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Abstract

This paper discusses the development of an Ada Distributed
Application Prototyping Technique (ADAPT) to support the rapid
design and implementation of experimental distributed processing
systems. This technigue is predicated upon the use of Ada,
with a set of systematically-generated library packages, to
provide the facilities for interprocess communication.

ADAPT offers a prototyping environment in which a programmer
can write and compile an Ada application that will run
correctly on a distributed system. The specification of the
allocation of tasks to individual processors in the system
is decoupled from the specification of the application program
itself; compilation of the program together with the specification
of task allocation and various compile-time and run-time support
packages produces object code for the separate processors.

The views, opinions, and/or findings contained in this
report are those of the authors and should not be construed
as an official position, policy, or decision of the Department
of the Army, the Department of the Navy or any agency of the
U.S. Government, unless so designated by other documentation.
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1 Introduction

This paper discusses the development of an Ada Distributed
Application Prototyping Technigque (ADAPT) to support the rapid
design and implementation of experimental distributed processing
systems. This technique is predicated on the use of Ada, with
a set of systematically-generated library packages, to provide
the facilities for interprocess communication.

ADAPT offers a prototyping environment in which a programmer
can write and compile an Ada application that will run correctly
on a distributed system. The specification of the allocation
of tasks to individual processors in the system is decoupled
from the specification of the application program itself;
compilation of the program together with the specification of
task allocation and various compile-time and run-time support
packages produces object code for the separate processors.

The overall approach plans for multi-processor configurations
from the outset in order to support distributed applications at
the earliest possible date. The first phase of the project
develops the prototyping facilities for a multi-programmed
uniprocessor target configuration. The second phase extends
phase I to encompass various distributed multi-processor
configurations. A third phase would yield an enhanced system
based upon user feedback and experience with the phase II system.

Phases I and II comprise the subject-matter in this paper.
We discuss the principal components of ADAPT, those which exist
and others which still need to be built, and how they can be
integrated to form a comprehensive prototyping facility.

The paper is organized as follows: Section 2 sets forth
the basic assumptions regarding the nature of distributed
applications that underlie our approach. In section 3 we describe
a compile-time framework which permits the programming of a
distributed application to be carried out in much the same way
as if it were intended for a uniprocessor. In section 4 we
describe the remote procedure call facility that is required by
our target architecture. Section 5 discusses the specific
architecture that we have chosen for our system and the
ramifications of that choice. The program development tools
that we use are described in section 6. The paper concludes
with a project summary in section 7.
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2. Assumptions Regarding the Nature of Distributed Applications

This section outlines our basic assumptions concerning the
nature of the distributed application systems to be programmed
in Ada. Abstractly, we wish to conceive of some given target
configuration onto which a certain application is ultimately
to be mapped as a network of communicating "Ada Virtual Machines"
(AVMs). Every such configuration may therefore be characterized
in the first instance by an undirected graph, as depicted for
example in Figure 2-1:

FIGURE 2-1: A network of communicating Ada Virtual Machines.

The individual nodes of a particular network correspond
to fully independent (autonomous) processors, each of which is
capable of executing a complete Ada program. Accordingly, an
Ada Virtual Machine is to be viewed as an idealized single-
processor environment that directly implements the run-time
facilities required to support the semantics of the full Ada
language. Thus the concept of an AVM embodies an abstract
object machine for which Ada source programs might conventionally
be compiled (but disregarding all dependencies upon a specific
hardware architecture and/or host operating system); concretely,
it may be thought of as providing its own address space,
scheduler and real-time clock, together with a certain set of
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external interrupts, low-level device interfaces, etc. We
refer to this environment as a "virtual" (rather than "actual")
machine so as to also eliminate considerations arising from the
fact that several such machines might sometimes be multi-
programmed on the same physical processor (e.g., in the context
of an underlying time-sharing system).

The connecting edges appearing in a given network represent
possible paths of bidirectional communication between distinct
processor nodes. (Non-connecting edges, like those shown in
Figure 2-1, are meant to suggest additional paths of communication,
for instance with various devices attached to the individual
virtual machines.) The connectivity of such a network is assumed
to be sufficient for supporting the intended pattern of inter-
processor communication, meaning that each edge corresponds to
a path whereby both the requisite data and any appropriate
control signals can by physically transmitted between the two
connected nodes; moreover, the bandwidth of these connections
is presumed to be adequate for the application at hand.

