Principles of Knowledge Representation and Reasoning, KR, AAAI Press, 2012, pp. 54–64.
[58] H. Chen, M. Janota, J. Marques-Silva, QBF-based Boolean function bi-decomposition, in: Design, Automation & Test in Europe, DATE, IEEE, 2012,

pp. 816–819.
[59] A. Morgenstern, M. Gesell, K. Schneider, Solving games using incremental induction, in: Integrated Formal Methods, IFM, Springer, 2013, pp. 177–191.
[60] C. Jordan, Ł. Kaiser, Experiments with reduction finding, in: [70], 2013, pp. 192–207.
[61] A. Ignatiev, M. Janota, J. Marques-Silva, Quantified maximum satisfiability: a core-guided approach, in: [70], 2013, pp. 250–266.
[62] S. Jo, T. Matsumoto, M. Fujita, SAT-based automatic rectification and debugging of combinational circuits with LUT insertions, in: Asian Test Symposium,

IEEE Computer Society, 2012, pp. 19–24.
[63] M. Janota, J. Marques-Silva, On propositional QBF expansions and Q-resolution, in: [70], 2013, pp. 67–82.
[64] O. Beyersdorff, L. Chew, M. Janota, On unification of QBF resolution-based calculi, in: Mathematical Foundations of Computer Science, MFCS, Springer,

2014, pp. 81–93.
[65] A. Van Gelder, Contributions to the theory of practical quantified Boolean formula solving, in: International Conference on Principles and Practice of

Constraint Programming, CP, Springer, 2012, pp. 647–663.
[66] V. Balabanov, J.-H.R. Jiang, Unified QBF certification and its applications, Form. Methods Syst. Des. 41 (1) (2012) 45–65.
[67] M. Janota, J. Marques-Silva, Expansion-based QBF solving versus Q-resolution, Theor. Comput. Sci. 577 (2015) 25–42.
[68] O. Beyersdorff, L. Chew, M. Janota, Proof complexity of resolution-based QBF calculi, in: International Symposium on Theoretical Aspects of Computer

Science, STACS, 2015, pp. 76–89.
[69] SAT10, International Conference on Theory and Applications of Satisfiability Testing, SAT, Springer, 2010.
[70] SAT13, International Conference on Theory and Applications of Satisfiability Testing, SAT, Springer, 2013.
[71] Handbook of Satisfiability, vol. 185, IOS Press, 2009.
[72] SAT11, International Conference on Theory and Applications of Satisfiability Testing, SAT, Springer, 2011.
[73] SAT03, International Conference on Theory and Applications of Satisfiability Testing, SAT, Springer, 2003.

http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74612D5341543132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74612D5341543132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib5473656974696E3638s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F6A73632F506C616973746564473836s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A626F6F6B732F6461676C69622F30303732343133s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6E61726F647974736B612D6361763134s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6E61726F647974736B612D6361763134s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F69616E64632F42756E696E674B463935s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F636F6E73747261696E74732F526F7361474D3130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F636164652F4D6F75726152533032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F636164652F4D6F75726152533032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib426172726574743A32303032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib426172726574743A32303032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6361646F6C6931393938616C676F726974686Ds1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6361646F6C6931393938616C676F726974686Ds1
http://www.cs.cmu.edu/~wklieber/thesis.pdf
http://www.cs.cmu.edu/~wklieber/thesis.pdf
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F616161692F5A68616E673036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F616161692F5A68616E673036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F6A7361742F4C6F6E73696E67423130s1
http://www.qbflib.org/
http://www.qbflib.org/index_eval.php
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74614574416C31302D534F4653454Ds1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74614574416C31302D534F4653454Ds1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F6A6373732F556D616E733031s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6C6F6E73696E672D61727869763135s1
http://qbf.satisfiability.org/gallery/qpro.pdf
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F666D6361642F57696E74657273746569676572484D3130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F666D6361642F57696E74657273746569676572484D3130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A6A6F75726E616C732F666D73642F57696E74657273746569676572484D3133s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F6361762F4D6F6E6E696175783130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F41434D73652F42726F776E696E67523036s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74614574416C31302D4A454C4941s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74614574416C31302D4A454C4941s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F63702F53616D756C6F7769747A423035s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F63702F53616D756C6F7769747A423035s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A7068642F64652F42756265636B32303130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F666D6361642F4179617269423032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F666D6361642F4179617269423032s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4B6F726F76696E434144453039s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4B6F726F76696E434144453039s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib476F756C7469616576612D444154453133s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib476F756C7469616576612D444154453133s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F6B722F44766F72616B4A57573132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F6B722F44766F72616B4A57573132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F646174652F4368656E4A4D3132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F646174652F4368656E4A4D3132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F69666D2F4D6F7267656E737465726E47533133s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A6F4574416C4154533132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A6F4574416C4154533132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4D4643533134s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4D4643533134s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib47656C64657243503132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib47656C64657243503132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib42616C6162616E6F76464D53443132s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib6A616E6F74612D7463733135s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74612D73746163733135s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib4A616E6F74612D73746163733135s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F32303130s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F32303133s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A7365726965732F666169612F323030392D313835s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F32303131s1
http://refhub.elsevier.com/S0004-3702(16)00011-4/bib44424C503A636F6E662F7361742F32303033s1

	Solving QBF with counterexample guided reﬁnement
	1 Introduction
	2 Preliminaries
	2.1 Game-centric view

	3 2-level QBF
	3.1 Properties
	3.2 Solving 2-level quantiﬁcation with CNF matrices
	3.3 Heuristics

	4 Prenex QBF with arbitrary number of quantiﬁcation levels
	4.1 Improving recursive CEGAR-based algorithm
	4.2 Properties of the algorithms
	4.3 Implementation details

	5 Non-CNF, non-prenex QBF
	5.1 Abstraction
	5.2 Winning move test

	6 CEGAR as a learning technique in DPLL
	6.1 Ghost variables and sequent learning
	6.2 DPLL for 2-level QBF
	6.3 DPLL for QBF with arbitrary quantiﬁcation levels

	7 Experimental results
	7.1 Experimental results for 2-level QCNF
	7.2 Experimental results for PQCNF
	7.3 Experimental results for non-prenex non-CNF QBF

	8 Related work
	8.1 Comparison to existing approaches
	8.1.1 Comparison to Quantor on a simple example
	8.1.2 Comparison to CSDCL solver on a simple example

	9 Conclusions and future work
	Acknowledgements
	References

