A VHDL Subset for model-checking

Edmund M. Clarke

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

e-mail: Edmund.Clarke@cs.cmu.edu

February 11, 1994

Abstract

VHDL is a hardware description language that is widely used in digital circuit design and is
likely to be used even more in the future. Ensuring the correctness of descriptions written
in VHDL is therefore very important. One of the most powerful techniques for formal
verification of finite-state systems is temporal logic model checking. We propose to use
this method for verifying VHDL designs. In this paper we describe in detail a subset of
VHDL which accomodates the most commonly used description styles and allows for efficient
verification using model checking techniques. Based on this subset, we propose to build a
model checker that can handle industrial designs of realistic complexity.

1 Introduction

Logical errors in hardware designs are an important problem for circuit designers. They can
delay getting a new product on the market or cause the failure of some critical device that
is already in use. My research group has developed a verification method called temporal
logic model checking in which specifications are expressed in a propositional temporal logic,
and devices are modeled as state-transition systems. An efficient search procedure is used
to determine automatically if the specifications are satisfied by the transition systems. The
technique has been used in the past to find subtle errors in a number of non-trivial hardware
designs.

During the last few years, the size of the transition systems that can be verified by
model checking techniques has increased dramatically. By representing transition relations

implicitly using Binary Decision Diagrams (BDDs), we have been able to check some exam-
ples that would have required 102° states with the original algorithm. Various refinements
of the BDD-based techniques have pushed the state count up to 101, By combining model
checking with various abstraction techniques, we have been able to handle even more complex
systems like the cache coherence protocol in the IEEE Futurebus+ Standard.

Because of these advances, we believe model checking techniques are already sufficiently
powerful to be useful in verifying real industrial designs. Since these techniques avoid the
construction of complicated proofs and provide a counterexample trace when some specifica-
tion is not satisfied. we think that engineers will find them much easier to learn and use than
hardware verification techniques based on automated theorem proving or proof checkers.

In order for these techniques to be accepted in industry, we believe that it is essential to
provide an interface between the verification tools that we have developed and some widely
used hardware description language. VHDL is the obvious choice for such a language: It is
used as the input language for many CAD systems, it provides a wide variety of descriptive
styles, and it is an IEEE standard. However, VIIDL is a complex language, and some
features of the language cannot be handled by model checking techniques. Consequently, it is
necessary to restrict the language so that it can be used in verifying hardware designs. In this
paper we describe in detail a subset of VHDL which accomodates the most commonly used
description styles and has a well-defined formal semantics that allows for efficient translation
and verification.

This paper is organized as follows: Section 2 contains a description of the subset of
VHDL that we propose to use as the basis for our model checking system. In section 3 we
present an example VHDL program which illustrates the expressive power of the subset and
how it can be used for verification. Section 4 gives milestones for the various phases of the
project. A detailed BNF description for the language subset can be found in the appendix.

2 Features of the VHDL subset

The top-level design unit in a VHDL description system is an entity declaration together
with its corresponding architecture body. An entity declaration defines the interface between
the modelled digital system and the environment in which it is used, by describing the ports
that provide the external communication. The architecture body describes a possible imple-
mentation of the model, by expressing the relationship between the inputs and outputs of the
design entity. Behaviorally, this description is given in terms of processes that communicate
via signals and synchronize on wait statements. Alternatively, parts of the architecture can
be described structurally as components which are instances of the design entities described
previously.

VHDL models devices using a stimulus-response paradigm: When a stimulus occurs,
the model responds and then waits for a new stimulus. Thus, the semantics of a VHDL
program must be given in terms of the simulation cycle, which consists of two stages. In the

first stage, time advances to the next moment at which a signal becomes active or a process
resumes. Signals scheduled to obtain new values at that time are updated. During the
second stage, all processes that are sensitive to signals that have been updated resume and
execute in zero time until they suspend on a wait statement. This completes the simulation
cycle, and a new cycle is started.

Because of the simulation semantics outlined above, one of the major issues in dis-
cussing a design style in VHDL. whether for the purpose of synthesis or verification, is the
usage of time. The initial subset selected for model-checking is restricted to a purely causal
description style. More precisely, the use of explicit time expressions, such as the after clause
in signal assignments or the timeout clause in wait statements is disallowed. In spite of this
apparent restriction, important classes of designs can still be modelled and their properties
verified. This includes synchronous designs, where the occurrence of all actions is described
with respect to a global clock, as well as asynchronous systems, where components react to
external stimuli, and the reaction terminates before the next stimulus is applied.

