[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994 401

Symbolic Model Checking for
Sequential Circuit Verification

Jerry R. Burch, Member, IEEE, Edmund M. Clarke, Member, IEEE, David E. Long, Member. [EEE,
Kenneth L. McMillan, and David L. Dill, Member, IEEE

Abstract— The temporal logic model checking algorithm of
Clarke, Emerson, and Sistla [17] is modified to represent state
graphs using binary decision diagrams (BDD’s) [7] and partitioned
transition relations [10], [11]. Because this representation captures
some of the regularity in the state space of circuits with data
path logic, we are able to verify circuits with an extremely
large number of states. We demonstrate this new technique on
a synchronous pipelined design with approximately 5 x 1020
states. Our model checking algorithm handles full CTL with
fairness constraints. Consequently, we are able to express a
number of important liveness and fairness properties, which
would otherwise not be expressible in CTL. We give empirical
results on the performance of the algorithm applied to both
synchronous and asynchronous circuits with data path logic.

[. INTRODUCTION

UGS FOUND late in the design phase of a digital circuit

are a major cause of unexpected delays in realizing the
circuit in hardware. As a result, interest in formal verification
techniques for hardware designs has been growing. A number
of different methods have been proposed, but nearly all can
be classified in terms of the natural division between the
data paths and the controlling circuitry in digital circuits. The
most successful methods to date for verifying data path logic
treat only functional behavior, without considering sequential
behavior. These methods are frequently based on the use
of automatic theorem provers or proof checkers and may
require considerable assistance from the user in constructing a
correctness proof. In conirast, the most effective techniques for
reasoning about sequential behavior usually require a complete
exploration of the state space of the circuit [6], [21], [25].
The state exploration techniques are attractive because they
are highly automatic: the user simply provides a description
of the circuit implementation and its specification; the system
does the rest. In the case of a single controller, the approach
is often quite practical, since the number of states tends not to
be excessive. The approach has not been very useful with data
paths, however, since the number of states is almost always too
large to permit explicit enumeration. In order to reason about

Manuscript received June 22, 1992; revised October 18, 1993. This work
was supported by the Defense Advanced Research Projects Agency (bOD),
under ARPA Order 4976; the U. S. Air Force under Contract F33615-90-
C-1465, ARPA Order 7597; the National Science Foundation under Contract
CCR-8722633 and under Contract MIP-8858807; the Semiconductor Research
Corporation under Contract 92-DJ-294; an AT&T Bell Laboratories Scholar-
ship; and a CIS Seed Research Grant, Stanford University. This paper was
recommended by Associate Editor K. Keutzer.

The authors are with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213.

IEEE Log Number 9214313,

the complex interaction between controllers and data paths we
need techniques that are able to handle both types of circuits.
Developing such techniques has proven to be a very difficult
problem. However, the regularity of data path designs provides
some reason to believe that their state graphs, while large, will
often have a relatively simple structure. Consequently, it may
be possible to find a concise representation that exploits the
uniformity of the state space and depends in size more on
the inherent complexity of the data path logic than simply the
number of states it determines.

In this paper, we show how temporal logic model checking
[12]-{14], [16], [17] and reachability analysis algorithms
can modified to represent state graphs using binary decision
diagrams (BDD’s) [7]. Because this representation captures
some of the regularity in the state space determined by
sequential circuits, we are able to verify sequential circuits
with an extremely large number of states. The algorithms
are based on computing fixed points of functions, called
predicate transformers, that map sets of states to sets of states.
The predicate transformers are used to describe properties
of circuits and are derived from the transition relations of
the circuits. Both state sets and predicate transformers are
represented with BDD’s. Thus, we are able to avoid explicitly
constructing the state graph of the circuit. We have tested
the performance of the algorithms on both synchronous and
asynchronous circuits with data path logic. We were able
to verify a pipelined ALU with over 10'?° states and an
asynchronous stack with over 10°° states. More importantly,
for the classes of circuits that we verified, the CPU time
required increased as a small polynomial in the number
of components of the circuit. These results provide strong
evidence of the scalability of our methods.

1.1. Contributions

The major contributions of this paper are as follows.

1. A BDD-based algorithm for CTL model checking with
fairness constraints.

2. A description of disjunctive partitioned transition re-
lations and conjunctive partitioned transition relations.
With these methods, computing the transition relation of
a circuit never limits the size of the circuits that can be
verified.

3. A modified breadth first search algorithm to speed up
reachability analysis for circuits represented with dis-
junctive partitioned transition relations.

0278-0070/94%04.00 © 1994 IEEE

402 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

4. A thorough empirical study of the asymptotic complexity
of our methods using several substantial examples.

5. General techniques for improving the efficiency of veri-
fication methods based on reachability analysis by view-
ing such verification as automatically constructing and
checking an invariant.

Several of the above contributions are full length descrip-

tions of results the current authors first described in the
conference literature [10]-[14].

1.2. Related Work

There are a number of approaches for verifying sequential
circuits by state exploration techniques. Not long after Bryant
described BDD’s (7], several groups began adapting state
exploration algorithms for use with BDD’s.

Coudert, Berthet, and Madre developed a method for show-
ing equivalence between two deterministic finite automata
[18]. Given two automata, they perform a breadth first search
of the state space of the product automata. BDD’s are used
to represent sets of states and the possible transitions of the
automata. For the latter, a transition function vector is used.
This is a vector of BDD’s, one for each state bit, that represents
the next state logic of the circuit. Cho er al. [15] discuss a
similar technique.

Several groups have independently applied BDD’s to CTL
model checking [16], [17]. Burch, Clarke, McMillan and Dill
[12] have developed a symbolic CTL model checker that
uses transition relations to represent the circuit being verified.
Coudert et al. [20] and Bose and Fisher [3] have described
BDD-based algorithms for CTL model checking that use
transition function vectors for this purpose. Since all three
of these verification techniques are based on CTL, they are
able to handle specifications that include unbounded liveness
properties. Such specifications cannot be handled by other
symbolic techniques for sequential circuit verification such as
those described by Bryant and Seger [9], Bose and Fisher [2],
and Coudert er al. [18]. In addition, the algorithm of Burch
et al. permits arbitrary CTL formulas to be used as fairness
constraints [17].

A serious limitation of the approaches that use transition
function vectors, as opposed to transition relations, is that
they cannot model nondeterministic systems in a natural
way. When modeling systems for verification, there are two
major sources of nondeterminism. First, nondeterminism can
occeur because of concurrency in the underlying circuit (as
is the case in most asynchronous circuit models). Second,
nondeterminism arises when abstraction is used to simplify
reasoning about some part of the circuit. Because abstraction
may hide part of the state of circuit, a transition may appear
nondeterministic even though it was originally deterministic.
As an example of these two situations, consider the cache
coherency protocol for the Encore Gigamax that McMil-
lan has investigated [29]-[31]. The protocol was designed
for a shared memory multiprocessor organized as a series
of buses connected by an asynchronous hierarchical routing
network. The caches on each bus are kept consistent using
bus snooping, while a complex message passing protocol

is used to ensure consistency between caches on different
buses. McMillan modeled the system as an asynchronous
composition of synchronous finite state machines. He also used
abstraction to simplify the verification, which made the model
even more nondeterministic. For example, McMillan did not
precisely model the cache replacement mechanism. When
modeling asynchronous systems or using abstraction, it is often
necessary to use fairness constraints to make accurate models.
For example, fairness constraints are required to describe a
gate with an arbitrary but finite delay.

If a single BDD is used to represent a transition relation,
the size of the BDD can become a bottleneck. This problem
can be solved for asynchronous circuits by representing the
transition relation as an implicit disjunction of BDD’s [12],
a technique we now call disjunctive partitioned transition
relations. Adapting this technique to synchronous circuits
requires conjunctive partitioned transition relations. Touati
et al. [34] and Burch, Clarke, and Long [10], [11] developed
methods for computing an image of a conjunctive partitioned
transition relation (the latter method is described in Section
V). The efficiency of both techniques derives from early
quantification of state variables. We believe that our technique
often allows more early quantification, and so is more effi-
cient. The available empirical results support this conclusion,
although more experimentation is necessary before a definitive
conclusion can be reached. A detailed comparison of the two
methods is presented in Section IX.

Bryant, Seger, and Beatty [8], [9] have developed an al-
gorithm based on symbolic simulation for model checking
in a restricted linear time logic. A specification consists of
preconditions and postconditions expressed in the logic. The
preconditions are used to restrict inputs and initial states of
the circuit; the postcondition gives the property that the user
wishes to check. Formulas in the logic have the form

po AXp1 AXZpa A AX oy A X pp.

Note that the syntax of the formulas is highly restricted
compared to most other temporal logics used for specifying
programs and circuits. In particular, the only logical operator
that is allowed is conjunction, and the only temporal oper-
ator is next time (X). However, the logic is still applicable
to many of the hardware systems that appear in practice.
Bose and Fisher [2] use similar techniques to verify pipeline
circuits with respect to a simpler abstract model by means
of a representation function, in analogy to abstract data type
verification. By limiting the class of formulas that they handle,
these techniques can check certain properties very efficiently.
However, these restrictions are also a disadvantage compared
to general model checking algorithms. The number of time
units that a formula can “look ahead in the future” is bounded
by the maximum nesting of X operators. There is no analog of
the until operator that can look arbitrarily far into the future.
Consequently, the logic is not really suitable for reasoning
about nondeterministic systems. For example, at high levels
of abstraction, computations are often modeled as taking an
arbitrary but finite number of steps. It is not possible to verify
that such a system will make progress using only the X
operator.

BURCH er al: SEQUENTIAL CIRCUIT VERIFICATION

It is difficult to accurately compare the performance of all
of the symbolic verification methods. We believe that the best
comparison technique is to study how the CPU time required
for verification grows asymptotically with larger and larger
instances of a class of circuits. For all of the example circuits
we have tried with our methods, this growth rate is a small
polynomial in the number of components of the circuit, Of
the other groups mentioned above, only Bryant, Beatty, and
Seger [8] have demonstrated good asymptotic performance
on a nontrivial class of circuits. Berthet, Coudert, and Madre
[1] did demonstrate verification times that were sublinear in
the number of states in the system, but these times were still
exponential in the number of components.

The remainder of the paper is organized as follows. After
reviewing BDD's in Section II, we show how to use BDD’s
to represent circuits in Section III. We describe algorithms
for finding reachable states and computing relational products
in Sections IV and V, respectively. Symbolic algorithms for
CTL model checking are described in Section VI. Empirical
results are given for synchronous circuits in Section VII and
for asynchronous circuits in Section VIII. We close with some
discussion in Section IX.

II. BINARY DECISION DIAGRAMS

Ordered binary decision diagrams (BDD’s) are a canonical
form representation for boolean formulas [7]. They are often
substantially more compact than traditional normal forms such
as conjunctive normal form and disjunctive normal form,
and they can be manipulated very efficiently. Hence, they
have become widely used for a variety of CAD applications,
including symbolic simulation, verification of combinational
logic and, more recently, verification of sequential circuits.
A BDD is similar to a binary decision tree, except that
its structure is a directed acyclic graph rather than a tree,
and there is a strict total order placed on the occurrence of
variables as one traverses the graph from root to leaf. Consider,
for example, the BDD of Fig. 1. It represents the formula
(a A D)V (cAd), using the variable ordering a < b < ¢ < d.
Given an assignment of boolean values to the variables a, b, c,
and d, one can decide whether the assignment makes the
formula true by traversing the graph beginning at the root
and branching at each node based on the value assigned to
the variable that labels the node. For example, the assignment
(@~ 1,b+— 0,c — 1,d « 1) leads to a leaf node labeled 1,
hence the formula is true for this assignment.

Bryant showed that given a variable ordering, there is a
canonical BDD for every formula [7]. The size of the BDD
can depend critically on the variable ordering. Bryant gives
algorithms for computing the BDD representations of - f and
f Vg given the BDD’s for formulas f and g. These algorithms
have complexity linear in the product of the sizes of the
argument BDD’s. The only other operations which we require
for the algorithms that follow are quantification over boolean
variables and substitution of variable names. Bryant gives an
algorithm for computing the BDD for a restricted formula of
the form f|y=¢ or f|y=1, Le., [with the variable v set to 0
or 1. The restriction algorithm allows us to compute the BDD

403

0 1

A binary decision diagram.

Fig. 1.

for the formula Ju[f], where v is a boolean variable and f is
a formula, as f |,—o V f|u=1. The substitution of a variable
w for a variable v in a formula f, denoted f(v «— w) can be
accomplished using quantification:

flv—w)=F[(vew)A f].

More efficient algorithms are possible, however, for the case of
quantification over multiple variables, or multiple renamings.
In the latter case, efficiency depends on the ordering of
variables in the BDD’s being the same on both sides of the
substitution.

Another way to view BDD’s is as a form of deterministic
finite automata. An n-argument boolean function can be identi-
fied with the set of strings in {0,1}™ that evaluate to 1. Since
this is a finite language and all finite languages are regular,
there is a minimal finite automaton that accepts this set. This
automaton provides a canonical representation for the original
boolean function. Logical operations on boolean functions can
be implemented by set operations on the languages accepted
by the finite automata. For example, AND corresponds to set
intersection. Standard constructions from elementary automata
theory can be used to compute these operations on languages.
The standard BDD operations can be viewed as analogs of
these constructions.

