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Abstract

The mathematical notations of Formal Verification Tools (FVTs) do not prevent us from wrongly
defining the behavior of systems, any more than modern CASE tools do. With software rapidly
growing in size and complexity, graphical specifications in languages like UML need to be formally
verified, before the implementation phase, in order to guarantee the development of more reliable
systems. While the enterprise of integrating CASE and FVTs has had reasonable success with the
translation of simple diagrams to model checkers’ notations, there has been few progress regarding
the fundamental aspects an interface should have to fully integrate them. In this work we present
an interface for joining both technologies as a reliable solution to bridging this gap.

Keywords: Verification Tool, Verification Agent, Transformation.

1 Introduction

The mathematical notations of formal verification tools do not prevent us
from wrongly defining the behavior of systems, any more than UML-based
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CASE tools do. 4 However, the languages used to build models in the former
have precise semantics which allow us to find errors by means of automatic
verification algorithms, e.g. model checking, which is not the case in the
latter. CASE tools are considered to be user-friendly because of their graphical
representation and their “capability” to provide free textual information to
describe constraints not captured either by diagrams or constraint languages
(for instance OCL). Thus, CASE tools lack the necessary apparatus to perform
(semi-)automatic processing over models.

With software rapidly growing in size and complexity, graphical specifi-
cations in languages like UML need to be formally verified, before the im-
plementation phase, in order to guarantee the development of more reliable
systems. A few years ago, the formal verification community began investi-
gating mechanisms to integrate such graphical specifications with verification
tools. While this approach achieved reasonable success on the translation of
simple diagrams to model checkers’ input notations, the results of verification
were not well integrated back into the CASE tools’ process. Interpreting the
results of verification is still highly human-dependent, and the intensive use
of these tools in software development is yet to be achieved.

We claim that a protocol interface joining both technologies can be a more
reliable solution to bridging this gap. First, it would avoid the introduction
of further notational overhead on either side. Second, we would be able to
implement algorithms for reasoning about the relationships between high level
specifications and verification results. Finally, such a protocol could also be
used for guiding the verification result’s explanation with an AI agent “flavor”.

This way of bridging the gap allows a convenient marriage between the
operations that map to models on both sides. This representation allows a
“pre-processing” of system development models in such a way that when they
are translated into formal specifications we can retain their original semantics.
This means that the results of verification can be better mapped into causal
explanations on the model.

The rest of this paper is organized as follows. In Section 2 we outline the
fundamental ideas that motivated our research, and also the features a proto-
col interface should have in terms of language for intermediate representation
and functionalities. Section 3 presents an implementation of such a protocol
at the representation level. Section 4 describes an experimental result of an
actual implementation of our approach for SMV translation, and and make
a brief analysis pointing out the way to turn back the verification result in

4 In this text we use the term CASE to mean the modern Computer Aided Software
Engineering tools based on UML graphical notation, although it originally was used to
describe tools to support the development of structured programming methods
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terms of error analysis. In Section 5 we describe our efforts in relation to other
research in this area. Finally, in Section 6 we address some remaining open
questions.

2 An AI Perspective for Integration

In this section we present the motivation of this work and the Artificial In-
telligence (AI) perspective to integrating Formal Methods (FMs) and UML
tools for system development.

2.1 The Reasons for an “Intelligent” Intermediate Level

One of the main purposes of Software Engineering (SE) is to enable devel-
opers to build systems that operate reliably despite their complexity. The
formal methods community has developed many tools to help achieve this
goal. The mathematical nature of such tools has not contributed to their
adoption in the daily activity of software development. This may be because,
in the past, software applications did not require rigorous definitions, as they
were mostly focused on information systems. In order to handle complex in-
formation CASE tools were developed, and they evolved to the point of being
semi-formal as is the case with many object-oriented tools such as those based
on the Unified Modeling Language (UML).