We shall assume that the target configuration for any
specific application is always statically defined -- i.e.,
that the number of virtual (and even actual) processors is
established once and for all, and that the necessary paths of
communication exist from the outset. The primary stipulation
which we impose is that all interactions between separate nodes
of the network thereby defined must be achieved by explicit
communication across these more or less "thin wire" connections.
In other words, we preclude interactions based upon the existence
of shared memory or any form of centralized control. This
implies that the application in question must be formulated
from the beginning as a distributed system. The issue we wish
to address is how one might go about programming such applications
in Ada, so as to be able to effectively map those programs
onto the given multiprocessor configuration.

Ada provides an adequate basis for programming systems of
communicating sequential processes, and for supporting
synchronous communication between these processes. Once some
desired pattern of logical communication has been established
(for example, that depicted in Figure 2-2), there is no
particular difficulty involved in formulating the specifications
and subsequent definitions for the corresponding caller and
server processes (or subsystems). Insofar as the resultant
program is destined to be executed on a single processor
configuration (as represented by the Ada Virtual Machine
considered here), the job is effectively done once all of the
separate compilation units comprised by that program have been
successfully compiled (since an AVM is assumed to be capable
of directly executing any complete Ada program, regardless of
its textual decomposition).
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FIGURE 2-2: Example Application, in terms of Communicating
Seqguential Processes

However, when the target configuration is a network of

interconnected AVMs (e.g., Figure 2-3), then it is far less
obvious how to proceed. The effect that we should like to
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FIGURE 2-3: Example Target Configuration, in terms of
interconnected Ada Virtual Machines

achieve is to be able to essentially "superimpose" the intended
pattern of communication upon the underlying network (as
suggested by Figure 2-4), thereby preserving the overall logical
structure of the application. While the ability to do so pre-
Supposes that the application in question was formulated as a
distributed system in the first place (i.e., based solely upon
communicating sequential processes), it should then be possible
to map that structure onto any appropriate target configuration,
whether centralized or distributed. This is the premise of the
approach outlined in the present paper.
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3 Ada Language Framework

In this section, we shall outline a basic approach to
constructing a distributed application, such as that depicted
in Figure 2-4, by making extensive use of the separate
compilation facilities in Ada (and also of the related
capabilities for generic program units). For expository reasons
some practical problems associated with building distributed
software will have to be glossed over (or neglected entirely).
In particular, we shall be concerned solely with constructing
a definition for the steady-state operation of a given
application, even though it is well known that the issues
involved in startup and shutdown of a distributed system are
far more difficult to address. Needless to say, ADAPT must
and will address these issues.

The package declaration that follows shows, in skeleton
form, an initial specification for the application as a whole:
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package Config is

type NODE is (NN$1, NN$2, ..., NNgn); -- Node Names
type NSET is array (NODE) of BOOLEAN; -- Set of Nodes

package Node$1 is ... end;

package Node$h is

type OPER is (OP$1, OP$2, ..., OP8k); -- Op Codes
-- other type definitions

Host: constant NODE
Conn: constant NSET
-=- other constant declarations ...

NN$h;
(

generic
Site: in NODE;
package Service is
procedure P$1 (...);
procedure P$k (...);
end Service;

end Node$h;

package Node$n is ... end;

end Config;

««. => True, others => False);
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In order to formulate such definitions, we have adopted the
(purely lexical) convention of writing names with an embeddec
dollar sign, so as to be able to refer to unique identifiers
as if they were elements of a set distinguished by means of
subscripts. For instance, the declaration of the enumeration
type NODE is meant to suggest a range of values NN1, NN2, ...,
NN,, whereas in practice the individual values would correspond
to application-specific mnemonic names (e.g., NNp might be
written as the Ada identifier "FileServer"). Also, P$1l, ...,
P$k denote the particular procedural services which that
individual node provides.

This first specification consists primarily of package
specifications for the constituent nodes of the overall
configuration. The logical interface of each separate node
comprises, in addition to various type and constant declarations,
the declaration for a generic package Service, which will
ultimately be instantiated within the definition of other (caller)

nodes.

The associated body for the package Config, shown below,
serves to establish the overall conventions which are common
to all nodes. As such, it is primarily concerned with defining
the underlying communications interface, by which information
will be physically interchanged between distinct (virtual)
machines within the configuration. These conventions are
embodied firstly in a series of data type definitions, including:

- XREC, corresponding to a "transaction record" that
contains at least an indication of the respective source
and destination nodes for each transmission, as well
as an encodement of the particular "operation code"
for that particular transmission;

- XMIT, corresponding to a complete transmission, as
delivered to or received from a local communications
interface, which includes both an XREC component and
an associated buffer (whereby argument or result data
may be forwarded).