III. REPRESENTING CIRCUITS

We begin by describing how to represent circuits symbol-
ically. This involves representing sets of circuit states and
deriving the transition relation of the circuit. Consider a circuit
with a set V' of state holding nodes. For a synchronous circuit,
the set V' is typically the outputs of all the registers in the
circuit together with the primary inputs. In the case of an

404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4. APRIL 1994

asynchronous circuit, V' is usually the set of all nodes. A state
of the circuit can be described by giving values for all the
nodes in V. Alternatively, if we create a boolean variable for
each node in V, then a state can be described by a valuation
assigning either 0 or 1 to each variable. Given a valuation,
we can also write a boolean expression which is true for
exactly that valuation. For example, given V = {vg,vl,vz}
and the valuation {vg « 1,v; « 1,vs « 0), we derive the
boolean formula vg A v; A —w». This boolean formula can then
be represented using a BDD. In general, a boolean formula
may be true for many different valuations. If we adopt the
convention that a formula represents the set of all valuations
that make it true, then we can describe sets of states by boolean
formulas and, hence, by BDD’s. In practice, BDD's are often
much more efficient than representing sets of states explicitly.
We denote sets of states with the letter .S, and we denote the
BDD representing the set S by S(V'), where V is the set of
variables that the BDD may depend on.

In addition to representing sets of states of a circuit, we
must be able to represent the transitions that the circuit can
make. To do this, we extend the idea used above. Instead of
just representing a set of states using a BDD, we represent a
* set of ordered pairs of states. We cannot do this using just a
single copy of the state variables, so we create a second set
of variables V'. We think of the variables in V as present
state variables and the variables in V' as next state variables.
Each variable v in V' has a corresponding next state variable
in V’, which we denote by v’. A valuation for the variables
in V and V' can be viewed as designating an ordered pair
of states in the circuit, and we can represent sets of these
valuations using BDD’s as above. We refer to sets of pairs
of states as transition relations. If IV is a transition relation,
then we write N(V, V") to denote the BDD that represents it.
We always use an ordering for the BDD variables for which
the present and next state variables are interleaved and every
present state variable v is adjacent to its corresponding next
state variable v'.

3.1. Synchronous Circuits

The method for deriving the transition relation of a syn-
chronous circuit can be illustrated using a small example.
The circuit in Fig. 2 is a modulo 8 counter. Let V =
{vo,v1,v2} be the set of state variables for this circuit, and let
V" = {vy,v},v5} be another copy of the state variables. The
transitions of the modulo 8 counter are given by

’U,D G0 -1'1]0!
'Ui =vp Dy,
vy =(vo Av1) @ va.
The above equations can be used to define the relations
No(V. V') = (vp & —vo),
N(V, V') = (v} & vo @ v1),
No(V. V') = (vh & (vo A) © va), (nH

which describe the constraints each v/ must satisfy in a legal
transition. These constraints can be combined by taking their

L

1

[

Fig. 2. Synchronous modulo 8 counter.

conjunction to form the transition relation
N(V,V') = No(V, V') A N1 (V, V') A No(V, V7).

In the general case of a synchronous circuit with n state
holding nodes, we let V' = {vg, - ,vn—1} and V' =
{vg, -+, v},_1}. Analogous to the modulo 8 counter, for each
state variable v} there is a function f; such that

vi = fi(V).
These equations are used to define the relations
N:(V,V') = (v} & fi(V)).

Continuing the analogy with the modulo 8 counter, the con-
junction of these relations forms the transition relation

NWV, V') = No(V, VYA -+ A Npy(V, V7).

Thus, the transition relation for a synchronous circuit can be
expressed as a conjunction of relations.

Given a BDD for each function f;, it is straightforward
to compute the BDD that represents N. We say such a
transition relation is monolithic because it is represented by
a single BDD. Monolithic transition relations have been used
successfully for CTL model checking [12], but the primary
bottleneck is the size of the BDD for the transition relation.

3.2. Asynchronous Circuits

As with synchronous circuits, the transition relation for an
asynchronous circuit can be expressed as a conjunction of
relations. Alternatively, it can be expressed as a disjunction.
To simplify the description of how these forms of transition
relations are obtained, we assume that all the components of

BURCH et al.: SEQUENTIAL CIRCUIT VERIFICATION

the circuit have exactly one output, and have no internal state
variables. In this case, it is possible to completely describe
each component by a function fi(V): given values for the
present state variables V, the component drives its output to
the value specified by f;(V). For some components, such as
C-elements and flip-flops, the function f;(V') may depend on
the current value of the output of the component, as well as
the inputs. Extending the method to handle components with
multiple outputs is straightforward.

In speed-independent asynchronous circuits, there can be
an arbitrary delay between when a transition is enabled and
when it actually occurs. We can model this by allowing
each component to nondeterministically choose whether to
transition its output. This results in a conjunction of n parts,
all of the form

NV, V') = (v & L)V (0]).

The above model for asynchronous circuits allows wires to
transition concurrently. We can also use an interleaving model,
which allows only one wire to transition at a time. First, we
apply the distributive law to the conjunction of the N;, giving
a disjunction of 2" terms. Each of these terms corresponds to
the simultaneous transitioning of some subset of the n wires in
the circuit. Second, we keep only those terms that correspond
to exactly one wire being allowed to transition. This results in
a disjunction of the form

N(V, V’) = Ny(V, V') VooV N (V V’),
where

N:(V, V') = (vl & fi(V)) A /\ (U_’,; < ;).
j#i
It is possible for an interleaving model of an asynchronous
circuit to give a different set of reachable states than a non-
interleaving model. However, this does not occur for the
asynchronous circuits we verified in Section VIIL.

3.3. Partitioned Transition Relations

Monolithic transition relations are not the most efficient way
to represent the possible transitions of a circuit. Recall that the
transition relations for synchronous and asynchronous circuits
have the form of conjunctions or disjunctions of a number
of pieces N;(V,V’). Each of these picces can typically be
represented by a small BDD. In our experience, these BDD’s
usually have fewer than 100 nodes, often many fewer; only
very rarely do they have more than 1000 nodes. Instead of
forming the conjunction or disjunction of the NV, V"), we
can represent the circuit by a list of these BDD’s, which
are implicitly conjuncted or disjuncted. We call such a list
a partitioned transition relation [10], [11].

For the conjunctive transition relations described above, the
N; could be of the form

N;(V, V') = (v} & fi(V))
for synchronous circuits or

NiV, V') = (o) & FiV)) V (v)

405

for asynchronous circuits, where f; is a transition function. It
can be shown that the size of the BDD for each N; is at most
a constant factor larger than the BDD for f;. In practice, the
difference in size is insignificant. Effectively, using partitioned
transition relations to represent a circuit requires no more BDD
nodes than using transition functions.

For the disjunctive transition relations described above, the
N; could be of the form

NV, V') = (0] & (VA N () & ;).
J#i

In this case the BDD for NV; is not guaranteed to be only a
constant factor larger than the BDD for f;; it could be a factor
of n larger, where n is the number of state variables of the
entire circuit. However, there is an additional technique for
efficiently representing relations of this form. Let

RV, V') = v, & fi(V).

Use the pair (R(V,V’),i) to represent N;(V) with the inter-
pretation that for all v; € V', if j = i then v’ is constrained by
R(V, V"), otherwise v} is constrained to be equal to v;. Our
software for manipulating transition relations has been adapted
to take advantage of this representation.

While a partitioned transition relation with one BDD for
each state variable is almost always more efficient than con-
structing a monolithic transition relation, it may not be the
best choice. As long as the BDD’s do not become too large,
it is better to combine some of the N;(V,V’) into one BDD
by forming their conjunction or disjunction, as appropriate.
Fewer BDD nodes may be needed in this representation if the
N; that are combined have similar structure near the root of
their BDD’s. Combining some of the BDD’s in a partitioned
transition can also speed up the algorithms for model checking
and reachability analysis (see Section V).

IV. FINDING REACHABLE STATES

Many of the ideas used in symbolic verification can be
explained by considering the problem of computing reachable
state sets, since reachable state computations are at the heart of
model checking, state machine comparison, etc. Let Sg be a set
of states, represented by the BDD Sg(V'). We wish to compute
a BDD S(V) that represents the states reachable from Sp via
the transitions in the transition relation N. We first consider
the problem of finding those states Sy reachable in at most
one step from Sp. This set of states is given by

8, = SouU{s'|3s[s € So A(s,5") € N|}.

Given the BDD’s Sg(V) and N(V, V'), we can compute a
BDD representing 51 by performing the logical operations
corresponding to the above expression:

S1(V') = So(V') v = [So(V) A N(V, V)]
veV

(The existential quantifier notation above indicates the exis-
tential quantification of all variables » in V.) Similarly, those

406 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

states reachable in at most two steps are represented by

5(V') = So(V') v - [S2:(V) A N(V, V)]
veV
In general, the states reachable in at most k + 1 steps are
represented by

Sk (V') = So(V) v] [Se(V) ANV, V).
veV

Note that each set of states is a superset of the previous one.
Since the total number of states is finite, at some point we
must have Sy, = Sk. No further states are reachable, so the
set of all reachable states is represented by S(V) = Si(V).

The above computation can be viewed as finding a least
Jixed point. A fixed point of a function f is some value = such
that f(z) = z. If we have an ordering on values, and z is the
smallest fixed point under the order, then z is the least fixed
point of f. The greatest fixed point is analogously defined.
The functions that we will be interested in are functions from
sets of states to sets of states. We call such a function a
predicate transformer. We will use set containment as the
ordering between sets of states. A predicate transformer F
is monotonic if S C S implies F(S) C F(S'). A basic
result of fixed point theory is that monotonic functions have a
well-defined least fixed point and greatest fixed point.

Consider the predicate transformer F' defined by

F(S)=5uU{s'|3s[s € SA(s,s) € N}

If we represent the state sets by BDD’s, the function F' can
be viewed as specifying a sequence of logical operations on
BDD’s. In particular,

(F(S)V') = So(V)V =] [SV) A N(V, V)]
vevV

Note that (F(S;})(V'") = S;4+1(V'). Thus, applying F repre-
sents one step in the reachability computation. The sequence
of state sets 0, So = F(B), S1 = F(@) = F(F(®)),
etc., converges to the least fixed point of F under the set
containment ordering. This least fixed point is exactly the set
of reachable states. Direct iteration is the method of computing
the BDD S(V') representing this fixed point by repeatedly
computing S; (V') from S;{(V’). The predicate transformer
F also has a greatest fixed point under set inclusion. This fixed
point may also be obtained via direct iteration by starting from
the set of all states.

Computing fixed points of predicate transformers similar
to F' is a fundamental step in symbolic verification, so it is
worthwhile to examine the computational complexity of this
problem. The direct iteration method involves repeatedly com-
puting (F(S;))(V') and checking the equivalence of S;(V’)
and S;+1 (V') in order to determine whether a fixed point has
been reached. The time complexity of checking equivalence is
either constant or linear in the sizes of the BDD’s representing
the formulas, depending on the BDD implementation. Most of
the computational effort goes into computing (F(S:))(V').
The most expensive step of this is computing

q [S:(V) A N(V, V")].

UEV

This is an example of a relational product computation. Al-
though relational products can be computed using the normal
BDD algorithms for restriction and boolean connectives, it is
much more efficient to use a special purpose algorithm. We
will discuss this algorithm in Section V.

4.1. Frontier Set Simplification

In order to perform reachability computations more ef-
ficiently, a technique called frontier set simplification due
to Coudert, Berthet, and Madre [18] is often used. Their
technique often reduces the size of the BDD representing the
set of states on the “search frontier” (i.e., the set of states in
Siy1 but not in S;). Consider the set of states Sy described
above:

Sy = SoU {s'|3s[s € 51 A(s,5") € N}

Suppose that we step forwards from the states on the search
frontier S; — Sy, i.e., we compute:

{s"|3s[s € (S1 — So) A (s,8') € N|}.

This yields a superset of S; — S (it may also include some
states il 5p). If we then add in all the states in S;, we will
obtain Ss. Thus, the expression for Sy can be rewritten as:

Sy = 51U {s'|3s[s € S} A(s,8) € N]}.

where S is the frontier S; — Sp. In fact, it is sufficient
to choose any S satisfying S; — Sp € S7 C S;. Given
this freedom, we would like to choose Sj so that its BDD
representation is small. Coudert, Berthet, and Madre describe
an algorithm for this. Their procedure takes two BDD’s S(V)
and C(V) as input: we view these as a state set and a
“care set.” It produces as output a BDD S{(V) such that
S(VYAC(V) = S{(V) A C(V) (that is, S(V) and S1(V)
agree for the states that we care about) and such that the BDD
S1(V) is usually smaller than the BDD S(V). Intuitively,
we are simplifying the representation of the set S by adding
or removing states not in C. In the example above, we
would apply the simplification algorithm to S;(V') using the
complement of Sy as the “care set.”