UML CASE tools provide functionality for obtaining better abstraction
with encapsulation capabilities, and offer a variety of mechanisms for defining
the structure and behavior of systems. These mechanisms are not, however,
sufficient for precise analysis as required for new market demands with respect
to reliability. Such tools could aid in the development of safety critical systems
if they were combined with formal methods to achieve this precision.

According to Clarke et al. [3], in order to join these approaches in an
attractive way some fundamental concepts should be developed and new tools
should satisfy some criteria. These criteria are not necessarily related to formal
methods. The current state of CASE technology does not embody three of
these criteria, namely

composition: the combination of methods, specifications, models, theories,
and proofs.

abstraction: the identification of levels of abstraction (possibly), taking the
features of application domains into account.

reuse of models and theories: the use of parameterized models and theo-
ries, avoiding the need to start from scratch each time a new application is
tackled.
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One might argue that these concepts are used in some way at both the
semi-formal specification and formal verification levels. Unfortunately, the
notations and therefore the embodiments of the concepts are very different.
Even worse, if the notations do “match” it does not imply the combination is
correct, as Clarke also pointed out [3].

Scientific advances and technological developments in both areas have
reached a point that trying to embody the features of one (FMs) into another
(CASE tools), would be similar to building an “all purpose development tool.”
In order to join these disparate worlds it is necessary to introduce, on each
side, translation mechanisms and interpretation methods in order to deal with
the feedback from verification tools. This can be problematic for the following
(not exhaustive) reasons.

(i) UML itself is a miscellany of graphical language notations, and it seems
unproductive to make a verification tool support all diagrams. However,
if any one is chosen, there could be application domains where the others
would be more relevant.

(ii) Direct mapping of UML diagrams into a formal notation may bring se-
mantical correspondence problems (depicted in Figure 1), such as:
• the loss of the original UML model at the verification level
• the difficulty to mapping back the result of verification onto the original

model.

S1

S2

S3

S4

S6S5

MODULE main
VAR
...
AG(state=s1 −> EF (state = s6))

MODULE S3(e)
VAR
   state : {S$,S5,S6}
next(state) = case

state=s1 : {s3,s2}
esac...

   state : {S1,S2,S3}

Semantical
Correspondence?

Fig. 1. Problems with semantical correspondence between UML and formal notation.

(iii) Large scale software development deals with huge flows of information
across model diagrams, team notes, etc. To manually map all of this to
a verification model would be unproductive, as the time a product has
to reach the market is small compared to the time necessary for training
dozens of developers in using formal verification tools.

A single solution to all of these problems seems to be a nearly impossi-
ble target. The concepts associated with their union, however, point to the
crystallization of a computational entity suitable to mediate the integration
of both CASE and formal verification tools. The concept of a protocol has
allowed better management of huge flows of information across computer net-
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works and the Internet. In the same way, an interface (or protocol) layer
between CASE and formal verifications tools would be more likely to succeed
in scaling than either one alone.

The methodology we used to analyse the requirements for such a layer is
based on the concept of intelligent agent from Artificial Intelligence [17], and
we claim it is justified for the following reasons.

• Automatic translation, alone, from models in UML to models for verification
is useless without tools for managing this translation and applying it to
handle complex systems. For instance, cause analysis of errors in such
systems is still basically done by specialists with no automatic support at
all.

• There is lot of knowledge in between both worlds not associated to algo-
rithmic verification or high level modeling per se. For example, synthesis is
not meant to be only simple translation or cross-execution. It could also be
used to search for a similar model (or parts of one), which has already been
verified and simply give back previous verification results.

• The “computational skill”, or in AI jargon reasoning mechanism, necessary
to find common patterns between a new model of a system and old ones
requires a representation approach able to capture common features using
structural language elements as much general as possible. In this way, we
may reify dynamic behaviour into “static relations” or snapshots of the
system’s behaviour.

• For very large systems the more a development tool is able to find out pat-
terns previously verified, the stronger will be confidence in the composition
of them.