The major features and restrictions of the language subset are discussed in this section.
The discussion follows the outline given in the IEEE Standard VHDL Language Reference
Manual. All major restrictions are stated explicitly. A BNF description of the syntax for
the subset is given in an appendix.

VHDL is a very rich language. Certain language constructs can be expressed in terms
of more basic constructs, while maintaining the same semantics. Therefore, for the first
prototype, we have attempted to select the subset of language constructs which are most
widely used, without restricting significantly the set of behaviors that can be described. In
later stages of the project, we will augment the model checker to handle additional language
features.

e Design entities

The language subset provides entity declarations and architecture bodies as design units.
The entity declaration is restricted to specifying a header with the interface ports. Any
other declarations or passive statements within the entity can be described equally well
in the architecture body and will not be included in the initial subset. Generics are
not allowed in an entity declaration.

e Configurations

This subset does not allow configuration declarations. Instead it requires that the
binding of component instances to design entities be done at an earlier phase by con-
figuration specifications.

e Subprograms

Both kinds of subprograms, that is procedures and functions are accepted. The subpro-
gram body declaration must precede any call to the subprogram, therefore no recur-
sive subprograms are allowed. Moreover, the subset does not allow either subprogram

overloading or operator overloading by the programmer. [lesolulion functions are not
permitted, thus only a single process is allowed to assign to a signal.

Packages

Package declarations may contain type, constant, subprogram and component declara-
tions, attribute declarations and specifications, and use clauses. Package bodies define
the bodies of the subprograms declared in the package. _

Types

Since the verification technique that we use is based on searching finite-state models,
only discrete and finite data types and data structures are permitted. The subset sup-
ports scalar types: the predefined integer type, enumeration types, and physical types.
No provision exists for subtype declarations, although integer ranges are permitted.
Other predefined types include: the enumeration types character, bit, and boolean; the
type string; and the physical type time. It is possible to declare unconstrained array
types. However, it is not possible to declare unconstrained arrays. Access and file types
as well as incomplete type declarations are not supported.

Declarations

Constant and variable declarations obey the rules of standard VHDL. As a consequence,
the signal types register and bus are not supported. In interface declarations, only
modes in, out and inout are allowed.

Names

Names supported by the subset are simple names, selected names, indezed and slice
names, and attribute names.

Expressions

All operators predefined by standard VHDL are included in the subset, with the ex-
ception of array concatenation. Aggregates, i.e. composite values of record or array
types, are not supported.

Sequential statements

All sequential statements of standard VHDL are supported: wait statement, signal
and variable assignments, procedure call, if, case, loop, nezt, exit, next, return and
null statements. For the assertion statement, an error will be reported if a state
corresponding to an assertion violation is reached during verification.

Timing
The subset does not allow the specification of time ezpressions, either in the wait
statement (#imeout clause) or in the signal assignment statement (after clause).

e [oops

Loop statements may not be prefixed by a label; as a consequence, the next and exit
statements always refer to the innermost loop.

e Concurrent statements

The subset supports the block, process, concurrent procedure call, concurrent signal
asstgnment and component instantiation statements. The concurrent assertion and
generate statements are not included in the subset. The block statement may not have
a guard expression associated with it, and the block header must be empty (no generic
or port map clauses are allowed). Only the conditional (not the selected) form of the
concurrent signal assignment is available for use; the options guarded or transport are
not allowed.

3 A VHDL example

This section presents a small VHDL design as an example for the types of descriptions that
the proposed model-checking system will be able to handle. The VHDL code describes a
synchronous bus arbiter circuit, adapted from the one given in McMillan’s thesis. Its purpose
1s to grant access on each clock cycle to a single client among several that are competing for
the use of the bus. The inputs to the circuit are the request signals reqp, reqy, ...reqy_, and
a clock clk, and the outputs are the acknowledge signals acky, acky,..acky_;.

The arbiter uses two criteria to determine the request that will be acknowledged. The
basic scheme is priority-based, the circuits having decreasing priorities starting with cell
zero. To avoid starvation, the arbiter also implements a token-based round-robin scheme. If
a client’s request persists long enough to receive the token twice, that client is acknowledged,
overriding other requests.