Two different types of transmission are distinguished at
the communication level, namely Transmit Call (XC) and Transmit
Response (XR), and the corresponding subtypes of XMIT are also
defined (CALL and RESP, respectively).

Finally, the actual communications interface is specified
in the form of two distinct generic packages, ChnDriver and
ChnServer. FEach of these has a number of generic parameters,
in particular, an operation Request and an operation Deliver
which will be bound in the context of their subsequent instan-
tiations in order to carry out the necessary acquisition
and disposition of transmissions over the underlying medium.
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This interface is assumed to take full responsibility for
setting and using the Orig and Dest Fields of the transact
record part of such transmissions. The details of these
interfaces will not be further specified here.

with Medium;
package body Config is

function Card(N:in NSET) return INTEGER range
0..NODE'POS(NODE'LAST)+1.

subtype OPID is INTEGER range 0..... ; == Max Op Code

type XREC is record
Orig, Dest: NODE;

Code: OPID;
end record;

type BUFF is ... ;
type XTYP is (XC, XR);

type XMIT(T: XTYP) is record
X: XREC:
B: BUFF:

end record;

subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

generic
From, To: in NODE;
with procedure Request(C: in out CALL);
with procedure Deliver(R: in RESP);:
package ChnDriver;

generic
From: in NSET;
To : in NODE;

with procedure Request(R: in out RESP);
with procedure Deliver(C: in CALL):
package ChnServer;

package body ChnDriver is ... use Medium; ... end;
package body ChnServer is ... use Medium; ... end;

package body Node$1 is separate;

package body Node$n is separate;

end Config;

ion
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We now introduce analogous definitions for each separate
node of our distributed configuration (the outline for that
representing the Node$h is shown below). In this instance,
however, such a step no longer constitutes an "extra" level
of abstraction; rather, it is essential -- for this is the first
place in which we permit actual instantiations (of code or
data), since we have only now reached a level that corresponds
to some physical machine environment.

The definition of such a shell serves to establish what
might be construed as an "Application Virtual Machine", in
terms of which the constituent subsystems of the actual
application (e.g., the modules ASl...A$m) may then be programmed
without further regard to the distributed nature of the
underlying target configuration. This definition serves to
provide:

- An indication of the target environment for this
particular node (pragma SYSTEM);

- The specification of the application modules to be
hosted within this node (the package declarations
for AS$l...AS$m);

- A mapping of the remotely callable services provided
by this node onto the operations defined by those
modules (e.g., renaming of P$i);

- Dpefinition of both sides of the higher-level protocol
required to support such remote calls, namely the
driver side (the body of the generic package Service)
and the server side (the body of the non-generic
package Support);

- Finally, instantiations of the remote services needed
to implement the application modules of this node
(package NodeSu, NodeS$v, etc.).

-10-
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separate (Config)
package body Node$h is

pragma SYSTEM(...);
-- Specify locasl application modules:

package A$1 is
procedure Q$1(...);

procedure Q$f(...);
end A$1

package A$m is
procedure Q$1(...);

péécedure Q$g(...);
end A$m;

-- Local (re)definition of services:
procedure P$i(...) renames A$a.Q$b;
-- Support services called remotely:

package Support;
package body Support is -- Server side of Protocol

end Support;
package body Service is -- Driver side of Protocol

end Service;

-- Provide services needed locally:
package Node$u is new Config.Node$u.Service(Site => Host);

* e

package Node$v is new Config.Node$v.Service(Site => Host);

package body A$1 is separate;

ééékage body A$m is separate;

end Nodes$h;

=13
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Within the framework of this shell, the application
modules would again be defined as separately compiled subunits:

separate (Config.Node$h)
package body A$1 1is

Node$u.P$i(...) ...

end A$1;

e o @

separate (Config.Node$h)
package body A$m is

... Node$v.P$j(...)

end A$m;

The approach outlined above effectively makes use of the
Ada "Program Library" to establish the context in which
individual components of a distributed application may be defined
in terms of a purely procedural interface to services which
are nonetheless hosted on different nodes of a distributed
target configuration. The possible protocols by which such an
"interprocessor procedure call" capability might be realized
are the subject of Section 4 of this paper.

s



4, Remote Entry and Procedure Call Protocols

In this section, we shall be concerned with the protocols
by which the desired interprocessor procedure call capability
is implemented for a particular distributed application. Thus,
at this point, we shall elaborate upon actual definitions for
the driver side (which serves to map such calls onto the
communications interface) and the server side (which acts to
: carry out such calls on behalf of any remote caller); these
implementations correspond to the bodies of the packages
Service and Support, respectively, which are defined within
the body for the node wherein those remotely callable services
are to be hosted.