Using this idea, the algorithm for computing the set of
reachable states is modified as follows. First, let S{, be equal
to Sp. The set Sy, of states reachable in k+1 or fewer steps
is given by

Sky1 = Sk U {s"|3s[s € S} A(s,5) € N1},

where S}, is the result of simplifying the set Sy relative to the
“care set” given by the complement of Si_;. Notice that using
frontier set simplification does not result in a memory savings;
all of the BDD’s in the original reachability algorithm are
still computed. In fact, memory usage can increase since the
BDD’s for the S}, must be computed. The potential advantage
of frontier set simplification is that smaller BDD’s are used
in the relational product computation. In practice, frontier set
simplification usually results in an insignificant increase in
memory usage and a significant constant factor decrease in
computation time.

BURCH er al.: SEQUENTIAL CIRCUIT VERIFICATION

4.2. Iterative Squaring

One potential problem with reachability compultations is that
the number of iterations needed to find a fixed point may be ex-
ponential in the number of components of the system. We have
studied a method for computing fixed points called iterative
squaring that can drastically reduce the number of iterations
needed {12]-[14]. The direct iteration algorithm computes the
least fixed point of I by computing F'(8), F?(0), F3(0), etc.,
until a fixed point is reached. Iterative squaring depends on
noting that the predicate transformer F'2, which is given by

FY(8)=5U{s'|3s[s € SA((s.s)EN
v 3As"[(s.8") e N A(s".5") € N},

is of the same form as [; the difference is that N has been
replaced by

NU{(s,s")|3s"[(s.8") e NA(s",s') € N]}.
The BDD representation of this relation can be computed as

N(V,V')v [N(V.V") AN(V", V"))

eV

We call this operation squaring N. Let Ny denote N, and let
N;41 be the square of N;. The predicate transformer JACRETS
equal to

F)(8) = SouU {s'|3s[s € S A (s,8') € Ni]}.

By repeated squaring starting from N, we eventually reach a
fixed point N, which is the transitive closure of V. Using N,
to compute F(zk)(ﬂ)) gives the least fixed point of F directly.
The number of steps needed to compute the fixed point with
this method is logarithmic in the number of steps needed with
direct iteration (assuming the diameter of the state graph is not
reduced when restricted to reachable states). Note, however,
that this approach may be impractical if the BDD’s needed
to represent the intermediate computations become too large.
Unfortunately, this appears to be the normal case in practice.
In our experience, iterative squaring has been more efficient
than direct iteration only on extremely simple examples such
as counters.

4.3. Invariants

Invariant checking is a standard method for verifying safety
properties of systems. In our context, invariant checking
requires defining a set of states W to be an invariant and
defining a set Z of “bad” states, which are states that the
circuit being verified should not enter. It must then be verified
that

1. the initial state (or states) is contained in W,

2. all states reachable from W are contained in W, and

3. W and Zy are disjoint.

Clearly these conditions are sufficient for showing that none
of the states in Zy are reachable.

The exact definition of 7, depends on the correctness
criteria for the circuit. For an asynchronous circuit, Zg might
be the set of states in which a hazard can occur. The method
can also be used to check whether two synchronous circuits

407

have equivalent input/output behavior. In this case Zp is the
set of global states (ordered pairs (s¢.51) where sg and s; are
each states of the respective circuits) where the two circuits
have different outputs.

In verification methods that use theorem provers, the in-
variant W is typically represented by a formula in some
appropriate logic. The user must usually expend a lot of
effort to discover the invariant. One of the main advantages
of using finite state methods is that an invariant can be
constructed automatically without any user intervention. To
be more specific, let Sy be the set of initial states of a circuit,
then compute the set S of states reachable from Sp. If W = S,
then W clearly satisfies requirements | and 2. Once § is
computed, it is easy to determine whether the third requirement
is satisfied. If the third requirement is not satisfied, then the
circuit is incorrect and there does not exist a set of states W
that satisfies all three requirements.

An obvious refinement is to check whether any states
in Zp are reachable while S is being computed, instead
of waiting until the computation is complete. Also, it is
possible to represent Z; as an implicit disjunction of several
BDD’s, analogous to partitioned transition relations. This can
significantly reduce the number of BDD nodes needed to
represent Zp, and does not complicate checking requirement
3. This representation of Zy is very helpful when checking
for hazards in asynchronous circuits. The set Sy can also
be represented by an implicit disjunction of BDD’s, but this
requires computing a different set of reachable states for each
of the BDD’s used, and is not helpful for typical sets of initial
states.

In some cases, however, computing the states reachable
from the initial states is too inefficient. For example, consider
verifying a circuit that contains a n bit counter that is incre-
mented every cycle. If the counter is set to the same value
in all of the initial states, then computing S will require at
least O(2™) steps. We describe two methods, which do not
involve iterative squaring, for speeding up the computation of
an invariant.

The first method involves computing an invariant from Zy
rather than from Sp. Compute, by reverse reachability analysis,
the set Z of all states from which some state in Zg can be
reached. Thus, Z is the set of all states that can reach a
“bad” state. If W is the complement of Z, then W satisfies
requirements 2 and 3. The circuit is correct if and only if
W also satisfies the first requirement, which is equivalent to
SoNZ = (. Thus, the difference between forward and reverse
reachability analysis is that the transition relation is reversed,
and the roles of Sy and Z, are swapped. Reverse reachability
analysis has been studied by Filkorn [24], and it can be viewed
as a generalization of a earlier methods for finding equivalent
states in finite state machines [26], [32].

In some cases, an invariant can be computed much more
quickly with reverse reachability analysis than forward, even
if both methods compute the same invariant. As an extreme
example, consider using reachability analysis to verify that two
identical » bit counters have the same input/output behavior.
The set Z, is the set of states where the two counters have
different outputs. If Sy is a singleton set, then 2™ steps will

408 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4. APRIL 1994

be required to compute S. However, Z can be computed very
quickly since Z = Z; in this case.

For the second method for speeding up the computation
of invariants, notice that automatic computation of invariants
and user construction of invariants are just two ends of a
continuum. We will only describe the forward reachability
case here, but the idea can also be applied in reverse using
the duality described above. The user must choose a set T of
states such that Sy C Ty; then the set 1" of states reachable
from Ty is computed. If Tp is chosen well, then T' can be
computed from Tp more quickly (in fewer iterations) than S
can be computed from Sp. Usually Tp € 5, in which case
T = S. However, this need not be the case. All that is required
for the verification to go through is that T N Z, = (. We use
this idea in the verification of an asynchronous stack circuit
(see Section 8.2). Rather than starting the reachability search
from the set Sp of initial states (where the stack is empty), we
set Tg to the set of all possible quiescent states of the stack.
This significantly reduces the number of iterations necessary
to reach a fixed point.

V. COMPUTING RELATIONAL PRODUCTS

As noted earlier, computing relational products is a fun-
damental operation in many symbolic verification methods.
This section describes the techniques that we use for relational
product computations.

5.1. Basic Algorithm

Consider the following relational product:

S'(V'y = o [SV)ANT, V],

veEV

In Fig. 3, we give a special BDD algorithm RelProd that
performs this computation in one pass over the BDD’s S(V')
and N(V, V'). This is important in practice since the relational
product is computed without ever constructing the BDD for

S(V)AN(V, V'),

which is often fairly large. The basic idea behind the algorithm
is to perform the normal conjunction, except that every time
we would build a node labeled with an element of V, we
perform a disjunction. The BDD S5’(V") is computed with the
call RelProd (S(V),N(V, V'), V).

Like many BDD algorithms, RelProd uses a result cache.
In this case, entries in the cache are of the form (f, g, E, h),
where E is a set of variables and f, g, and h are BDD’s. If
such an entry is in the cache, it means that a previous call to
RelProd(f,g E) returned h as its result.

The algorithm as presented is independent of assumptions
about the BDD variable ordering. In our implementation, it has
been optimized for the case where the present state and next
state variables are interleaved, with corresponding present and
next state variables adjacent to each other.

The algorithm, while working well in practice (assuming
N(V,V') is reasonably sized), has exponential complexity in
the worst case. Most of the situations where this complexity is
observed are cases in which the output S/(V”) is exponentially

function RelProd(f,g: BDD, E: set of variables): BDD

if f = falsev g = false
return false
else if f = true A g = true
return true
else if (f, g, E, k) is in the result cache
return h
else
let = be the top variable of f
let ¥ be the top variable of g
let z be the topmost of = and y
h,g = REIPT‘Od(f’Z=o,g|,_=u, E)
hy == RelProd(f|.=1,9:=1, E)
ifze E
h = Or(ho, h1)
/* BDD for ho V hy */
else
h ;= IfThenkElse(z, hy, ho)
[+ BDD for (z A hy) V (=2 A ho) */
endif
insert (f,g, E,h) in the result cache
return h
endif

Fig. 3. Relational product algorithm.

larger than the inputs S(V') and N(V, V'). In such situations,
any method of computing S'(V') must have exponential
complexity.

The basic relational product algorithm requires having
N(V,V’) be a monolithic transition relation, consisting of a
single BDD. We saw in Section III how to construct this BDD
for synchronous and asynchronous circuits. Unfortunately,
for many practical examples, this BDD is very large.
Partitioned transition relations can provide a much more
concise representation, but they cannot be used with the basic
relational product algorithm. In the next two subsections, we
show how to extend the basic algorithm to compute relational
products for partitioned transition relations.

5.2. Disjunctive Partitioning

For a disjunctive partitioned transition relation, the relational
product computed is of the form

$'(vy= — (SV) A (No(V, V') v
veV
S W anl (vru V’))]

This relational product can be computed without ever con-
structing the BDD for the full transition relation by distributing
the existential quantification over the disjunctions:

S (V)= — [S(V)ANo(V. V)] v
veV
Y 3 [S(V) A Nuea (V, V).
veV

BURCH er al.: SEQUENTIAL CIRCUIT VERIFICATION

Thus, we are able to reduce the problem of computing 5"(V’)
to one of computing a series of relational products involving
relatively small BDD's. Much larger asynchronous circuits can
be verified using this representation than with a monolithic
transition relation.

5.3. Conjunctive Partitioning

When using a conjunctive partitioned transition relation, the
relational product computed is of the form

sV = - 1SV ANV, V) A
veV
"'/\Nn-l(V:V‘))]' (2)

The main difficulty in computing S'(V"') without building the
conjunction is that existential quantification does not distribute
over conjunction. The method given below overcomes this
difficulty.

Our technique [10], [11] is based on two observations.
First, circuits exhibit locality, so many of the N;(V, V') will
depend on only a small number of the variables in V' and W
Second, although existential quantification does not distribute
over conjunction, subformulas can be moved out of the scope
of an existential quantification if they do not depend on any of
the variables being quantified. We will take advantage of these
observations by conjuncting the N;(V, V') with S(V') one at
a time and using “early quantification” to quantify out each
variable v when none of the remaining N;(V, V') depend on
u.

Consider the modulo 8 counter described in Section 3.1. In
this case,

$'(V') = g Fvg Fua[S(V) A (No(V, 1’4
A N1 (V, V') A N2(V, V)]
Since conjunction is commutative and associative, we can
rewrite this as
§'(V") = 3wg Juy v [((S(V) A Na(V, 178))
A N1 (V, V")) A No(V, V)] 3)
The reasons for computing the conjunctions in this particular
order will become clear momentarily. As mentioned above,
subformulas can be moved out of the scope of existential
quantification if they do not depend on any of the variables
being quantified. According to (1), No(V, V') does not depend
on vy or wve; thus,
S'(V') = Jvg [Fvy Jua[(S(V) A N2(V, V)
A Nl(V, V’)] A No(V, V’)]
Since Ni(V,V’) does not depend on vz, we can apply this
trick one more time by writing
S(V") = v [Fv1 [3u2[S(V) A Na(V, V)]
A Ni(V, V)] A No(V, V).
We can now compute the relational product in (2) by starting
with S(V) and at each step combining the previous result with

an N;(V,V') and quantifying out the appropriate variables.
Thus, we have reduced the problem of computing the full

409

relational product to one of performing a series of smaller re-
lational product-like steps. Notice that the intermediate results
may depend both on variables in V' and variables in VY.

Now we can explain why we chose the ordering of conjuncts
given in (3). We wish to order the N;(V, V') so that the
variables in V' can be quantified out as soon as possible and
the variables in V'’ are added as slowly as possible. This
is desirable since it reduces the number of variables that
the intermediate BDD's depend on and hence can greatly
reduce the size of these BDD’s. In this particular example,
the variables in V' are added one at a time, independent of
the ordering of the N;(V., V). Thus, the optimum ordering for
the N;(V, V') is determined by how quickly the variables in
V can be quantified out. For each of the variables v; in V,
consider the number of terms that depend on wv;: all four terms
depend on v, while three terms depend on vy, and two terms
depend on wg. Thus, vy is the best candidate for a variable to
quantify out early. This explains why we chose to combine
S(V) and No(V, V"), the two terms that depend on vy, as the
first step in the computation. Similarly, N1(V, V") was chosen
next because it was the only remaining term that depended
on vi.