These features are usually named as synthesis, compositional reasoning,
and error explanation, and are all important aspects associated to verification
presently lacking in automatic verification tools. The emphasis of our solution
is that a layer to join both worlds must have some way of knowing, out of many
possible interpretations (executions or inferences) of a model it could draw,
which ones it should actually draw. In other words, which ones are rationally
better (computationally less expensive) than others.

2.2 A First-Order Language Layer

The first aspect of an interface protocol for data exchange is the language
for representing the information it is supposed to process. As we are dealing
with two different kinds of notation this common language must be as general
as possible in terms of structural representation of information. First-Order
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Logic (FOL) is most suitable for the following reasons.

• FOL is “computationally universal” in that any problem with a compu-
tational solution can be described in it. Moreover, such descriptions can
be reduced to Horn clauses for logic programs: a set of axioms and rules
defining relationships among objects.

• There are many efficient inference engines for handling first-order expres-
sions or logic programs. These expressions are, by definition, well-structured
elements allowing us to create abstractions to represent any computational
model.

• FOL can be used to fiber other logical representation languages [8], and
so we may perform, among other tasks, synthesis across UML models and
formal verification notation.

• The strong relation between syntax and semantics of FOL representation
may produce a side-effect on the discipline of using graphical tools. The
reason is that while we may keep the original functionalities of a graphi-
cal tool, we may warn developers not to “abuse” the graphical freedom of
design. Provided the discipline is followed, we should be able to better iden-
tify patterns of specification and their relations to patterns of verification
models.

Another interesting advantage of using FOL is that the recent demands
for model exchange across enterprise applications brought about the XML
Metadata Interchange (XMI) [16]. Any valid XML description is associated
to a Domain Object Model (DOM). As DOM descriptions are easily mapped
into first-order expressions, all modern UML-based CASE tools which export
to XMI can be used in our architecture (see Section 4 for an example).

Figure 2 depicts the idea of the sort of integration we are proposing. We
map a system model UML statechart represented, for example, in XMI, into
its first-order representation [7].

A First-Order Specification Model (FOSM) representation can be used as
a knowledge base for reasoning about structural properties of the model and
consistency checking. Other applications are possible including synthesis (as
depicted at the flat level of Figure 2). This is used, for example, in transform-
ing a FOSM description into a First-Order Verification Model (FOVM) which
represents the target verification notation, which is then easy to translate
directly into the formal verification tool’s input notation.

A FOVM is derived from a FOSM by means of transformation rules when
requested. At first glance it might seem strange to T-encode computational
models of verification methods when they offer suitable notation to repre-
sent reactive (embedded) systems, and also T-encode inference mechanisms
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S1

S2

S3

S4

S6S5

var([scalar(state,[s1,s2,s3]),
instance(s3_child,module(id(S3),

[e]))]),
[...

module(id(main),

assign(next(state),case( ..)]) trans(s1,...,s3),
...])

[flat(s1),flat(s2),flat(s3)],
[s1],

[trans(s1,...,s2),

state_diag(s3,[s4]...)

state_diag(c,

MODULE main
VAR
...
AG(state=s1 −> EF (state = s6))

MODULE S3(e)
VAR
   state : {S$,S5,S6}
next(state) = case

state=s1 : {s3,s2}
esac...

   state : {S1,S2,S3}

Synthesis

XMI −> FOL

FOSM FOVM

First−Order
Representation level

Fig. 2. The interface layer to join UML tools and formal verification.

for proving properties about them. In most of these problems a finite state
machine (FSM) 5 is sufficient to represent the system behavior.

Along with FOSM and FOVM, the reprerentation level should also have
ways of representing the results of verification in first-order notation. This
information we call First-Order Verification Result (FOVR). To this triple we
name pattern of verification. Our proposition is that a VeriAgent needs a
representation for patterns of verification in order to perform meta-reasoning
about problem descriptions and represent knowledge about verification. These
patterns need not be represented in the original computational model notation
of formal methods.