For purposes of exposition, we shall consider only one
instance of such a definition, that associated with the virtual

. machine Node$h (which makes available the operations P$1...PSk)

i and, moreover, we shall sketch out the detailed implementation
for only one of the operations in question, identified throughout
as P$i. This involves no loss of generality, since the structure

§ for all other operations and nodes is essentially the same.

; Accordingly, the overall goal for the implementations that will

be described here is to provide the capability suggested by

Figure 4-1, namely to permit application processes such as

Aj, A, B...C, residing on separate (virtual) machines, to

invoke the operation P; hosted by Nodep (corresponding to yet

another such virtual machine) as though by a simple (local)

procedure call.

o
,% Al Chn 1
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FIGURE 4-1: Overview of the Required Capability, to Support
Remote Calls on the operation Py
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To simplify the presentation, we shall assume that the
operation of interest has the following specification:

procedure p$i(Al: in TAl;...; Ax: in TAx; Rl: out
TRl:..«§ Ry: oub TBRy};

where Aj stands out for the jth input argument (of type TAJ)
and Rk stands for the kth output result (of type TRk):

formal parameters of mode "in out" are thus presumed to have
been decomposed into separate input and output objects. We
note that some restrictions must be imposed upon the types

of parameters in the present context. Specifically, it must
be possible to copy the associated objects from one machine

to another, which precludes the passage of task or "limited
private" types (for which assignment is not defined). Similarly,
it must be possible to meaningfully refer to such objects both
locally and remotely, which precludes the passage of access
types (except when declared as “private").

In the subsections which follow, we shall develop two
alternative definitions for the desired.protocol, referred
to as the Remote Entry Call and the Remote Procedure Call,
respectively.

In the first (and simpler) version, we impose the
property that, from each distinct caller node, there is at
most one remote call to any given operation in progress at
a time. Such an implementation is appropriate, for example,
in cases where the operations to be invoked are known to be
entries (i.e., serviced in a purely sequential fashion), whence
there is no advantage to be gained by forwarding more than one
potentially concurrent call from some particular node (since
these would then have either to be buffered within the
communications medium or engueued by the corresponding server
node) .

The second version relaxes this restriction, allowing
a (bounded) number of calls on the same operation to proceed
concurrently from within each separate caller node. This
somewhat more complicated strategy is useful in situations
where there is some optimization to be achieved (on the server
side) by recognizing new calls before all previous ones have
been completely serviced (as for instance in the context of a
disk scheduler).

Tt must be stressed that there is no semantic distinction
between these alternative implementation strategies. The
choice affects only system throughput and thus the overall
performance of the application in qguestion; it should therefore
be made on that basis alone.

-
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We shall now proceed to develop Ada definitions for these
two alternative protocols, expressed primarily in terms of
the synchronous communication primitives embodied in the
tasking facilities of that language. Each of the implementations
to be described consists of the driver side (the body of the
generic package Service, which is to be instantiated within
one or more remote caller nodes), and the corresponding server
side (the body of the package Support, which resides within
the Ada Virtual Machine that hosts the operations in question).

We have further extended this approach so as to take into

account the unreliability of the transmission medium in question,
while still assuming that the nodes within the overall
configuration are perfectly reliable. [See document CADD-8103-3102.]

4.1 The Remote Entry Call

As stated above, the first strategy is based on the
property that no more than one remote call on each operation
is in progress from the same node at any given time, so as
to avoid saturation of the communications medium or overloading
of the corresponding server node. As such, this property
is necessarily established on the driver side of the protocol
defined below.

4.1:1 The Driver Side

The overall structure and associated data-flow for the
driver side are depicted in Figure 4-2. Calls on the operation
P$i, originating from application tasks Ta...Tz are fielded by
an Agent which is specific to that operation (AGTi); this latter
acts to acquire the input arguments for each individual call
(Al...Ax) and to subsequently deliver the corresponding output
results (Rl...Ry). These two separate transactions for every
operation hosted by Nodey, (P$l...P$k) are dispatched via
distinct processes, the Driver Call Handler (DCH) and the
Driver Response Handler (DRH), which respectively act to forward
calls and retrieve responses from the Local Channel Driver
(LCD) for Nodep. These handlers are formulated as independent
(concurrent) processes so that the order in which LCD requests
calls or delivers responses will not be unnecessarily constrained
by this protocol.