The above example involved computing the relational prod-
uct in a forward reachability search, Computing relational
products for backward reachability search is quite similar
to the forward reachability case described above. However,
instead of quantifying out the present state variables when
performing the relational product, we quantify out the next
state variables. This change may affect the optimal ordering
of the N;(V,V') when using conjunctive partitioning. To
illustrate this, we consider the modulo 8 counter again. The
relational product that we want to compute has the form

S'(V") = Fug Ff 3up[S(V') A (No(V, V")
ANV, V) AN(V, V)]

We rewrite this as

S'(V") = 3w} 3vy Jup[((S(V') A No(V, V"))
A N1 (V, V') A No(V, V)])

Since, according to (1), Na(V, V') does not depend on vg
or v,

S'(V) = 3w, [3), I [(S(V') A No(V, V"))
A No(V, V)] A No(V, V)]

Since N,(V,V’) does not depend on v, we obtain

S'(V) = 3}, (3], [Buh[S(V) A No(V, V"))
A N1 (V, V') A Na(V, V')].

In this particular example, the number of new state variables
v/ in the intermediate BDD’s is independent of the ordering
of the N;(V,V"). However, the number of old state variables
v; depends on the ordering, and is minimized by the ordering
given in (4). Note that this ordering is different from the one
in (3).

The method described above for computing the relational
product for the modulo 8 counter can be generalized to an

410 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 13, NO. 3. APRIL 1994

arbitrary conjunctive partitioned transition relation with n state
variables, as follows. The user must choose a permutation p of
{0,---.n—1}. This permutation determines the order in which
the partitions N;(V, V') are combined. For each i, let D; be
the set of variables in V' that N;(V, V") depends on. Also, let

n—1
Ei=Dyy~ |J Dowy-
k=i+41

Thus, E; is the set of variables contained in Dp(e-) that are not
contained in D, for any k larger than i. The F; are pairwise
disjoint and their union is equal to V. The relational product
in (2) can be computed as

$i(V,V)= - [S(V) A Nyoy(V; V)]
vEEy

S: V.V = o 181V, V) A Ny (V, V)
vEE,

' Saca (V) ANy (V, V)
veEE,

S'(V') =

The ordering p has a significant impact on how early in
the computation state variables can be quantified out. This
affects the size of the BDD’s constructed and the efficiency
of the verification procedure. Thus, it is important to choose p
carefully, just as with the BDD variable ordering. In practice,
we have found it fairly easy to come up with orderings which
give good results.

5.4. Recombining Partitions

Eartier, we described how a circuit could be represented
by a set of transition relations N;(V, V'), each depending on
exactly one variable in V. We also pointed out that combining
some of the /V; together into one BDD can result in a smaller
representation. Combining parts of a transition relation in
this way can also significantly speed up the computation of
relational products.

For example, consider the case of an m bit counter. With
the usual variable ordering, the number of BDD nodes needed
to represent the transition relation is linear in n in both
the monolithic and fully partitioned cases. Suppose S(V)
represents a singleton state set of the counter. Computing
S(V') with the fully partitioned representation requires n
BDD operations, each of which has complexity O(n), for a
total complexity of O(n?). On the other hand, if we use the
monolithic relation, we perform one operation of complexity
O(n), a savings in time of a factor of n. In practice, we can
often get a speed up by combining all of the BDD’s for any
given register, without significantly increasing the number of
BDD nodes in the transition relation.

The empirical results in Sections VII and VIII also illustrate
the benefits of recombining partitions. In particular, for the
KEY benchmark (Section 7.2), recombining gave a factor of
25 speed up. The MINMAX example shows how recombining
can give a major reduction in the space needed for the
transition relation, as well as a significant speed up.

VI. SYMBOLIC MODEL CHECKING

6.1. Compuration Tree Logic

The logic that we use to specify circuits is a propositional
temporal logic of branching time, called CTL or Computation
Tree Logic [17]. In this logic each of the usual forward-time
operators of linear temporal logic (G globally or invariantly,
F sometime in the future, X next time and U wntil) must
be directly preceded by a path quanitifer. The path quantifier
can either be an A (for all computation paths) or an E (for
some computation path). Thus, some typical CTL operators
are AGf, which will hold in a state provided that f holds
at all points (globally) along all possible computation paths
starting from that state, and EF f, which will hold in a state
provided that there is a computation path such that f holds at
some point in the future on the path.

For explaining our verification procedure, it is convenient
to express the CTL operators with universal path quantifiers
in terms of the operators with existential path quantifiers,
taking advantage of the duality between universal and exis-
tential quantification. Consequently, in our description of the
syntax and semantics of CTL, we specify the existential path
quantifiers directly and treat the universal path quantifiers as
syntactic abbreviations.

CTL formulas are constructed from atomic propositions
using boolean connectives and temporal operators. When
verifying a circuit, the set of atomic propositions is typically
equal to the set V of state variables of the circuit. If v is an
atomic proposition in V, then the formula v is true of a circuit
state if and only if the state variable v is high in that state.
The formal syntax of CTL formulas is given by the following
two rules:

1) every atomic proposition v in V is a formula in CTL;

and

2) if f and g are CTL formulas, then so are =f, f V g,

EX/f,E[fUg| and EG{.

Let Sy be the set of initial states of a circuit, and let
N be a transition relation. We now define the semantics of
CTL for such a system. A path from the state sy is an
infinite sequence of states sgs1s2--- such that N(s;, s8;4))
holds for every ¢. The propositional connectives — and V have
their usual meanings of negation and disjunction. The other
propositional operators can be defined in terms of these. X
is the next time operator: EXf will be true in a state sq if
and only if there is a path sps;--- from sp such that f is
true at s1. U is the until operator: E[fUg] will be true in
a state sg if and only if there exists a path sgs;--- from sg
such that g holds at some s; and f holds at all s; for which
1 < j. The operator G is used to express the invariance
of some property over time: EGf will be true at a state
sg if there is a path s,8;--- from sp such that f holds at
each state on the path. If f is true in state s, we say that s
satisfies f and write s |= f. We say that the system satisfies
fif s = f for all states s in So. We will identify a CTL
formula [with the set {s|s |= f} of states that make f true.
We also use the following syntactic abbreviations for CTL
formulas:

BURCH et al.: SEQUENTIAL CIRCUIT VERIFICATION

« AXf = -EX~f which means that f holds at all
successor states of the current state (f must hold at every
next state).

« EFf = E[true Uf] which means that for some path,
there exists a state on the path at which f holds (f is
possible in the future).

+ AFf=-EG-f which means that for every path, there
exists a state on the path at which f holds ([is inevitable
in the future).

« AGf = -EF-f which means that for every path, at
every node on the path f holds (f holds invariantly along
all paths).

« A[fUg] = E[-gU~f A-g]A-EG-g which means that
for every path, there exists an initial prefix of the path
such that ¢ holds at the last state of the prefix and f
holds at all other states along the prefix (f holds until g
holds, along all paths).

6.2. Model Checking

Model checking is the problem of determining whether a
given CTL formula f is true in a given state transition graph.
There is a program called EMC (Extended Model Checker)
that verifies the truth of a formula in a model by using efficient
graph-traversal techniques. If the model is represented as a
state transition graph, the complexity of the algorithm is linear
in the size of the graph and in the length of the formula.
The algorithm is quite fast in practice [5], [17]. However, an
explosion in the size of the model may occur when the state
transition graph is extracted from a circuit, particularly if the
circuit contains many registers or other memory elements.

In this section, we present a model checking algorithm for
CTL which uses BDD’s as its internal representation, in order
to ayoid explicitly enumerating the states of the model. We call
this symbolic model checking. The algorithm is defined by a
procedure CHECK that takes the CTL formula to be checked
as its argument. It returns a BDD S(V') that represents exactly
those states of the system that satisfy the formula. Of course,
the output of CHECK depends on the system being checked;
this parameter is implicit in the discussuion below. The set
So of initial states is represented by a BDD Sp(V), and the
transition relation N is represented by the BDD N(V,V’) as
discussed earlier. We assume that IV is fotal, that is, every state
has some successor state. This is true for transition relations
of the forms described in Section IIL

We define CHECK inductively over the structure of CTL
formulas. If f is an atomic proposition v, then CHECK(f)
is simply the BDD w». The inductive steps for formulas of
the form EXf, E[fUyg|, and EGf are given in terms of
intermediate procedures:

CHECK(EX f) = CHECKEX(CHECK(m,
CHECK(E[fUyg]) = CHECKEU(CHECK(f), CHECK(g)),
CHECK(EG f) = CHECKEG(CHECK([)).
The definitions of these intermediate procedures are given
below. Notice that these intermediate procedures take boolean

formulas as their arguments, while CHECK takes a CTL for-
mula at its argument. The cases of CTL formulas of the form

411

fVg or —f are handled using the standard algorithms for com-
puting boolean connectives with BDD’s. Since AX f, A[fUg]
and AG f can all be rewritten using just the above operators,
this definition of CHECK covers all CTL formulas.

The formula EX f is true in a state if and only if there exists
a path from that state for which the second state on the path
satisfies f. Since we have assumed that the transition relation
is total, this is equivalent to there being a successor of the
state which satisfies f. Thus, we define CHECKEX such that

CHECKEX(S(V)) = — [S(V') AN(V, V)]
veV!’

Compare the definition of CHECKEX to the relational product
in the definition of Sk in Section IV. They are quite similar
except that the first case computes the set of states from
which a state in S can be reached, while the second computes
the states that can be reached from a state in Sj. In other
words, CHECKEX performs one step of a backward reachability
search instead of a forward reachability search. The techniques
described in Section V for computing relational products can
be used here. (However, as discussed in Section 5.3, we may
wish to use different partition orderings for the forward and
backward reachability computations when using conjuctive
partitioning.)

Recall that the formula E[fUg] means that there is a
computation beginning in the current state in which g is true
in somie future state s, and f is true in all the states preceding
s. This mearns that either g is true in the current state; or f
is true in the current state and there exists a successor state
in which E[fUg] is true. In other words, it is the least fixed
point of the predicate transformer defined by

(F(S)(V) = So(V) V (S5(V) A CHECKEX(S(V))),

where S; and Sy are the sets of states satisfying g and
f, respectively [16]. The algorithm for CHECKEU works by
finding the least fixed point of the above predicate transformer.
This fixed point can be computed with either the direct
iteration or iterative squaring methods described earlier.

The formula EGf states that there exists a computation
beginning with the current state in which f is globally (in-
variantly) true. This means that f is true in the current state,
and EG f is true in some successor state. This condition is the
greatest fixed point of the predicate transformer

(F(8))(V) = 5¢(V) A CHECKEX(S(V)),

where Sy is the set of states satisfying f. CHECKEG computes
this fixed point, either by direct iteration or iterative squaring.

After determining the set S of states that satisfy the formula
f, the algorithm checks whether Sp is a subset of S (that is,
whether ~So(V) vV S(V) is the BDD representing true.) If it
is, then the system satisfies f.

6.3. Fairness Constraints

Next, we consider the issue of fairness. In many cases, we
are only interested in the correctness along fair computation
paths. For example, if we are verifying an asynchronous circuit
with an arbiter, we may wish to consider only those executions

412 1EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

in which the arbiter does not ignore one of its request inputs
forever. This type of property cannot be expressed directly in
CTL. In order to handle such properties we must modify the
semantics of CTL slightly. A fairness constraint can be an
arbitrary formula of the logic. A path is said to be fair with
respect to a set of fairness constraints if each constraint holds
infinitely often along the path. The path quantifiers in CTL
formulas are then restricted to fair paths. In the remainder of
this section we describe how to modify the algorithm above to
handle fairness constraints. We assume the fairness constraints
are given by a set of CTL formulas H = {hy,---,hn}.

We define a new procedure CHECKFAIR for checking CTL
formulas relative to the fairness constraints in H. We do
this by giving definitions for new intermediate procedures
CHECKFAIREX, CHECKFAIREU, and CHECKFAIREG which
correspond to the intermediate procedures used to define
CHECK,

Consider the formula EGf given faimess constraints H.
The formula means that there exists a path beginning with the
current state in which f holds globally (invariantly) and each
formula in H holds infinitely often. The set of such states S
is the largest set with the following two properties:

1) all of the states in S satisfy f, and

2) for all fairness constraints by, € H and all states s € S,

there is a sequence of states of length one or greater
from s to a state in S satisfying h such that all states
on the path satisfy f.

It is easy to show that if these conditions hold, each state
in the set is the beginning of an infinite computational path
on which f is always true, and for which every formula in H
holds infinitely often. Thus, CHECKFAIREG will compute the
greatest fixed point of the predicate transformer given by

(F(S))(V) = S;(V)A

/\ CHECKEX(CHECKEU(Sy(V),
k=1
S(V) A CHECK(Ak))),

where Sy is the sets of states satisfying f under the fairness
constraints H. The fixed point can be evaluated in the same
manner as before. The main difference is that each time
thie above expression is evaluated, several nested fixed point
computations are done (inside CHECKEU).

Checking EXf and E[fUg] under fairess constraints is
simpler. The set of all states which are the start of some fair
computation is

fair = CHECKFAIR(EG true).

The formula EX f is true under fairess constraints in a state
s if ahd only if there is a successor state s’ of s such that s
satisfies f and s’ is at the beginning of some fair computation
path. Thus, the formula EXf (under fairess constraints) is
equivalent to the formula EX(f A fair) (without fairness
constraints). Therefore, we define

CHECKFAIREX (S (V)
= CHECKEX(S¢(V) A fair (V)).

Similarly, the formula E[fUg] (under faimess constraints) is
equivalent to the formula E[fU(g A fair)] (without fairness
constraints). Therefore, we define

CHECKFAIREU(S;(V'), S¢(V))
= CHECKEU(S¢(V), Sg(V) A fair (V)).