2.3 The Inferences or Functionalities Layer

This layer is an open set of reasoning mechanisms to actually manipulate
FOSM, FOVM and FOVR. Such mechanisms or functionalities are not directly
associated with formal verification methods. It is open because we allow the
introduction of new mechanisms to extend the functionalities of a VeriAgent.
Some of these functionalities have been developed in the last ten years or so,
and others have never been realized. Our non-exhaustive list includes:

Synthesis to transform XMI notation into FOSM, and also to map (reduce,
compose, fiber, etc.) first-order representations into one another.

Property extraction to generate interesting properties, candidates for ver-
ification, as logical formulas.

Formal Code Generation to allow the translation of FOSM notation into
formal language notation. For instance, NuSMV for Model Checking.

Choice of tools to allow developers and experts to pick a suitable verifica-
tion tool given a new system specification model. This task certainly needs

5 FSM or one of its well known extensions, e.g.Fair Transition Systems [14].
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to interact with synthesis.

Verification Results to reason about patterns of specification and their re-
lation to patterns of verification associated with the history of solutions to
errors previously found.

Error Explanation to choose the appropriate means for explaining the er-
rors found, and to aid in debugging the model and specification.

Compositional Reasoning to exploit the organization of systems as inter-
acting components and to isolate components already verified from those
with potential errors.

Historical Reasoning to keep track of which aspects of system development
have been formalized and verified. This is actually the third layer to store
patterns of reasoning about the verification of certain models (possibly as-
sociated with specific application domains). This knowledge base depends
on the first-order representation.

To carry out the tasks listed above we propose a Verification Agent (Ve-

riAgent henceforth) as a computational component used to combine Formal
Methods and modern modeling languages, e.g. UML. This agent is composed
of three layers or components as depicted in Figure 3. The system’s developer
interacts with the Graphical Services interface, for example UML. After defin-
ing a new model she/he aks the VeriAgent to check for systems’ correctness.
The model is then translated into a FOSM representation, and the user is
requested to choose, from a list of generated properties, some he/she wants
to check. The agent may perform synthesis and generate a FOVM model.
The agent searches for a pattern of system’s verification that matches these
two models, by using some kind of semantical unification as done in [15] for
temporal reasoning. If some some is found, then the agent simply retrieves it
and give back to the developer the corresponding FOVR, otherwise it breakes
the original model and apply the same procedure to each submodel. If it fails
then it will call the verification tool passing as arguments the property and
the FOVM submodels into the appropriate notation for the chosen tool.

The module named Verification Guide is not in the core of the VeriAgent,
because it is a kind of interface which can be present in any of the approaches
listed in the figure. This module presents the outcomes of the reasoning mod-
ule (mainly for error explanation and causal analysis) to the developer in a
suitably helpful way. This can often probably be accomplished by extending
the graphical tool interface with the necessary features for that purpose.
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SMV

BMC

JPF

SPIN

FOVR

FOVM

FOSM

Patterns  of Verification

Compositional Reasoning
"Knowledge" about

Synthesis, Semantical Unification,
Compositional, Historical Reasoming
Error Explanation, Causal Reasoning

Natural

etc.
Language

Diagram

Graphical
Services

Verification Tools

etc.

First Order Representation

Reasoning  Mechanisms

History of Verification

Verification
Guide

UML Model

Fig. 3. The VeriAgent architecture.

3 A VeriAgent Implementation

3.1 LogUML: a FOSM Based on Logic Programming

The purpose of FORL is not to execute a FOSM, FOVM or FOVR in standard
computational logic fashion, but rather to use well known logical inference
engines to reason about patterns of both worlds and also about the results of
verification. Thus, this layer is composed of three model theories represented
as sets of well-formed structured expressions in first-order logic (FOL). At
this level we use the T-encode Hilbert style of representation [18] to deal with
those relations that, in their original computational model, would represent
relations, concurrent processes, etc.