218
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FIGURE 4-2: Overall Structure and Data-Flow on the Driver Side
for the Remote Entry Call Protocol.

The outline of (generic) package body for the driver
side is shown below:
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package body Service is

task DCH is
entry ReqCa’l(C in out CALL);
entry D1, u)s

entry DC$i(A1: in TA1; -.o; Ax: in TAx);

éﬁéry DCsk(...);
end;

task DRH is

entry DelResp(R in RESP):
entry RR$1(...);

entry RR$i(R1: out TR1; ...; By: out IRy ) :

entry RR$k(...);
end;

package LCD is new ChnDriver(
From => Site, To => Host,
Request => DCH. ReqCall,
Celiver => DRH. DelResp)

package D$1 is ... end;
ééékage D$i is
procedure P(A1: in TAT;...;8x: in Tax;
R1: out TR1;...;Ry: out TRy);
procedure PutArg(B: in out BUFF;
Al: in TA1: ce+; Ax: in TAx);

procedure GetRes(B: in BUFF; R1: out TR1;
«..; Ry: out TRy):
end D$i;
package D$k is .. end;
procedure P$1 (...) renames DE1.F;

ééécedure P$k (...) renames D3$k.P;

+ bodies of DCH, DRH, D$1, ..., Ds$k

end Service;

-17-
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The handler processes DCH and DRH are directly specified in
terms of Ada tasks, with entries to be called by the channel
driver and by the agents for the remote operations to be
invoked. LCD is obtained by instantiation of the generic
definition associated with the overall configuration. For
each operation, there is then a corresponding Driver package,
D$1l...D$k, which provides an operation P to be called by an
application process (as pP$i) along with operations for moving
arguments into and results out of the actual transmission

buffers.

Each time the channel driver requests a call (entry RegCall),

DCH makes a (non-deterministic) choice among the Agents waiting
to deliver a call for one particular operation (entry DCS$i),
whereupon it sets the OpCode of the transaction record for

that CALL and transfers the arguments into the associated

data buffer.

Each time LCD delivers a response (entry DelResp), DRH
decodes the Opcode appearing in the transaction record of that
RESP and then accepts the pending response request from the
agent for that operation (entry RR$i), transferring the
corresponding result data.

4,1.2 The Server Side

The server side of the Remote Entry Call protocol is
essentially symmetric to the driver side. The overall
structure and associated data-flow for this side are shown
in Figure 4-3. The Local Channel Server (LCS) forwards
incoming calls from connected nodes to the Server Call Handler
(sCH), and transmits the corresponding responses as dispatched
by the Server Response Handler (SRH). As before, these
handlers are formulated as independent processes (so as not
to constrain the order of transactions with the underlying
communications medium) and play a purely intermediary role.
The actual calls to a locally supported operation P$i are
performed by one of a number of Surrogate processes (SGT1i) ,
which act as stand-ins for the original calling processes
within some other node. Thus, there exist multiple surrogates
for each remotely callable operation, which serve both to
"buffer" incoming calls and outgoing responses (along with
their associated transaction records) as well as to invoke
the actual operation in question (as provided by one of the
application modules Al...Am supported by Nodep) .

w e
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FIGURE 4-3: Overall Structure and Data-Flow on the Server Side
for the Remote Entry Call Protocol

The implementation of the server side for Nodep is defined
in the (non-generic) package body Support, shown in outline
form below:
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package body Support is -- Server Side,

task SCH is
entry DelCall(C: in CALL);
entry RC$1(...);

L]

entry RC$i(XR: out XREC; A1:

eﬁéry RO$l(+s)3
end;

task SRH is
entry ReqResp(R: in out RESP);
entry DR$1(...);
entry DR$i(XR: in XREC; R1:
entry DR$k(...);

end;

package LCS is new ChnServer(
From =» Conn, To =% Host,
Deliver => SCH.DelCall,
Request => SRH.ReqResp);

package S$1 is ... end;

éaékage S$i is

out TA1;...; Ax:

in TRIiwswi BYS

defined in Config.Node$h;

out TAxX):

in TRy);

procedure GetArg(B: in BUFF; A1: out TA1;...; Ax: out TAx);

procedure PutRes(B: in out BUFF;
end S$i;

package S$k is ... end;
+ bodies of SCH, SRH, S$1,

end Support;

D)

Ri: in TRVz...3 Byt in TRy);

., S$k
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The handler processes are again directly specified as Ada tasks
(SCH and SRH) and the communications interface is obtained

by generic instantiation of the definition ChnServer for the
overall configuration. As on the driver side, separate

Server packages S$l...S$k are introduced here for each individual
operation P$1...P$k that can be called remotely.