VII. VERIFYING SYNCHRONQUS CIRCUITS

This section gives empirical results for verifying syn-
chronous circuits using both CTL model checking and
reachability analysis. We begin by applying model checking
to a simple pipeline circuit. Reachability analysis is applied
to two standard benchmark circuits, MINMAX and KEY.

7.1. Pipelined ALU

The pipeline considered in this section performs three-
address arithmetic and logical operations on operands stored
in a register file. The circuit is a generalized version of one
described in an earlier conference paper [12]. Fig. 4 shows a
block diagram for the pipeline. The number of pipe registers
can be varied; if s is the number of pipe registers, then
executing an instruction requires s + 2 cycles.

1. During the first cycle of the instruction, operands are
read from the register file into the instruction operand
registers.

2. During the second cycle, the result of the operation is
computed and stored in the first pipe register.

3. In cycles three through s+ 1, the result is passed between
pipe registers.

4. In the last cycle, the result is written back to the register
file.

We have included extra pipe registers in this version of the
pipeline to test how the performance of the model checker
depends on the number of pipe registers. In a real circuit,
operations would typically be performed between some of the
pairs of pipe registers, but in our example, results are just
propagated unchanged.

Each instruction specifies the source and destmatlon reg-
isters and the operation to perform. In addition, the pipeline
has a stall input that indicates that the instruction is invalid
and should be ignored. More specifically, the instruction’s
destination register should not be affected if the stall input is
true. The stall signal might, for example, be used to indicate
an instruction cache miss; the signal would be asserted until
an instruction is fetched from main memory. In erder to allow
results to be used before they are actually written into the
register file, data can be fed from the ALU output or from orie
of the pipe registers back to the ALU operand registers. We
experimented with a number of versions of the pipeline with
varying numbers of registers r, register widths w, numbers of
stages s, and numbers of operations o.

The speciﬁcatior’: of the pipeline is given in CTL. For
simplicity of exposition, we fix the number of general registers
r at 2 and the number of pipe registers s at 1, and we
assume that the pipeline does only exclusive-or operatioris.
In the actual verification, we used more complex circuits with
more operations. The specification that we used consists of

BURCH et al.: SEQUENTIAL CIRCUIT VERIFICATION

Read ports Write port
8 Register file -
2 =
[=¥
5
= i
S I\
Q
g
=

— Control

| g,l - Pipe registers

: > o
é — — -
L B>
Bypass circuitry

Fig. 4. Pipeline circuit block diagram.

two parts. The first specifies that the destination register is
updated correctly. This is described by a set of formulas of
the following form:

AG (~stall — ((scrlop; @ src2op;) & result;)).

Here, srclop; and src2op; are abbreviations for formulas that
represent the value of the ith bit of the two source operands
and result; is a formula that represents the 4th bit of the result
written into the register file. The overall formula states “if the
pipeline is not being stalled, then the ith bit of the result of
the current operation should be the exclusive-or of the ith bits
of the two source operands.”

In order to express srclop;, src2op;, and result;, we need
a way of expressing the value stored in a bit of a register
some number of cycles k in the future. Since the only
nondeterminism in the circuit is input nondeterminism, and
since the inputs cannot affect the state of the register file until
three cycles in the future (assuming s equals 1), this can be
done using the CTL. AX operator. That is

AXAX ---AX TEdj,iy
k

which we abbreviate as AX*reg;;, represents the vilue of
bit i of register j in k cycles, provided k < 3. We can cheéck
the assumption that the inputs do not affect the regiser file
state before three cycles elapse by verifying that EX""regj‘i
and AX"reg;; are equivalent for k up to 3. The timings
given below do not include this check; it increases the times
by a factor of two. Now srclop; is either AXzf‘ego,i or
AX?reg; ;, depending on whether the first source address is

413

0 or 1. The AX? accounts for the pipeline latency; in two
cycles, all the values currently being computed will have been
written back into the register file. Thus, we obtain

srclop; = (msreladdro A AX rego,i)
Vv (sreladdro A AX%reg: ;).

Here srcladdr; is the ith bit of the first source address input.
The formula for src2op; is analogous. The formula for result;
is also similar, except we use the values in the register file in
three cycles (after the operation is completed), and we select
based on destaddr, the destination address register:

result; = (—destaddre A A}{Sregg,i)
V (destaddro A AX’regy).

The other part of the specification describes what happens
to the registers not being written (or to all the registers when
the pipeline stalls). In particular, the register should not be
altered by the current operation. For example, for register 1;

AG((stall V ~destaddro) — (AX reg1i & AX regu).

Note that a number of common subformulas, such as the
formulas AX" reg;,i, appear throughout the specification. In
the experiments described below, the set of states satisfying
each of these subformulas was computed only once and then
saved.

We performed most of the experiments using a partitioned
transition relation to represent the circuit. From the block
diagram, we see that the circuit decomposes naturally into
pieces. We used this decomposition as a starting point for
breaking the transition relation into parts. Some of the parts,
such as the register file, were found to require large BDD’s
to represent; we broke these into more pieces. We also found
that we could combine some of the parts, such as most of
the pipe registers, without increasing the number of BDD
nodes required; we did this to decrease overhead. The final
decompostion had the following pieces:
control logic;
the first pipe register;
the other pipe registets;
the first ALU operand register;
the second ALU operand register; and
. one piece for each general register:

The ordering above was also the ordering used for process-
ing the transition relation. With this ordering, the number of
variables in intermediate results never exceeded the number of
state variables by more than w, the register width. We found
that the sizes of the intermediate results with this ordering
increased monotonically during each step; thus, breaking the
fransition relation into pieces did not result in having to
manipulate larger state set BDD’s than would have been neces-
sary with a single monolithic BDD representing the transition
relation. This is an important point; in many applications
involving BDD’s, it is the number of nodes in intermediate
results (not the final result) that limits the size of the problem
that can be handled.

In the BDD variable ordering that we used, thé source
address registers are nearest to the root. The bits of these

O A e B B

414 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

registers are interleaved. These are followed by variables
which make up the destination address shift chain (this is a
chain of shift registers that are used to hold the destination
address for an operation until the result of the operation is
written back into the register file). For each stage in the chain,
starting with the leftmost (input) stage, there is a stall bit
followed by a destination address register. Next come the two
opcode shift registers, with their bits interleaved. The operand
registers, general registers and pipe registers, interleaved, are
at the end of the ordering. All registers are arranged with the
most significant bit closest to the root of the BDD, since this
results in smaller BDD’s for the operations used.

As mentioned, we experimented with a number of versions
of the pipeline with varying numbers of registers r, register
widths w, numbers of pipe stages s, and numbers of operations
o. For each version, we collected information on the sizes
of the BDD’s needed to represent the transition relation and
state sets, and on the time required to do the verification.
The following table shows the rate of growth in the sizes
of the various pieces of the transition relation as a function
of the parameters. These rates of growth were found by
studying “profiles” of the BDD’s (histograms of the number
of nodes labeled with each variable). By considering the
circuit’s operation and ¢xamining how the profiles changed
as the parameters varied, we were able to exactly account for
the structure of the BDD’s needed to represent the transition
relation.

control logic O(srlog r)

pipe registers O(ws)

ALU operand registers Of(srlog r 4+ w(r + s))
each general register O(w+log r)

The total number of BDD nodes needed to represent the
transition relation grows linearly with each parameter except r,
for which it grows at a rate of 7 log . The log r factors arise
because an extra addressing bit is needed when r increases
from 2¢ — 1 to 2¢. The number of partitions in the transition
relation increased linearly with 7, and did not depend on w, s
or 0. The number of BDD nodes in each piece of the transition
relation was typically between 10 and 500. No piece ever had
more than 1500 nodes. The way the sizes of the pipe registers
and ALU operand registers vary with o depends on the exact
operations. The ones we used were addition, subtraction, and
bitwise logical operations. With this set, the control logic grew
O(log o), the pipe registers and ALU operand registers grew
O(o0), and the general registers did not vary with o.

To make it clear how the above bounds on BDD sizes
are derived, we consider one specific example: the transition
relation for the control logic. The other pieces of the transition
relation for the pipelined ALU were analyzed in a similar way.
The control logic consists of two parts: the opcode shift chain
and the destination address register shift chain. Each shift chain
is used to store information about an operation until the time
that it is to be used. The opcode is delayed for one cycle
while the ALU operand registers are being loaded, and hence
the opcode shift chain is described by the following transition

relation:

[log o]—1
/\ opcode! ; & opcodeo,;
=0

Here, opcodey ; is the 4th bit of the input opcode, and opcodef_l'i
is the (next state value of the) ¢th bit of the register used
to control the ALU. With the variable ordering described
above, this transition relation requires O(log o} BDD nodes to
represent. The destination address register shift chain is used
to hold the destination register number until the result of the
operation reachs the end of the pipeline. Then the last register
in the chain is used to control the writeback into the register
file. The transition relation that describes the shift chain is:

s+1 [log =1

A A

i=1 =0

dest} ; & dest;_1 ;.

In this expression, destp; is the ith bit of the destination
input. Because of the variable ordering used, the BDD for this
transition relation consists of s+2 sections, one for each dest;.
At the end of each section, the BDD has O{r) width, since the
value of dest; must be “remembered” in order to check that
dest!; is correct. In addition, each bit of dest; is “forgotten”
before encountering the corresponding bit of dest; ;. Hence .
the width of the BDD is in fact O(r) everywhere. The number
of variables that this part of the BDD depends on is bounded by
2(s+1)[log 7] (the factor of two accounts for current and next
state variables) and hence, the total BDD size is O(srlog).
The conjunction of the BDD’s for the first and second parts
gives a BDD of size O(srlog r + log o).

We also studied the BDD’s representing the various state
sets in the verification and used profiles to determine their
rates of growth. Since most of the time and space for each
verification was used computing and representing the value
of the destination register at the end of the current operation,
we concentrated on these. Again, by understanding the infor-
mation captured by the BDD’s, we were able to determine
how the sizes of the BDD’s were affected by the various
parameters. The number of nodes in these particular state set
BDD’s grows as Q(rs(r+s) log r+wo?(r +s) +wo(r + s)?)
(this growth rate was obtained using the same type of analysis
as that above). The largest BDD’s we encountered had slightly
less than 12 500 nodes; typical sizes were about 1000 nodes.

We performed the tests described above using a CTL model
checker written mostly in the T dialect of LISP [33]. The actual
BDD manipulation routines are written in C and are roughly
comparable to the package described by Brace, Rudell, and
Bryant [4]. The model checker was run on a SPARCstation
1+. Fig. 5 shows how the verification time depends on the
parameters 7, w,S, and o. This plot (and the other plots in
this paper) uses a log scale on both axes. On such a plot,
the polynomial relationship y = =™ appears as a straight line
with slope n. The following table shows the value used for
the fixed parameters in these tests.

BURCH et al.: SEQUENTIAL CIRCUIT VERIFICATION

1024 : 7
/
/
r
/
256 7 '/
{ /'
Iy
128 g
‘ L4
P ;
[
64 7
f .
l/ / -'..
32 777 iz
Sl .
/Y
16 toidid s
4TI
! ‘-'
' :
8 /] <
7 / .-"
/ '/ ! ,,,,,,,,,,,,,
4
/ ;
7 /
2 p 71
/ I/
/’ e 1
1§ Tk o
s ~
7 - — Register width
£ d] e Pipe stages | |
0.5 4 — — Number of registers
—— Number of operations
0.2 :
5 2 4 8 16 32 64

Fig. 5. Pipeline circuit verification times.

T w (]
vary 1 1 1
vary w 4 1 1
vary s 2 2 1
2 4 1

val_‘yo

The verification time is dominated by the time required
to compute the state sets for the subformulas AX**2reg; ;.
There are rw such formulas. Each computation of this form
involves s + 2 calls to RelProd for each piece of the transi-
tion relation. The verification times can be accounted for as
follows.

1. Asr increases from 2¢+1 to 2! for some i, the number
of AX**2 computations increases linearly. The number
of pieces in the transition relation also increases linearly,
and in each call to RelProd, the size of the result BDD
increases linearly. If we make the assumption that the
time to do a BDD operation is linear in the size of the
result BDD, then we would expect these three linear
increases to produce cubic growth in the verification

415

time. The slopes of the best fit lines for 7 equal to
9 through 16 and for 7 equal to 17 through 32 are
both 2.5. In the general case where r ranges over more
than a factor of 2, we would expect the time to grow
as O(r®log r), but we do not have enough data to
completely substantiate this conjecture.

2. As w increases, the number of AX**? computations
increases linearly and the size of the BDD resulting from
each operation increases linearly. This leads us to expect
quadratic growth in the verification time. The slope of
the best fit line for w equal to 17 through 32 is 2.1.

3. As s increases, the number of AX computations needed
to evaluate each formula of the form

A.X.S+1T8gj'i

increases linearly and the sizes of the BDD’s produced
within these steps increase linearly. When computing

AX**Preg;; = AXAX Hregji,

the BDD’s during the last AX operation grow quadrat-
ically. Overall we expect quadratic growth in the verifi-
cation time. The slope of the best fit line for s equal to
33 through 64 is 1.8.