To coordinate the arbiter cells, override signals propagating along the chain to cell 0
and grant signals propagating in the opposite direction are used. The override input of a
cell 1s asserted if any of the lower-priority cells receives the token while having a persistent
request. The grant input of a cell is asserted if no cells assert override and none of the
higher-priority cells has an outstanding request. Internal signals are used to sample the
requests on the rising edge of the clock and to assert the acknowledge on the falling edge,
avoiding effects due to propagation delay or hazards.

The desired properties of the arbiter circuit are expressed in the temporal logic CTL
and included in the decription as special comments interpreted by the model-checker:
1. No two acknowledge outputs are asserted simultaneously
2. Every persistent request is eventually acknowledged
3. Acknowledge is not asserted without request.

reqk-r—t* i ok

Mg, —T

regg —t — acky

Configuration of the synchronous arbiter circuit

entity arb_cell is
port (req: in boolean; clk: in bit; ack: out boolean;
tok_in: in boolean; tok_out: out boolean;
ovr_in: in boolean; ovr_out: out boolean;
grant_in: in boolean; grant_out: out boolean);
end arb_cell;

architecture arb_cell_rr of arb_cell is

signal persist: boolean; -— req persists after token in
signal req_int: boolean; -- internal; sample req on clk = 1’
signal ack_int: boolean; -- internal; output on clk = ’Q’
begin
cycle: process —— executes once per clock
begin
wait until clk = ’1’;
req_int <= req; -- store value of req
persist <= req and (persist or tok_in);
tok_out <= tok_in; -- moves down one cell per cycle

end process;

update: process (req_int, persist, tok_in, ovr_in, grant_in)

begin
ack_int <= req_int and (persist and tok_in or grant_in);
grant_out <= not req._int or grant_in; -- grant if no request
ovr_out <= ovr_in or persist and tok_in; -- override if persist

end process;

ack: process -- executes once per clock
begin
wait until clk = ’0’; -- output ack on falling edge
ack <= ack_int;
end process;
end arb_cell_rr;

entity main is
port (clk: bit; req0, reqi, req2: in boolean;
ack0O, ackl, ack2: out boolean);

-~ SPEC
—— No two acknowledge outputs are asserted simultaneously
-= AG (!'(ackO & ackl) & !(ackl & ack2) & !(ack2 & ack0))

-- SPEC

—-— Every persistent request is eventually acknowledged

== AG AF (req0 -> ack0) & AG AF (reql -> ackl) & AG AF (req2 -> ack2)
-- SPEC

—-— Acknowledge is not asserted without request.

== AG ('ack0 -> AX(ack0 -> req0)) & AG (lackl -> AX(ackl -> reql))

-— & AG ('ack2 -> AX(ack2 -> req2))

end main;

architecture main_arch of main is

signal g0, g1, g2: boolean; -- grant

signal no: boolean := true; -- negate override for cell 0
signal o0, ol, o02: boolean; —- override

signal zr: boolean := false; -- nth element override in
signal t0, t1 : boolean := false; -- no token

signal t2: boolean := true; -- initial token for cell 0

component element
port (req: in boolean; clk: in bit; ack: out boolean;
tok_in: in boolean; tok_out: out boolean;
ovr_in: in boolean; ovr_out: out boolean;
grant_in: in boolean; grant_out: out boolean);
end component;

for all: element use entity arb_cell(arb_cell_rr);

begin

e0: element (req0, clk, ack0, t2, t0, ol, o0, no, g0);

el: element (reqi, clk, ackl, tO, ti, o2, ol, g0, gi);

e2: element (req2, clk, ack2, til, t2, zr, o2, gl, g2);

no <= not o00; -- grant in for cell zero is negated override out
end main_arch;

4 Milestones for the project

Below we describe how we expect to implement the model checker. We have broken the
expected two year time-frame for the project into six-month stages.

1. During the first six month phase, we expect to build a compiler that translates the
VHDL code into an internal representation from which the corresponding finite-state
model will be built. To speed up the development of the first prototype, subprograms
and loops with a dynamic iteration counts will not be included.