Upon delivery of a new call from LCS (entry DelCall),
SCH switches on the OpCode and accepts a request for a call
to the specified operation (entry RC$i) from the next of the
(possibly many) Surrogates which are gueued up on the
corresponding entry. This dispatching consists simply of
copying the transaction record contained within this particular
CALL and transferring the associated arguments (via the operation
PutArg provided by S$i).

Each time LCS requests a new response (entry RegResp),
SRH makes an arbitrary choice among pending responses ready
to be delivered for any operation (entries DRS$1l...DRSk),
whereupon the original transaction record and corresponding
output results are copied into the RESP, to be transmitted
back to the node from which that particular call originated.

It should be noted that no special precautions are
taken on the server side to ensure the basic property of the
Remote Entry Call protocol (at most one call in progress to
each operation from any given node); this is solely a concern
on the driver side. The servers simply invoke the local
operations in question. If these have been specified as
entries, then those calls will indeed be serviced sequentially;
otherwise they will proceed concurrently.

What is of significance on the server side, however, is
the fact that there are exactly as many Surrogates for each
operation as there are Agents in total (distributed among the
possible caller nodes). This property, referred to as local
balancing, is fundamental to the solutions developed here, in
that it ensures that this protocol does not require any
additional storage capacity within the underlying communications
medium nor any other form of buffering than that provided by
the Surrogates themselves. This same property also guarantees
that the communications interface will never by unduly tied up
(since there will always be an available Surrogate ready to
proceed) .
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4.2 The Remote Procedure Call

In this section, we develop an alternative to the Remote
Entry Call protocol, wherein we allow a (bounded) number of
calls to the same operation to be in progress concurrently
within a given caller node (while still maintaining the
overall load balancing that characterized our first solution).
This somewhat more general strategy is described as a modification
to the approach developed initially.

The point of departure for this strategy is to extend
slightly the initial specification for the application as a
whole:

package Config is

type NODE is (NN$1, NN$2, ..., NN8n);
type NSET is array (NODE) of BOOLEAN,
subtype CONC is INTEGER range O0.....; -- Max Concurrency

packzage Node$l is ... end;

package Node$h is

type OPER is (OP$1, OP$2, ..., OP$Kk);
type MPLX is array (OPER) of CONC;
-- other type definitions ...

NN¢$h;

Host: constant NODE
(... => True, others => False);

Conn: constant NSET
Load: constant MPLX .o}
-- other constant declarations

generic’
Site: in NODE;
Usag: in MPLX;
package Service is
procedure P$1 (...);

ﬁéécedure Pk {weads
end Service;

end Node$h;

package Node$n is ... end;

end Config;
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The changes are wholly concerned with this added (potential)
COoncurrency:

A subtype CONC is introduced, whereby the maximum
degree of concurrency anywhere within the system
is specified;

Within the package specifying each Nodeyp, a type
MPLX is defined, values of which indicate a degree
of concurrency on an operation-by-operation basis;

A constant load (of type MPLX) is defined for each
Nodep, whereby the limits on the overall concurrency
(from all callers) are established for every such
node;

An additional generic parameter Usag (of type MPLX)
is introduced for the Service package, so that the
degree of concurrency for individual caller nodes
may be set upon subsequent instantiation.

Minor modifications are also introduced into the body
of the package Config, wherein the overall communications
conventions are established:

—-23-
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with Medium;
package body Config is

subtype OPID is INTEGER range O..... :
subtype RCID is CONC range 1..CONC'LAST;

type XREC is record
Orig, Dest: NODE;

Code: OPID;
Iden: RCID;
end record;

type BUFF is ... ;
type XTYP is (XC, XR, AC, AR);
type XMIT(T: XTYP) is record
X: XREC;
B: BUFF;
end record;
subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

generic
From, To: in NODE;
with procedure Request(C: in out CALL);
with procedure Deliver(R: in RESP);
package ChnDriver;

generic
From: in NSET;
To : in NODE;
with procedure Request(R: in out RESP);
with procedure Deliver(C: in CALL);
package ChnServer;

package body ChnDriver is ... use Medium; ... end;
package body ChnServer is ... use Medium; ... end;

package body Node$1 is separate;

package body Node$n is separate;
end Config;

i, g
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The changes are to define an additional subtype RCID, which
will serve to identify a particular remote call originating
from a given node (since the OpCode alone will no longer be
sufficient for this purpose), and to add a new component
Iden (of type RCID) to all transaction records.