4. How the verification time varies with o depends on
the particular operations used. The pumber of AX®T?
computations does not change. The BDD’s for the state
sets grow 0(02) for the operations mentioned above. We
would thus expect quadratic growth in the verification
time. The slope of the best fit line for o equal to 9
through 16 is 1.7.

It is important to note that in all cases, the verification
time is growing polynomically in the number of components
of these example circuits. Polynomial verification times were
also documented in earlier work [12]-[14]. Other researchers
[1] using symbolic techniques have demonstrated verification
times that grow sublinearly in the number of stares of the
system, but still exponentially in the number of components.

For comparison, we also ran the verification with a mono-
lithic transition relation. With 8 bit registers, the monolithic
transition relation required more than 75000 BDD nodes
to represent, compared with fewer than 750 nodes using
a partitioned transition relation, a difference of more than
two orders of magnitude. In addition, the verification needed
nearly an order of magnitude more time. We also note that
combining parts of a transition relation can result in higher
asymptotic complexity. For example, the total number of nodes
in the BDD’s that represent the register file in the partitioned
transition relation is O(rlog r), while the BDD for their
conjunction has O(r? log) nodes.

Partitioned transition relations can also be used to verify
larger pipelines than those above. We verified a 32-bit wide
pipeline with eight general registers, two pipe registers, and
one operation. This example had 406 state variables resulting
in more than 1012 reachable states, and the verification took
one hour and 25 minutes of CPU time on a SPARCstation 1+.

416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

7.2. Other Synchronous Examples

This section gives empirical results for computing the set
of reachable states of the MINMAX and KEY benchmarks.

The circuits of the MINMAX benchmark each consist of
three control inputs and a data path of parameterizable width
w. The data path is make up of a w bit input and three w bit
state registers. The variable ordering we used is quite standard:
control at top, data path variables interleaved, and ordered
most-significant bit to least-significant bit. We considered two
different partitionings of the transition relation. The first had
one BDD per bit of state, resulting in 3w BDD'’s each of size
O(w). With the ordering used, there was essentially no sharing
of nodes between these BDD’s, so the total number of nodes
was O(w?). The second partitioning recombined the bits of
each register (see Section 5.4), resulting in three BDD’s each
still of size O(w). Recombining the partitions reduced the total
number of BDD nodes needed for the transition relation from
O(w?) to O(w).

The CPU time needed to compute the reachable states with
the two representations shows a similar pattern (see Fig. 6).
The graph shows CPU times in tenths of seconds on a Sun
3/60. The asymptotic complexity in the fully partitioned case
grows slightly faster than quadratically, while the complexity
with recombining is roughly linear. This compares well with
the CPU time required by Berthet, Coudert, and Madre [1],
which grew exponentially with w. We also tried a least-
significant bit to most-significant bit ordering. This reduced
the total number of nodes in the transition relation with 3w
partitions from O(w?) to O(w), due to sharing. However, this
did not affect the time required to compute the reachable states.

We also considered the KEY benchmark circuit'. The
KEY benchmark circuit has 258 inputs (start,encrypt, and
keyo through keysss), 228 state variables (counto through
countas, Cp through Ci11 and Dy through Dlll) and 193
outputs. The transition functions for each of the count;
state variables depend on start,encrypt, and count; for
i < 7. The transition functions for each of the C; depend on
start, encrypt, C;, D;, county through counts, and two of
the key; inputs. The same is true of the transition functions
for each D;. Thus, the transition functions for each of the C;
and D; depend on (have a support of) exactly 10 variables.

Because the size of the support of each transition function is
small, the corresponding BDD’s can be easily constructed for
just about any variable ordering. Also, the particular supports
for each state variable show that the KEY circuit can be
naturally viewed as 113 communicating finite sutomata: one
automata for the counto through counts state variables, and,
for each j from 0 to 111, one automata containing the C'; and
D; variables. Each of these automata depend on the count;
variables, so it is natural to put those variables at the top
of the variable ordering. Also, the C; and Dj; should be
interleaved; we used the ordering Ci11, D111,+++,Co, Do in
our experiments. With this ordering of the state variables, the
largest state set BDD has 5584 nodes, which is an average of

I'There are actually two sequential benchmark circuits called KEY, one
with 228 latches [34] and one with 56 latches [19]. We use the one with 228
latches.

:

Tenths of seconds
(o]
E
o0

1024

512

256

128 v /

32

16

3w TR partitions

8 "‘/
af
/ —— 3 TR partitions
] :

2 4 8 16 32 64 128
Width

Fig. 6. Verification times for MINMAX circuit.

less than 25 BDD nodes per state variable. This small size is
a result of limited communication between the 113 automata
described above.

If full partitioning is used, the time necessary to compute
the reachable states does not depend critically on the ordering
of the input variables. However, the ordering can be important
if parts of the transition relation are recombined. We put the
encrypt and start inputs at the top of the ordering, and placed
the key; inputs near the C; and D; that depended on them.
This ordering make it possible to use three partitions: one
for the count; variables, one for the Cj variables and one
for the D; variables. The BDD’s for the partitions had 33,
2464, and 2566 nodes, respectively. The time required to find
the reachable states of the KEY benchmark circuit was 1019
seconds (CPU time on a SPARCstation 1+) when using a fully
partitioned transition relation and 41 seconds for the three
partition case, a speed up of nearly a factor of 25.

VIII. VERIFYING ASYNCHRONOUS CIRCUITS

One aspect of verifying speed-independent asynchronous
circuits is checking that the circuit has no hazards. A hazard is

BURCH et al.; SEQUENTIAL CIRCUIT VERIFICATION

informally defined as a state in which a gate can transition, and
in which another transition can disable the output transition
of the gate. This definition of hazards covers both static and
dynamic hazards. In a real circuit, a hazard may result in
the output of the gate starting to change and then returning
to its previous state, with the result that parts of the circuit
may see the transition and others may not. We can check
for hazards in two steps. First, we compute the set of states
that the circuit and its environment can reach from a given
set of initial states. Then we check that none of these states
results in a hazard. Finding the reachable states is the most
computationally expensive of these two steps. In practice,
checking for hazards is usually done as the reachable states
are computed. This method can be generalized to handle a
wide variety of safety properties of asynchronous circuits [22].
The set of reachable states is computed using the methods
described in Section IV.

8.1. Modified Breadth First Search

Recall that asynchronous circuits can be modeled using
either conjunctive or disjunctive partitioned transition rela-
tions. These correspond to non-interleaving and interleaving
semantics, respectively. There are significant differences in the
complexity of doing reachability analysis using the two mod-
els. Consider two uncoupled systems M’ and M" with disjoint
sets of state variables V' and V. Let M be the composition of
these two systems, and let V = V/UV". This is an unrealistic
example, but it helps illustrate what happens when computing
the reachable states of loosely coupled systems. The BDD
S(V') representing the set of reachable states of M is equal to
S/(V'YA S8"(V"), where S'(V') is the BDD representing the
reachable states of M’ and S”(V") is the BDD representing
the reachable states of M". For simplicity, assume that the
sets. S(V),5'(V') and S"(V") are independent of whether
interleaving or noninterleaving semantics are used. An efficient
way to order the BDD variables of the combined system in this
case is to have all the variables of one component (say M')
precede all of the variables in the other component. Then the
number of BDD nodes in S(V) is equal to the sum of the nodes
in S’(V’) and S”(V"). However, in spite of our assumption
that interleaving and noninterleaving semantics give the same
reachable states, the sizes of the BDD’s representing the
intermediate state sets are potentially different for the two
semantics.

Let S;(V),Si(V’) and S}(V") be the BDD’s representing
the states reachable in i or fewer steps by M, M’, and
M, respectively, using noninterleaving semantics. Similarly,
let T;(V),T!(V'), and T{"(V"') be the BDD’s representing
the states reachable in i or fewer steps by M, M’ and M,
respectively, using interleaving semantics. In the conjunctive
(non-interleaving) case, S;(V) = Si(V') A Si(V), so the size
of each S;(V) is equal to the sum of the sizes of S;(V’)
and S;(V), just as for the set of reachable states. For the
disjunctive case, if a global state is reachable in at most ¢
steps and the local state of M’ is reachable in k steps, then
the local state of M must be reachable in at most 7 — k steps.

417

Hence,
T(V) = N\ (TUV') AT (V).

k=0

Thus, interleaving semantics introduces an artificial correlation
between the local states of M’ and M” in the T;(V). In
practice, the T3(V') are generally much larger than the S:(V).
Because of this effect, standard breadth first reachability
analysis with disjunctive partitioning is less efficient than with
conjunctive partitioning.

We can make disjunctive partitioning more efficient by
using a modified breadth first search (MBFS) for reachability
analysis. To search the reachable states of M, first compute
states reachable by transitions of wires in M’. Then compute
the states reachable from that set by transitioning on wires
in M". This is equal to the global reachable state set, since
M’ and M" are uncoupled. Separately computing local fixed
points for the two parts of the system in this way removes the
artificial correlation described above.

In general, for a circuit C divided into loosely coupled
subcircuits Cj, we compute the reachable states of C by
repeatedly computing local fixed points for each Cj until a
global fixed point is reached. This idea can be extended to a
hierarchy with any number of levels. For example, consider a
closed system with four subcircuits Co through C3 (see Fig.
7). Let V; be the set of state variables of C;, and let V' be the
union of the V;. Subcircuits C; and Cy, communicate through
the state variables in V; N V. Let O; be the set of variables in
V: that are driven by C;. The O; are pairwise disjoint and their
union is equal to V. We can construct a hierarchy where the
top level splits the circuit into two parts: Co together with Cy
form one part, C; and C3 form the other. The second level of
the hierarchy further splits the circuit into the individual Cj. In
this case modified breadth first search proceeds by alternately
finding all the states reachable via transitions in Og U Oy and
in O U O3 until a fixed point is reached. At each iteration,
finding the states reachable via Op U O, is done by alternately
finding all the states reachable via transitions in Og and in O;
until a fixed pointed is reached. '

8.2. An Asynchronous Stack

In this subsection, we compare conjunctive and disjunctive
partitioned transition relations for verifying asynchronous cir-
cuits by considering an asynchronous lazy stack due to Martin
[28]. To determine the asymptotic performance of the various
methods discussed above, we performed a reachability analysis
for stacks with varying depth d and word width w. This is
sufficient to study the asymptotic complexity of verification,
even though we did not check for hazards. Hazard checking
increases the verification times by about a factor of two.

Fig. 8 shows a block diagram of the stack. It consists of an
array of d cells, each cell consisting of a control part, a data
part and a completion tree. The data part of each cell consists
of w storage elements. A completion tree consists of (w—1) C-
elements, each with two inputs. It effectively acts as a w-input
C-element and is used to signal when all the storage elements
in a cell have completed the current data transfer. The model

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

.

a) the environment at the top of the stack;

b) the control part and data parts for cell 1, followed
by the control and data parts for cell 2, etc.

c) the completion tree for cell 1, followed by the
completion tree for cell 2, etc. and

d) the environment at the bottom of the stack.

3. Conjunctive partitioning using the same partitioning as
above, but with the control and data parts within each
cell combined into one BDD. The p used above is

In all cases, we used an initial state set in which each cell
could be full or empty and the data in each cell was arbitrary.
Using a more restricted set of initial states, such as having all
cells initially empty, can increase the verification time by as
much as a factor of d. Interleaving semantics (method 1) and
noninterleaving semantics (methods 2 and 3) both produced
exactly the same set of reachable states for the stack circuit.

418
: G fa—2 € i, [= G
Fig. 7. Example hierarchy for modified breadth first search.
cell 1 cell 2 celld
control control control
part part part
L [. I i 1 I
data data data
— part — | pat — — [part
5] 1 [+ 1 [1
(5]
8 & £
g & = ; ; ;
e 2 =) modified in the obvious way.
= p , L=
2 = 2
a, (=9 =%
E B g
8 3 8
data data data
— part — [part — — [part
w w w
Fig. 8. Stack circuit block diagram.

that we used also included an environment for the stack that
nondeterministically performs push and pop operations.

The variable ordering that we used can be understood in
relation to Fig. 8. We ordered the variables by scanning the
figure from top to bottom, and, within each row, by scanning
from right to left. Thus, we had variables for the control part
of cell d first, the control part of cell d — 1 next, etc. After all
of the control parts, we had data part 1 for cells d through 1,
together with the completion tree variables derived from those
data parts. The last variables in the order were those for data
part w in cell 1 (and the associated completion tree variables).

We did a detailed study of how verification time varied with
w for three different methods:

1. Disjunctive partitioning using modified breadth first
search. We combined the transition relations for the
gates making up each individual control part, each of
the individual storage elements, and each completion
tree. At the top level, the hierarchy used for local fixed
point computation consisted of the environment and
each cell as a unit. Each cell was broken into the control
part, the completion tree and the data part. The data part
was further subdivided into a hierarchy consisting of a
balanced binary tree with [lg(w)] levels.

2. Conjunctive partitioning using the same partitioning of
the transition relation as above. We used the following
ordering p of the parts of transition relation:

We also experimented with disjunctive partitioning using
standard breadth first search. However, we found that this
method was feasible only for small examples. Disjunctive
partitioning with modified breadth first search and conjunctive
partitioning were both much more efficient.