In our case we are dealing with UML diagrams—in this work just stat-
echarts. The logical form we use as an example is a subset of the Logic
Programming (LP) [13] language. Apart from having a strong relation be-
tween syntax and semantics, LP has a powerful meta-language mechanism for
prototyping of any other notation we want to propose or extend LP itself.
We shall use Prolog despite the fact that it is based on standard first order
logic language, and so we have no structure for representing concurrency in a
suitable way. However, we are still able to map “states of concurrency” into
structured terms of our object language notation. This means that relations
or even processes specification can be reified into terms.

For the purpose of this paper we shall concentrate only on the representa-
tional aspects of UML statecharts and its counterpart in a formal verification
framework. For lack of space, not all of these concepts will be shown here in
this work. In what follows we define a Logic for Unifying Modeling Language,
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or simply LogUML.

3.2 Vocabulary

The idea is basically to extend the usual set of symbols as follows.

variables Lv is extended with the finite set Vuml of LogUML variables.

constants Lc is extended with the finite sets Cuml for names of classes, Snames

for names of states, Dnames ⊆ (Cuml ∪ Snames) for names of diagrams, and
S= , S©= , SA , S©A for flat, super flat, advanced and superadvanced states,
respectively. Npar for names of parameters, and Natt for attributes names,
Noper for names of operations and Nτ for names of valid LogUML set types.

Euml is a finite set of special functions for representing elements of the LogUML
language. For the purpose of this work we shall consider the following subset
of it:
{operations/1, param/1, attributes/1, f lat/1, super/1} ∪ Aadv ∪ Tuml ∪

Pτ , where
• Aadv is a set of functions, each one corresponding to an activity for UML

advanced states,
• Tuml is the set {trans/5, event/1,cond/1, action/1}
• Pτ is the set of unary function-types {t1(x1), . . . , tn(xn)}, and each xi ∈
Npar ∪ Natt, and ti ∈ Nτ .

We add the special predicates class/3 and state diag/4 into the set of pred-
icates LP .

Logical Symbols are the usual ones in standard Logic Programming.

3.3 Classes of Expressions

The classes of expressions we want to represent should reflect the elements of
an UML specification into the elements of LogUML language. For this work
the definition of a LogUML description of a system constitutes the specifica-
tion of its structure and of its behaviour. A structure of a class represents its
interface with the environment and so it should embody the class name, its
attributes and operations.

The behavior is captured through a diagram which embodies states and
transitions. In what follows we shall formalize these concepts and get into a
more detailed definition of each one.

attribute is a term of the form attrib(X) and X ∈ Pτ

parameter is a term of the form param(X) and X ∈ Pτ

operation is set of terms in the form ti(T, Pars), where ti ∈ Noper, T ∈ Pτ ,
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and Pars ⊆ Npar;

state is an element of the set Ds = S= ∪ S©= ∪ SA ∪ S©A , where elements of
S= are of the form flat(s),
S©= are of the form superflat(s),
SA are of the form advanced(s, la),
S©A are of the form superadvanced(s, la),

and s ∈ Snames, and la ⊆ Aadv.

transition is a term of the form trans(s1, event(E), cond(C), action(A), s2),
where s1, s2 ∈ S, E is a list of events, C is a “boolean condition” and A
is a list of actions. Actions can have conditions to be activated, for which
we use T-encode [18], to encode the implication (X → Y) with the function
impl(X, Y ).

class is an association of a class name C, attributes A and operations O,
written class(C, attributes(A), operations(O)).

state diagram is an association of Diagram name, a set of initial states, a
set of states, and a set of transitions, written as

state diag(D, Is, S, T ),
where D ∈ Dnames, Is ⊂ Snames, S ⊆ Ds, T ⊆ Tuml

LogUML class is a term of the form class(C, A, O), where C is the name of
the class, A is a set of attributes and O is a set of operations.