The only changes within the definitions of the separate

nodes of the application would be to suitably set the generic
parameter Usag upon each instantiation of the package Service:
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separate (Config)
package body Node$h is

pragms SYSTEM(s.a);

-- Specify local application modules:

package A$1 is
procedure Q$1(...);

ééécedure a0 o U
end A3$1
paékage ASm is
procedure Q$1(...);

ﬁéécedure g$gl...JN5
end ASm;

-= Local (re)definition of services:

procedure P$i(...) renames A$2.Q$b;

s o &

-- Support services called remotely:

package Support;
package body Support is

end Support;
package body Service is

end Service;

-= Provide services needed locally:

-=- Server side of Protocol

-= Driver side of Protccol

g

fie =

package Node$u is new Config.NodeSu.Service
(Site => Host, Usag =? R, -

package Node$v is new Config.NodeSv.Service

N .

(Site => Host, Usag =2 ...}

packzge body A$1 is separate;
package body A$m is separate;

end Nodes$h;
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4.2.1 The Driver Side

The changes on the driver side in going from the Remote
Entry Call to the Remote Procedure Call are concerned with
keeping track of the identity of calls in progress. At the
first level, this involves adding an additional ID parameter
to the DCSi entries of the Driver Call Handler (DCH), and
introducing a Post Response procedure (PR) to each of the

Driver packages D$1l...D$k:

package'body Service is -- Driver Side, defined in Config.Nodesh:

task DCH is
entry ReqCall(C: in out CALL);
entry DC$1(...);
entry DC$i(ID: in RCID; Al: in TA1; ...; Ax: in TAx);

éntry DC$k(...);
end;

task DRH is
entry DelResp(R: in RESP);
entry RR$1(...);
éﬁéry RR$i(R1: out TR1; ...3 Ry: out TRy):

entry RR$k(...);
end;

package LCD is new ChnDriver(
From => Site, To => Host,
Request => DCH.ReqCall,
Deliver => DRH.DelResp);

package D$1 is ... end;

package D$i is
prad¢edure P(AT: inm TAYTj...j8x: in TAx; R1: out TR1;...3Ry:; out TRyl;
procedure PutArg(B: in out BUFF; A1: in TA1: ...; Ax: in TAx);
precedure GetRes(B: in BUFF; R1: out TR1; «s««3 Ry: out TRw¥):
procedure PR(ID: in RCID)

end D$i;

ééékage D$k is .. end;

procedure P$1 (...) renames D$1.P;

procedure P$k (...) renames D3$k.P;

+ bodies of DCH, DRH, D$1, ..., D$k

end Service;
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The definition of DCH is then modified to store the
identity of each call as part of the transaction record which
it forwards. The corresponding modifications to DRH involve
its passing that identity to the appropriate PR procedure
prior to accepting a request to dispose of each incoming
response:

Within a Driver package D$i, the modifications consist
primarily of introducing a multiplicity of Agents for the
same operation (whereas there was only one heretofore).

This is accomplished by defining an array of agent tasks

(AT), the range of which is established by the Usag generic
parameters. Thus, the index in this array (of type AID)

will serve to uniquely identify a particular call-in-progress
for the operation P$i. At the same time, additional entries
have to be provided for the AGT task: these are Init (whereby
an Agent acquires its own identity) and Done (whereby it may
be notified that the response for the call it is carrying out
has been received). The procedure PR is essentially a call
to this latter entry. A further task, the Agent Manager (AM)
is now needed to establish the initial correspondence between
the original call (from some application process) and the
particular agent which will perform that transaction. This
correspondence is created by the procedure P, which is called
(concurrently) by every application process seeking to invoke
the remote operation P$i.

After initialization an Agent enters its main cycle,
wherein it first makes itself available to AM prior to
accepting the resultant call via its entry Exec. Within the
corresponding rendezvous, it delivers its own identity to
SCH along with the arguments for the call in progress, it then
awaits notification (via the entry Done) that the response for
that particular call has been received before proceeding to
request the results on behalf of the original caller,

4 .22 The Server Side

In passing from the Remote Entry Call to the Remote
Procedure Call protocol, essentially no modifications are
required on the server side (since this latter already
provided for some degree of concurrency, insofar as it had
to handle incoming calls from more than one caller node).
The only provision that must be made is to possibly increase
the number of Surrogates for each operation P$i, which would
be specified within the corresponding Server package S$i as
follows:

subtype SID in CONC range 1..LOAD (OP$1i);

i
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thereby fixing the number of elements in the array of surrogate
tasks. This will presumably preserve the overall load balancing
(number of Surrogates = total number of Agents, for each
operation Pi) upon which both of the protocols developed in

this section have been based.
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5. Hardware Support for ADAPT