A graph of the search times versus stack width for the three
methods is shown in Fig. 9. Search times using methods 1 and
2 grew at about w?? and w8, respectively. Method 3 gave a
growth rate of roughly w'-2. Using this method, we were able
to find the reachable states of a 32 bit wide, depth 2 stack in
38 min of CPU times on a SPARCstation 1+. This circuit had
989 boolean state variables and over 10° reachable states.

The BDD’s in the transition relation are all of constant or
linear size, except for those representing the completion trees.
For both interleaving and noninterleaving semantics, a simple
analysis of the BDD’s for the completion trees show that for
w equal to a power of 2, the number of nodes f(W) must
satisfy the equation (to first order)

J(2w) = 3f(w).

When f is extended to values of w that are not powers of
2, it is still a monotonically increasing function. As a result,
the above equation is sufficient to show that f(w) is O(w'8?).
For the values of w we considered in our experiments, a single
BDD for each completion tree requires only a small number
of nodes. However, for larger w, it might be necessary to split
the completion trees into more than one BDD.

BURCH et al,; SEQUENTIAL CIRCUIT VERIFICATION

4096
p
/
/
{
2048 : : i
1
/!
1
1024 T
!
7/
/
£
512 ; /
)
/
256 i
/
/
/
128 1
/ .
/ :
/
64 g
) /
3 A+
16
“ g —— Conjurictive
8 - — — Disj.+MBFS
B Conj.+combined
% 2 4 8 16 32

Fig. 9. Search times in seconds for stacks of various widths, with d = 1.

We also explored how the search time varied with the depth
of the stack (see Fig. 10). The number of steps needed to
compute the reachable states grows quadratically in d. The
states which require the largest number of steps to reach are
states in which internal signals within the stack control are not
stable. Thus, we were able to avoid the quadratic search depth
by replacing the control part of each cell by an abstract model
having only external signals. We separately verified (using a
variant of Dill’s explicit state verifier [22]) that the abstract
model correctly describes the external behavior of the control
part. With this abstraction, the number of steps needed to
find a fixed point is linear in d. The search times grow as
d2-4 for disjunctive partitioning and as d*7 for conjunctive
partitioning.

Although this kind of abstraction can greatly improve the
efficiency of verifiers that explicitly enumerate states, it is usu-
ally not nearly as helpful when used with symbolic verifiers.
For example, the search times for stacks of depth one improve
only about 20 percent when the abstract model of the control
part is used. The effect abstraction has on the search depth is
an exception to this rule.

419

2048

1024

512

256 [

128 7

32 7
/
!
/
16 7
/
I * % -
. / «++-- Abs.+conj.4+comb.
(—— Abs.+disj.+MBFS
- Cox_lj.+combined

Fig. 10. Search times in seconds for stacks of varidus depths, with w = 1.

The maximum size of the state set BDD’s encountered
during the searches are shown in Figs. 11 and 12. The state sets
grow slightly faster than linearly with width (probably due to
the completion trees). They grow approximately quadratically
with depth when we use the abstract model of the control part
of each cell. '

8.3. Distributed Mutudl Exclusion

As another example, we considered the verification of an
asynchronous circuit for ensuring mutually exclusive access to
a shared resource. This circuit is also due to Martin [27], [23].
The circuit consists of a ring of ¢ cells. Each cell communicates
with a user of the resource and with its left and right neighbors
in the ring. Mutual exclusion is ensured by having a single
“token” that is passed around the ring. A cell must have the
token before granting access to its user. The distributed mutual
exclusion circuit is an example of an asynchronous circuit with
complex control and no data path.

The variable ordering we used had the variables for each
cell grouped together. The first variables in the order were
those for cell 1, and the last were those for cell c.

420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

032768
2 /
Z 4
16384 /
8192 //
4096 //
2048 /
1024 f
—— Conjunctive
~ — Disj+MBFS
512¢
235, g 4 8 16 32
Width

Fig. 11. State set BDD sizes for stacks of various widths, with d = 1.

32768
2
Z
16384
8192 /
4096 ot /
/
/
2048 !
7
i /
v
/
/ ,
e
. /
/
s i
512¢ — — Conj.+combined
----- Abs.+conj.+comb.
—— Abs.+disj.+MBFS
256, ' T s
1 2 4 8 16 32
Depth

Fig. 12. State set BDD sizes for stacks of various depths, with w = 1.

We studied how the complexity of reachability analysis var-
ied with ¢ for a variety of cell models and search techniques:

1. Disjunctive partitioning using modified breadth first
search. We combined the transition relations for the
gates making up each individual cell, so the number of
elements in the partitioning was equal to the number
of cells. The hierarchy used for local fixed point
computation was obtained by repeatedly splitting the
set of cells in half. The cells that were connected in the
circuit were grouped together in the hierarchy.

2. Conjunctive partitioning with the first ¢ — 1 cells com-
bined and the last cell as a separate part of the transition
relation. We left the last cell separate because it intro-
duces constraints between some of the variables at the
top and bottom of the BDD variable ordering. The last
cell was processed first, followed by the combined group
of ¢ — 1 cells.

3. Disjunctive partitioning as in item 1, but using an
abstract model of the cell.

4. Conjunctive partitioning as in item 2, but using an
abstract model of the cell.

In all cases, we used an initial set of ¢ states, each with
the token in a different cell. Interleaving semantics (methods
1 and 3) and non-interleaving semantics (methods 2 and 4)
both produced exactly the same set of reachable states for the
distributed mutual exclusion circuit.

A graph of the search times versus number of cells for the
various methods is shown in Fig. 13. Disjunctive partitioning
with modified breadth first search and conjunctive partitioning
were again roughly comparable, with the former having a
lower asymptotic complexity. This contrasts with the stack
example, where the combined conjunctive partitioning was
faster. This difference is probably because the complexity
of the stack is in its data path, while the complexity of the
mutual exclusion circuit is due to control rather than data. The
verification times for the four methods grow as c to the power
of 2.1, 3.1, 2.3, and 3.5, respectively. The largest unabstracted
circuit that we examined had 16 cells, 256 boolean state
variables, and over 10'® reachable states. It took slightly less
than 30 minutes of CPU time on a SPARCstation 1+ to find
the reachable states.

The total number of BDD nodes-needed to represent the
transition relation grew linearly in c in all cases. The maximum
state set BDD sizes are shown in Fig. 14. In the case of
the conjunctive methods, these BDD’s grow approximately
cubicly, while with disjunctive partitioning and MBFS, the
growth rate is reduced to linear.

IX. DiscussionN

We have described a BDD-based algorithm for CTL model
checking with fairness constraints. The use of modified breadth
first search for reachability analysis has also been described,
as well as the advantages of viewing reachability analysis as a
method for constructing and checking invariants. All of these
methods are made significantly more efficient by the use of
partitioned transition relations. We have empirically studied
the asymptotic complexity of verifying both synchronous and
asynchronous circuits. In all cases, the verification time for

BURCH er al.: SEQUENTIAL CIRCUIT VERIFICATION

e] [
% — Disj+MBFS
0 — — Conjunctive |
81921 ... Abs.+disj.+MBFS
- — Abs.+conj.
4096
2048 1
!
/
1024 #
! / 1
!
512 l

256 i/ f

128

32 l /r
16/ o
7/ S
[A
8 g
&
Fid s
4 o v 4
. rd
-'.- ”
o7
2 4 8 16 32

Cells

Fig. 13. DME circuit verification times.

these circuits grew as a small polynomial in the number of
circuit components.

Two of the distinguishing features of our verification meth-
ods are the use of transition relations and the amount of
guidance the user provides to the verifier. These features are
discussed in more detail below.

9.1. Transition Relations

Our verification methods use felations to describe how
circuits can transition from one state to another. We considered
both monolithic transition relations (which are represerited by
a single BDD) and partitioned transition relations (moré than
one BDD). For deterministic systems, this information can be
represented using transition function vectors instead. In this
method, a separate BDD is used for each Boolean state variable
of the system. This BDD represents the function computed by
the combinational logic driving the associated latch. Coudert et
al. [18], [20] describe a numbeér of algorithms for manipulating
transition functions.

65536

32768

16384 |- 1
3

8192 +

4096 i

1024[—% 7 -1

512 7 7

256 / g -

128
,/
/ — — Conjunctive
64t - — Abs.+conj.
/ —— Disj+MBFS
[] e Abs.+Disj.+MBFS
2, 4 8 16 32

Cells

Fig. 14. State set BDD sizes for DME circuit.

Of these threée methods of representing transitions (transition
functions and monolithic and partitioned transition relations),
we believe a partitioned transition relation usually gives the
best performance. A monolithic transition relation can require
many moré BDD nodes than a corresponding transition func-
tion vector [20] or partitioned transition relation. However,
when a monolithic transition relation is not too large to store
in semiconductor imeinory, computations with the transition re-
iation appear to be faster than those using transition functions.
This observation was also made by Coudert ef al. [20] when
they comipared transition relations to their techniques based on
transition functions. In addition, while we have demonstrated
polynomial growth in verification time for several classes of
cifcuits using transition relations, no state exploration method
based on transition functions has shown such results. Our
empirical results indicate that partitioned transition relations
give both the speed of transition relations and the memory
efficiency of transition functions.

Touati ef al. {34] independently proposed another method
for representing transition relations as implicit conjunctions.
They use the constrain operator of Coudert et al. [18] to

422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

eliminate the state set S(V') in (2). Then they compute the
resulting conjunction as a balanced binary tree, quantifying
out each variable in V' when all the BDD’s depending on that
variable have been combined. We believe that this method
is inferior to the one proposed here because the constrain
operator may introduce dependencies on any of the variables
in S(V). Generally, S(V') depends on all or nearly all of the
variables in V. Thus, after applying the constrain operator,
all of the partitions of the transition relations may depend
on most of the variables in V. As a result, it may not be
possible to quantify out many variables before performing the
final conjunction, greatly reducing the effectiveness of early
quantification. Touati et al. also suggest having one transition
relation per state variable. As we have described, it is often
better to combine parts of the transition relations. This idea is
also applicable to their method.

We implemented their method and tested it on some of
the examples in Section VII. For a pipeline with four 8 bit
registers and one pipe register, our method was more than five
times faster. In addition, for some of the relational product
computations, the intermediate BDD’s using their method were
more than an order of magnitude larger than the final result.

The two methods have been applied to the KEY benchmark
and the MINMAX benchmark with a 32 bit wide data path. We
computed the reachable states of these circuits in 41 s (CPU
time ori a SPARCstation 1+) and less than 4 s (CPU time on
a Sun 3/60), respectively (see Section 7.2). Touati et al. [34]
reported run times (on a DEC 5400) of 5706 s and 444 s,
respectively. Their data includes the time needed for parsing
input files, computing the reachable states of the product
automata of two identical circuits, and checking equality of
the outputs of the two automata. Although these times are
difficult to compare directly, a speed up of two orders of
magnitude suggests that our method performs better on these
two benchmarks. Empirical results on additional benchmarks
are required, however, before a definitive conclusion can be
reached.

9.2. Degree of Automation

State exploration based verification methods tend to be more
automatic than methods based on theorem provers. This is
particularly true when attempting to verify a circuit that is
not correct. State exploration methods can easily produce a
counter-example trace that helps the user find errors in the
circuit. With a theorem prover, the user only knows that the
attempted proof will not go through, without knowing whether
this is because of a circuit error or a weakness in the theorem
prover.

Although symbolic state exploration methods are much
more automatic than using a theorem prover, it is still nec-
essary for the user to do more than just provide a specification
and a circuit description. In this section, we consider some of
the decisions that the user must make.

First, the user must choose one of the many techniques
in the literature, such as forward and reverse reachability
analysis, CTL model checking, etc. This is a difficult decision;
determining general rules about which methods perform well

on what kinds of circuits is still an open research question.
There may be no alternative other than to try several methods.
It is useful to start with a small model of the circuit to be
verified, either by abstracting out much of the functionality of
the circuit, or as we have done in this paper, by parameterizing
the data path width, number of registers, etc, If a particular
method performs better on a smaller version of the circuit, it
is likely to perform better on the full circuit, as well,

Example verification attempts on particular circuits, such as
those in this paper, are also helpful. We described three differ-
ent methods: CTL model checking, and forward and reverse
reachability analysis. Only model checking worked well on the
synchronous pipelined ALU circuit that we considered. With
forward reachability analysis, the BDD needed to represent
the set of states reachable in one step was exponential in the
size of the circuit. However, when we checked for hazards in
two asynchronous circuits, forward reachability analysis was
quite efficient. In this case, the set of states with hazards
was represented by an implicit disjunction of BDD’s, one
BDD for each component of the circuit. If we had used
reverse reachability analysis or CTL model checking, then
we would have had to do a separate analysis for each of the
disjuncts. Also, the BDD’s for reverse reachability analysis of
asynchronous circuits tend to be much larger than for forward
analysis; the structure inherent in the set of reachable states
is lost.

With all BDD-based verification methods, a good variable
ordering must be found. When partitioned transition relations
are used, the most important factor is the size of the BDD’s
representing the many state sets computed during verification.
In our experiments, we often found ways to improve a variable
ordering by trying it on a small version of the circuit. We
plotted profiles of the BDD’s that were computed. A profile is a
graph that shows, for each variable, the number of BDD nodes
labeled by that variable. Profiles can provide information about
how information flow in the circuit results in large BDD's, and
how the variable order might be modified to make the BDD’s
smaller. We found that a little time pondering variable orders
paid off with drastically reduced verification times.