3.4 An Example of Mapping UML into LogUML

Figure 4 shows a simple UML model for a thermostat. This model was defined
using the ArgoUML 6 tool which exports diagrams to XMI by using a plugin
added into ArgoUML called PLogAr, generating a LogUML code.

Idle

active

activating

Heating

[ready]/turnon

Cooling

atTemp(t)

tooHot(t)

tooCool(t)

atTemp(t)

tooCool(t)

tooHot(t)

shutDown

Fig. 4. Thermostat Statechart Model

The translation from UML statechart into LogUML is not so difficult and

6 ArgoUML is a Copyright of Tigris Open Source Community which promotes Open Source
Software Engineering.
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for this example is actually very simple, since we have defined the UML ele-
ments as recursive first-order terms with a finite computation on the transla-
tion. This example above is written in LogUML as follows.

For the static pat of the model we shall interpret the thermostat as a
single unbreakable class, but it could be different. So we have the following
class model definition.

class(thermostat, attributes([float(t)]),
operations[ready(boolean,[ ]), shutDown(boolean,[ ]),
atTemp(boolean, [param(float(t))]),
tooHot(boolean, [param(float(t))]),
tooCool(boolean, [param(float(t))]), turnOn(boolean,[ ])]).

The dynamic part of the thermostat system model is declaratively written
as follows.

state diag(thermostat, initialstates([idle]),
[flat(idle), f lat(cooling), superflat(heating)],
[trans(initial, event( ), cond( ), action( ), idle),
trans(idle, event(shutDown), cond( ), action( ), f inal),
trans(idle, event(tooHot), cond( ), action( ), cooling),
trans(idle, event(tooCool), cond( ), action( ), heating),
trans(cooling, event(tooCool), cond( ), action( ), heating),
trans(cooling, event(atTemp), cond( ), action( ), idle),
trans(heating, event(tooHot), cond( ), action( ), cooling),
trans(heating, event(atTemp), cond( ), action( ), idle)]).

state diag(heating, initialstates([activating]),
[flat(activating), f lat(active)],
[trans(activating,

event(ready),
cond( ),
action(turnOn),
active),

trans(initial,
event(tooCool),
cond( ),
action( ),
activating)]).
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4 Mapping UML to SMV

In this section we describe the experimental result of an actual implementation
of a VeriAgent tool. A detailed description of the tool, using ArgoUML

is available [7]. The purpose here is to present part of the behaviour of an
implementation of VeriAgent.

Note that during the translation from XMI to LogUML the pseudo-states
initial and final, are introduced for completeness reasons. This notation
does not need to be shown to the developer as it is used as intermediate data
for other purposes (see Section 3). Synthesis is called within the ArgoUML

environment, and is performed by a Logic Program which implements the
translation chosen by the modeler. Such translations are seen, from the Ve-

riAgent perspective, as first-order interpretations. Here, we map UML to
Nu-SMV’s input notation using the following translation assumption.

4.1 An SMV Interpretation of UML Statecharts

From the (object-oriented) programming level perspective, event, action and
condition have the same semantics, i.e. they are just methods. What each
one does and returns as a result will differentiate one from another. As there
is no meaning for a transition with only a (guard) condition [5] and no event
associated we do not consider that case. Thus we simply add scalar variables
to each state to represent the states of the statechart. Due to space restrictions
this paper only considers events and states. There is also one type of module
variable (with possibly more than one instance). We shall use only ASSIGN
expressions in SMV to represent the transitions to change these variables.
This gives us the following, informal, mapping rule:

Every statechart D represented by predicate state diag(D, I, S, T ), where
S is the set {s1,. . . ,sk} of states, T is the set of transitions, and E is the set
{e1,. . . ,en} of events which trigger transitions in T, is translated into

MODULE D;

VAR state : {s1,...,sk};
event : {e1,...,en};

si child : Si(event);

INIT

init(state) := initial

init(event) := default

ASSIGN

next(event) := E; next(state):=

next(state) := case ...

state = si & e : sj; ...
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esac;

MODULE Si(e); ...

where every line of a next(state) case expression is associated with a
transition trans(si, event(e), cond(c), action(a), sj) in the state diagram. Note
that here we ignore conditions and actions as explained above.