2. In the second phase, we will develop the first working model-checker. This involves
developing the program to construct a finite-state model of the system and implement-
ing the model-checking algorithms. There are two possible ways of accomplishing this
phase. The first is to compile VHDL into the SMV language for which a good model
checking system already exists. While this solution would possibly be faster to imple-
ment, it would be less flexible in the long run. Therefore, we currently favor a second
approach which involves constructing the finite state model directly from the VHDIL,
program. This will allow an easier extension of the language subset as well as permit
counterexamples to be given at a level that the user can easily understand.

3. The third phase of the project will be primarily devoted to the extending the accepted
language subset. We intend to implement procedures as well as loop coonstructs in their
full generality. Other features like generics that do not require major changes in the way
models are constructed from programs will be added if time permits. Furthermore, at
this stage we hope to have some feedback from potential users concerning the additional
language features that should be supported.

4. In the fourth phase, we plan to improve the interface of the model-checker. One of
the main tasks in this phase is improving the readability of the counterexamples that
are produced by the model-checker (the current SMV verifier simply prints the list
of states in the counterexample trace). We also plan to investigate how to make the
specification language more expressive and easier to use. One way of achieving this goal
is to allow timing diagram notation be used in specifications in addition to temporal
formulas.

115.
116.
117,

118.
119.

120.
121,
122,

123.
124.
125.

126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

block_declarative _ — = s
block statement_jow—eg #srx=>rw—

process_statement hfee=TtastTm————— |

[processlabel I=«cdsl =—
process [(se——=) | ==
process_d =mml» == e

begin
process st _=_==>DS">
end process == T C —

process_declarative—v I S s 1= T
process_declarati ve—w r S sxe T

subprogram b e« _ sxrzs-w
| type_declarat. F x5l >
| constant_dec H E>=>_ & r =
| variable_dec]l == I >= b —= T ——
| attribute_dec = o @ S ——————————————
[Attribute sp e o O o o S s —
| use_clause S=gm -
process_statement s, ———_—------
concurrent_proced v s bh=a>> o T -
concurrent signal == lss sy o
[label : | concll B> x> [
conditional signal == lss iz i =——

condi tiona.l_wa,vefo T C 1 0T 7 S 7 ———

component_instant = Srxss Ff=rm

use_clause ::= use S =EF

abstract_literal ::= E e,]
decimalliteral := = —z=z L= —

integer s=digit { [| } Sr=m

exponent :=E [+ 4]| X

based literal ::= ba_—sd ===

base ::= integer p ==

based_integer ;1= o mm—ray momm T T
extended. digit ::= «=>» ===z FmE—

character_ literal 1 =——= - = >

string literal :=" i = =—=z==

bit_string literal 1=——=zz L x——

bit_value ::= extenc=>» rx=# 3c=>

base_specification :z Tz FEOTI _—

Bl

physicalliteral ::= i} ==z L=

115.
116.
LTT.

118.
119.

120.
121
122.

123.
124.
125.

126.
E2Y,
128.
129.
130.
131.
132,
133.
134.
135.
136.
137.
138.
139.
140.

block_declarative_part ::= { block-declarative_item }
block_statement_part ::= { concurrent_statement }
process.statement 1=
[process_label : |
process [(sensitivity_list) |
process_declarative_part
begin
process_statement_part
end process [processlabel | ;
process_declarative_part ::= { process.declarative_item }
process_declarative_item ::=
subprogram_body
| type_declaration
| constant_declaration
| variable_declaration
| attribute_declaration
| attribute_specification

| use_clause
process_statement_part ::= { sequential _statement }
concurrent_procedure_call ::= [label : | procedure_call_statement

concurrent_signal_assignment _statement ::=

[label :] conditional_signal_assignment
conditional signal_asignment ::= name j= conditional waveforms
conditional_waveforms ::= { waveform when condition else } waveform
component.instantiation _statement ::=

instantiation_label : component_name | port_map_aspect | ;

use_clause ::= use selected_name { , selected name } ;
abstract literal ::= decimal literal | based literal
decimal literal ::= integer | exponent |

integer ::= digit { [underline] digit }

exponent ::= E [+] integer | E[—] integer

based literal ::= base # based_integer # [exponent |
base ::= integer

based_integer ::= extended_digit { [underline | extended_digit }
extended_digit ::= digit | letter

character_literal ::= * graphic_character ’
string_literal ::= " { graphic_character } ”
bit_string literal ::= base_specification ” bit_value ”

bit_value ::= extended digit { [underline] extended_digit }
base_specification := B | O | X
physical literal ::= [abstract_literal | unit_name

14