The user must also provide a partitioning of the transition
relations. This is not as critical as the variable ordering;
reasonable results can be obtained by simply having one
partition for each state variable of the circuit. However,
we have shown that even better results can be obtained by
combining some of the partitions together. Finding a good
way to combine partitions was not a problem; usually our
first guess worked quite well. We suspect the process could
be easily automated, given information about the hierarchical
structure of the circuit.

It appears more difficult to choose automatically the order in
which partitions are used when computing relational products.
Nonetheless, in practice it was not difficult to choose an
ordering by hand. The orderings used in our experiments were
based on the natural flow of information in the circuits. Again,
we found it helpful to test our choices on a small version of
the circuit being verified.

If modified breadth first search is used, then partitioning
the transition relation is made slightly more complicated by

BURCH er al.: SEQUENTIAL CIRCUIT VERIFICATION

the inclusion of hierarchical information to guide the search.
Assume the user has already chosen a partitioning for standard
breadth first search. Then, given an explicit representation of
the hierarchical structure of the circuit, it is straightforward to
automate the process of finding a hierarchy to guide a modified
breadth first search.

Viewing reachability analysis as a way of helping the user
construct an invariant provides a way for the user to help the
machine produce the invariant by changing the set of initial
states. For the asynchronous circuits we considered, it is easy
to manually produce an expression for all of the reachable
quiescent states of the circuit. We suspect this is true in general.
The verifier performed quite well on our example circuits when
the set of quiescent states was used as a starting point for
constructing the invariant.

In our experience, all of the decisions the user must make
to use our verification methods are straightforward given
an understanding of the circuit’s operation and of the basic
properties BDD’s. Some of these decisions could be easily
automated; other areas appear better left to the user, at least
given the current state of the art. Although providing these
hints to the verifier requires some extra effort on the part of
the user, it is often justified by the significant improvement in
performance that can result.

What is the best balance between automation and manual
effort in a BDD-based verification method? The answer to this
question depends on the situation in which the method is to be
used. If the goal is to produce a verification tool that can be
used with a minimum of training and without expert assistance,
then full automation is of paramount importance. The power
of the methods described here could not be used fully in such
a verification tool. Other more automatic methods [1], [24],
[34] might be more appropriate in this situation.

Although fully automatic verification methods have become
much more powerful in the last several years, there are
still severe restrictions on the size of the circuits to which
they can be applied. Our empirical results suggest that a
small amount of manual assistance can greatly improve the
scalability of BDD-based verification techniques. Improving
scalability requires more than just a constant factor speed
up; it requires a drastic reduction in the rate that verification
time increases as a function of increasing circuit size (for
example, exponential growth reduced to quadratic growth).
Such a reduction in growth rate can only be demonstrated by
asymptotic analysis, such as the kind of empirical analysis
used in this paper.

If further research confirms that manual assistance can
improve scalability, then we see two ways that development
of manually assisted verification methods can have direct
practical value. The first, quite naturally, is applying these
methods to verification problems that are beyond the state of
the art for fully automatic verification tools. Manual assistance
would still be potentially costly, in terms of time and neces-
sary expertise, but formal verification would not be possible
otherwise in this situation. The second use would be to shed
light on potential improvements to exisiing fully automatic
techniques. We view the current paper as an example of this.
We have described the kind of manual assistance required in

our methods: if these parts of the verification process could
be efficiently automated, the result would be a more powerful
fully automatic verification technique.

REFERENCES

[1] C. Berthet, O. Coudert, and J, C. Madre, “New ideas on symbolic ma-
nipulations of finite state machines,” in Proc. IEEE Int. Conf. Computer
Design, 1990.

[2] S. Bose and A. Fisher, “Verifying pipelined hardware using symbolic
logic simulation,” in Proc. IEEE Int. Conf. Computer Design, Oct. 1989.

[3] S.Boseand A. L. Fisher, “Automatic verification of synchronous circuits
using symbolic logic simulation and temporal logic,” in Proc. IMEC-
IFIP Int. Workshop on Applied Formal Methods for Correct VLSI Design,
Nov. 1989, pp. 759-764.

[4] K.S.Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of
a BDD package,” in Proc. 27th ACMIIEEE Design Automation Conf.,
1990, pp. 40-45.

(5] M. C. Browne, “An lmprovcd algorithm for automatic verification of
finite state machines using temporal logic,” in Proc. First Ann. Symp.
Logic in Computer Sci., Boston, MA, June 1986.

[6] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, “Automatic
verification of sequential circuits using temporal logic,” IEEE Trans.
Comp., vol. C-35, pp. 1035-1044, Dec. 1986.

(71 R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comp., vol. C-35, Aug. 1986.

[8] R. E. Bryant, D. L. Beatty, and C.-J. H. Seger, “Formal hardware
verification by symbolic ternary trajectory evaluation,” in Proc. 28th
ACMIEEE Design Automation Conf., 1991.

[9] R. E. Bryant and C.-J. Seger, “Formal verification of digital circuits

using symbolic ternary system models,” in Computer-Aided Verifica-

tion, Proceedings of the 1990 Workshop; DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, vol. 3, R. Kurshan and

E. M. Clarke, ed., American Mathematical Society, 1990.

J. R. Burch, E. M. Clarke, and D. E. Long, “Representing circuits

more efficiently in symbolic model checking,” in Proc. 28th ACMIIEEE

Design Automation Conf., 1991,

[11] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking
with partitioned transition relations,” in Proc. Int. Conf. Very Large Scale
Integration, Edinburgh, Scotland, Aug. 1991.

[12] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential

circuit verification using symbolic model checking,” in Proc. 27th

ACMIIEEE Design Automation Conf., 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,

“Symbolic model checking: 102° states and beyond,” in Proc. Fifth Ann.

IEEE Symp. on Logic in Computer Sci., June 1990.

I. R. Burch, E. M. Clarke, K. L. Mchllan D. L. Dill, and L. J.

Hwang, “Symbolic model checking: 102° states and beyond,” Infor.

Computation, vol. 98, no. 2, pp. 142-170, June 1992,

{15] H. Cho, G. Hachtel, S.-W. Jeong, B. Plessier, E. Schwarz, and F.

Somenzi, “ATPG aspects of FSM verification,” in Proc. IEEE Int. Conf.

Computer-Aided Design, 1990, pp. 134-137.

E. M. Clarke and E. A. Emerson, "Symhcsns of synchromzanon skele-

tons for branching time temporal logic,” in Logic of Programs: Work-

shop; Lecture Notes in Computer Science, vol. 131, D. Kozen ed NY:

Yorktown Heights, Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification

of finite-state concurrent systems using temporal logic specifications,”

ACM Trans. Programming Languages and Systems, vol. 1, no. 2, pp.

244-263, 1986.

0. Coudert, C. Berthet, and J. C. Madre, “Verification of synchronous

sequential machines based on symbolic execution,” in Automatic Ver-

ification Methods for Finite State Systems, International Workshop,

Grenoble, France; Lecture Notes in Computer Science, vol. 407. York-

town Heights, NY: Springer-Verlag, June 1989.

0. Coudert and J. C. Madre, “A unified framework for the formal

verification of circuits,” in Proc. IEEE Int. Conf. Computer-Aided

Design, 1990, pp. 126-129.

0. Coudert, J. C. Madre, and C. Berthet, “Verifying temporal prop-

erties of sequential machines without building their state diagrams,”

in Computer-Aided Verification, Proceedings of the 1990 Workshop:

DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence, vol. 3, R. Kurshan and E. M. Clarke, ed. American Mathematical

Society, 1990.

D. L. Dill, “Trace theory for automatic hierarchical verification of speed-

independent circuits,” in Advanced Research in VLSI: Proc. Fifth MIT

Conf. Cambridge, MA: MIT Press, 1988.

[10]

(13]

(14]

[16]

(7]

(18]

(191

[20]

[21]

424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, APRIL 1994

[22] D. L. Dill, “Trace Theory for Automatic Hierarchical Verification
of Speed-Independent Circuits,” Ph.D. dissertation, Carnegie Mellon
University, Pittsburgh, PA, 1988.

D. L. Dill, Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits, ACM Distinguished Dissertations. Cam-
bridge, MA: MIT Press, 1989.

T. Filkom, “A method for symbolic verification of synchronous cir-
cuits,” in Proc. Tenth Int. Symp. Computer Hardware Description Lan-
guages and their Applications, 1991.

R. P. Kurshan, “Testing containment of w-regular languages,” Tech.
Rep. 1121-861010-33-TM, Bell Laboratories, 1986.

B. Lin, H. J. Touati, and A. R. Newton, “Don’t care minimization
of multi-level sequential logic networks,” in Proc. IEEE Int. Conf.
Computer-Aided Design, 1990, pp. 414-417.

A. J. Martin, “The design of a self-timed circuit for distributed mutual
exclusion,” in Proc. Chapel Hill Conf. VLSI, 1985,

A. J. Martin, “A synthesis method for self-timed VLSI circuits,” in Proc.
IEEE Int. Conf. Computer Design, Oct. 1987.

K. L. McMillan, “Symbolic Model Checking: An Approach to the State
Explosion Problem,” Ph.D. dissertation, Carnegie Mellon University,
Pittsburgh, PA, 1992,

K. L. McMillan, Symbolic Model Checking. New York: Kluwer, 1993.
K. L. McMillan and J. Schwalbe, “Formal verification of the Encore
Gigamax cache consistency protocol,” in Proc. Int. Symp. Shared Mem-
ory Multiprocessors, 1991.

C. Pixley, “A computational theory and implementation of sequential
hardware equivalence,” in Computer-Aided Verification, Proceedings
of the 1990 Workshop; DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 3, R. Kurshan and E. M. Clarke, ed.
American Mathematical Society, 1990.

J. A.-Rees, N. I. Adams, and J. R. Meehan, The T Manual.
Haven, CT: Yale University, 4th ed., 1984.

H. J. Touati, H. Savej, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Implicit state enumeration of finite state machines using
BDD’s,” in Proc. IEEE Int. Conf. Computer-Aided Design, 1990, pp.
130-133.

[23]
[24]

[25]

(26]

(27]
(28]
[29]

[30]
(31]

[32]

[33]
{341

Jerry R. Burch (5'92-M’92) received the B.S. and M.S. degrees in computer
science from the California Institute of Technology in 1984 and 1985,
respectively, and the Ph.D. degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, in 1992,

He is currently a Postdoctoral Scholar in the Computer Science Department
at Stanford University. His research interests include formal verification,
models of concurrent systems, and applications of binary decision diagrams.

Edmund M. Clarke (M’80) received the B.A.
degree in mathematics from the University of Vir-
ginia, Charlottesville, in 1967, the MLA. degree in
mathematics from Duke University, Durham, NC,
in 1968, and the Ph.D, degree in Computer Science
from Comnell University, Ithaca, NY, in 1976.

After receiving his Ph.D., he taught in the De-
partment of Computer Science, Duke University, for
two years. In 1978 he moved to Harvard University,
Cambridge, MA, where he was an Assistant Profes-
sor of Computer Science in the Division of Applied
Sciences. After leaving Harvard in 1982, he took a position as an Associate
Professor in the Computer Science Department at Carnegie-Mellon University,
Pittsburgh, PA. He was appointed Full Professor in 1989. His interests include
software and hardware verification and automatic theorem proving,

Dr. Clarke is on the editorial boards of Distributed Computing, Logic and
Computation and is.an editor-in-chief of Formal Methods in Systems Design.
He is a member of the Association for Computing Machinery, IEEE Computer
Society, Sigma Xi, and Phi Beta Kappa.

New

David E. Long received the B.S. degree in computer science from the
California Institute of Technology in 1987 and the Ph.D. degree in computer
science from Carnegie Mellon University in 1993,

In 1993, he joined AT&T Bell Laboratories, Murray Hill, NJ, where he is
now a Member of the Technical Staff. His research interests include formal
verification, test generation, and applications of binary decision diagrams.

Kenneth L. McMillan received the Ph.D. in computer science from Carnegie
Mellon University in 1992. He holds the M.S. (Stanford, 1986) and B.S.
(University of Illinois, 1984) in electrical engineering.

He is currently at AT&T Bell Laboratories, working in the area of computer-
aided formal verification. Before starting at Camnegie Mellon, he worked as
a biomedical engineer on various signal- and image-processing applications,
and also as an ASIC designer, which led to his interest in formal verification.

David L. Dill (M’90) received the S.B. degree in computer science and
engineering from the Massachusetts Institute of Technology in 1979 and the
Ph.D. in Computer Science from Carnegie Mellon University in 1987. He
is an Assistant Professor of Computer Science at Stanford University and
a member of the Computer Systems Laboratory at Stanford. His research
interests include formal verification of finite-state systems (including digital
control circuits, protocols, and hard real-time systems) and the design and
automatic synthesis of asynchronous circuits, ;

Dr. Dill’s Ph.D. thesis, on automatic verification of speed-independent
circuits, has been published by the M.LT. Press as an ACM Distinguished
Dissertation. He received a Presidential Young Investigator award from the
National Science Foundation in 1988 and was named a Young Investigator
by the Office of Naval Research in 1991.