Our mapping observes some basic principles. First, statecharts at level
zero are mapped to “MODULE main”, and superstates are modules called by
the module that it sees events rise from. In the translation schema above D

can call main, and all its sub-machines are modules. The hierarchy is derived
by simply creating a child variable in every module which has a superstate.

4.2 The Thermostat Example

Using the rules established in the previous section the thermostat diagram
is translated from LogUML into the following SMV code. First the main
diagram is translated as the main module. Note that an abstraction is made
for every super state and a child submodule is declared as a variable.

MODULE main

VAR

state : {heating,cooling,idle,final,initial};

event : {default, atTemp, tooCool, tooHot, shutDown};

heating_child : Heating(event);

ASSIGN

init(state) := initial; init(event) := default;

next(state) := case

state = initial & event = default : idle;

state = heating & event = tooHot : cooling;

state = heating & event = atTemp : idle;

state = cooling & event = tooCool : heating;

state = cooling & event = atTemp : idle;

state = idle & event = shutDown : final;

state = idle & event = tooHot : cooling;

state = idle & event = tooCool : heating;

1 : state;

esac;

next(event) := {default, atTemp, tooCool, tooHot, shutDown};

The recursive nature of the logical notation allow us to translate any sub-
diagram or super state as a separated module. The superstate heating of the
thermostate becomes a module Heating, and the child variable of the main
module is a type of Heating module.
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MODULE Heating(event)

VAR

state : {initial,active,activating};

ASSIGN

init(state) := initial;

next(state) := case

state = initial & event = tooCool : activating;

state = activating : active;

1 : state;

esac;

Note that we do not derive properties to be verified. In our tool the
user still has to enter the Computational Tree Logic (CTL) formula or Linear
Temporal Logic formula to be checked. Suppose we want to prove the following
safety property “the thermostat will never stay in the active state when the
temperature is too high.” This is represented in CTL as follows:

SPEC AG ((state = heating & event = tooHot)

-> AX (! heating_child.state = active))

Verification and Analysis

After translating the original model into LogUML and then into SMV, we are
able to model check the translation (which has the same name as the model
with the extension “.smv”). We used the NuSMV [1] model checker and ran
the verification as follows, where the option int runs an interactive mode of
NuSMV, and the command check spec verify all specifications given:

[mozart@smv-examples]nusmv -int thermostat2.smv

*** This is NuSMV 2.1.2 (compiled 2002-11-22 12:00:00)

NuSMV > go

NuSMV > check_spec

-- specification AG ((state = heating & event = tooHot)

-> AX (!heating_child.state = active)) is false

-- as demonstrated by the following execution sequence

-> State 1.1 <-

state = initial

event = default

heating_child.state = initial

-> State 1.2 <-

state = idle

event = tooCool

-> State 1.3 <-
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state = heating

event = tooHot

heating_child.state = activating

-> State 1.4 <-

state = cooling

event = atTemp

heating_child.state = active

The result says that the CTL formula given is false, which means that the
the safety property “the thermostat will never stay in the active state when the
temperature is too high” is false because the value of the heating child.state

is always active once it is reached. Examining Figure 4, we can see that, in
fact, the statechart does not have a transition leaving the active state.

In general, developers who use UML would say that, because of UML se-
mantics “it is assumed that the events tooHot(t) or atTemp(t) should change
the state.” We think this is a misleading assumption as the heating could be
an independent component plugged into the model, and we could never say
that it works properly unless it has been modeled properly, or assumptions
have been explicitly stated.