The hardware which supports ADAPT must perform certain
functions:

1. It must be able to execute Ada programs.
2. It must support distributed processing.

3. It must provide the user with interactive support
for prototyping.

4. It must allow any prototype so developed to be tested,
run and measured.

5. It must support interfaces between prototype systems
and real systems.

The specific hardware configuration chosen makes use of
commercially-available components wherever possible. The

basic architecture is a heterogeneous collection of processors
connected together in a network. This collection of processors
will include at least one interactive personal workstation,

a number of Intel 432 microprocessors, and access to a VAX/UNIX
system. These processors will be connected by an Ethernet
local area network. As needed, some of the 432 microprocessors
can be interconnected by an Intel Multibus to allow high-
bandwidth sharing of data.

This collection of hardware supports an Ada runtime
environment, and each processor acts as an Ada virtual machine
within that environment. The Ada runtime environment defines
the low level network protocols required. Higher level network
functions will make use of the Remote Entry and Procedure Call
Protocols described earlier.

The personal workstation will support rapid and accurate
interaction between the ADAPT system and the user. This
interaction will involve both text and graphics, each where
most appropriate. For example, individual Ada modules are
textual in nature, but the configuration of individual modules
into a complete system is inherently graphical.

The Intel 432 microprocessors will be the principal
source of distributed processing power in the ADAPT system.
They have been expressly designed to support Ada virtual
machines within an Ada runtime environment. By connecting
processor units in parallel, the computational power of a
given network node can be varied by as much as a factor of 10.
Intel claims that this can be done without the need for any
software reconfiguration. This covers the performance range
from a standard minicomputer to a small mainframe. An Intel
432 processor is available for the standard Intel MULTIBUS

e
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and is compatible with the Intellec software development system.
Intel offers a prototype Ada compiler now which runs on a VAX
and produces code for a 432, 1Intel plans to offer a full Ada
for the 432 in the near future. Alternatively, the NYU Ada
Translator could be fitted with a code generator for the 432.
Like the current Intel offering, this would run on a V2aX.

A complete ADAPT system will include a connection to a
VAX, in order to take advantage of the many tools already
available on it. It is still an issue how thoroughly the
VAX can be integrated into the Ada runtime system which will
control the 432 processors and still provide a compatible
environment for tools which were built for UNIX or VMS.

The Ethernet was chosen for the Local Area Network
because it has adequate performance and is (or soon will be)
available from multiple sources. In particular, Intel will
offer a MULTIBUS-compatible Ethernet board and DEC plans to
offer Ethernet service for the VAX.

-31-



-l

o

=

6. Program Development Tools

The principal program development tools offered by ADAPT
are those which are supported as a matter of course by
ordinary, centralized systems -- plus distributed-application-
specific tools. Our long-range goal is to provide the
programmer of distributed application programs with an
integrated set of tools which are capable of manipulating the
programs while they are under construction, in test phases,
and in operation.

The figure below, Figure 6-1, depicts the interrelation-
ship of the ADAPT components we have discussed in this paper.
Let us point out here that ADAPT itself is a distributed
application; conceivably, any of the components (the Execution
Support Package, e.g.) might be broken into program pieces
running on multiple processors as part of the Target
Configuration.

The Target Configuration is based upon the concept of an
Ada Virtual Machine (AVM) as defined in. section 2 of this
paper. The AVM provides us with an abstract Ada object machine
completely programmed in Ada. 1Its specialized architecture
supplies:

¢ an interpreter for high-level "A-code" (for computational
processes), and

e operations for low-level support (tasking, i/o,
run-time).

Within ADAPT, the target system configuration expands
into a network of communicating AVMs which we show as a set
of interconnected Target Processors (TP), each of which has
associated Devices (DEV) and Application Workstations (AWS).

Using Gandalf as the environment shell, for example,
furnishes an already well-developed user interface in addition
to an integral program-development database (for housekeeping
versions, revisions, etc.). It lacks, however, the requisite
mechanisms for specifying target configurations, for downline
loading of the target machines, multi-processor execution
support, and so forth. These will need to be built.

Of course, a high-quality Ada compiler -- with appropriate
code generators -- is an integral part of the prototype facility
we are developing. Programming support tools will be needed
to provide:

- +the compilation framework (separate node definitions),

.
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