Note that the VeriAgent still does not generate this sort of analysis,
but as we mentioned in Section 3.1, explanation of errors is a goal of future
work [9].

After a hand translation of the model to ANSI C, we applied our current
error explanation algorithm, which is based on distance metrics for executions
of a system, to the example. In this case, of course, the most useful explanation
of the error is at the level of assumptions, but the automated explanation is
still instructive.

The basic explanation is in terms of the most similar execution that does
not result in an error. In this case, changing the event in state 1.3 from
tooHot to default and leaving all other values unchanged results in a different
transition being taken (the state at 1.4 is thus heating rather than cooling).
Generating causes (by a method analogous to David Lewis’ counterfactual
analysis [11] shows that the error is causally dependent on the second event
being tooCool and the third event being tooHot.

5 Related Work

Clarke [3] pointed out that the possibility of ”the role of formal methods in
the entire system development process increases, especially as the tools and
methods successful in one domain carry over to others.” Formal methods
should complement less formal methods that are used in the overall system
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development process. The goal is not to replace these methods, but to work
with them to improve requirements analysis, refinement, and testing.

The basic need is for understanding of how to compose methods, spec-
ifications, models, theories and proofs, means to identify different kinds of
abstractions of the model, and techniques for reuse and parameterize models
and theories.

Some work, like pUML [6], is concerned with giving more formalism to
UML using a meta-model defined in terms of the abstract syntax (natural lan-
guage description), well-formedness rules (like OCL), and modeling language
(natural language). The trend is towards UML as a well-defined modeling
language, with a more precise semantics, in order to reason about models and
verify the correctness of designs.

Others have translated UML models into the notations of verification tools.
One interesting example [2] translates statecharts from the STATEMATE tool
into the notation of the SMV model checker.

ASM UML [4] formalizes UML using Abstract State Machines (ASM) to
give a semantic model to UML, and then uses the ASM model in a verification
tool for UML.

The vUML of TUCS Research group [12], is a tool that automatically
verifies UML models where the behavior of the objects is described using
UML Statecharts diagrams. It uses the SPIN model checker to perform the
verification, but substate machines are not handled. Moreover, the authors
also agree that direct translation alone cannot cope with the loss of semantics
because the state machine is flattened and all hierarchical information is lost.

These works are focused on the use of model checking. A common level of
specification allows use of both theorem proving and model checking as the
verification agent will be able to decide the best formalism to verify a given
problem specification. The VeriAgent also allows the use of other tools, e.g.
STeP.

The Prosper project [10] advocates the use of toolkits which allow existing
verification tools to be adapted to a more flexible formalism so that they may
be treated as components.

6 Conclusions and Further Work

In this work we propose an approach for bridging the gap between software
specification tools based on UML and formal verification tools that relies on
an interface layer joining both kind of tools. By using a common level of
representation based on FOL we are able to build suitable mechanisms for
keeping track of the aspects of system development which are verified. The
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advantages of this are that:

• formal methods do not need to be adapted to meet the user-friendliness
demands of the current development tools market;

• specification tools may have a kind of verification plug-in, where the agent
verifier may help to choose a suitable verification method for specific appli-
cation domains based on a library of patterns of verified systems;

• current efforts at translating UML specifications can use the intermediate
level to improve translations.

We plan to investigate the following topics in future work:

• Automatic property extraction from UML diagrams. This will allow the
modeler to chose the kind of property to prove (safety, reachability, etc.)

• Full integration of inference engines to perform reasoning tasks. In the
current state of the implementation the modeler still has to call a Prolog
program from the command line.

• Better translation mechanisms to deal with events local to sub-state ma-
chines, conditions and actions. This will aid the mechanisms for causal
analysis of errors to detect which actions (or even state activities) are rele-
vant to an error.

• Integration of error-explanation techniques based on distance metrics be-
tween executions.

• Transformation of counterexample analysis [9] results into a natural lan-
guage style. The current output is quite difficult to understand if a large
system is being verified.
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