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1 Introduction

Finite state machines are common components of VLSI circuits. Because they occur so frequently, many design tools
have been written to layout finite state machines as PALs, PLAs, etc. Unfortunately, most of these tools require
the user to enter the complete state transition table of the machine. If the number of states is large, this can be a
difficult and error-prone process. Furthermore, large state transition tables are not easy for others to understand.

In order to assist with the design of finite state machines, we have designed a programming language named SML
(State Machine Language). In addition to being useful for design, SML can also be a documentation aid, since it
provides a succinct notation for describing complicated finite state machines. A program written in SML can be
compiled into a state transition table that can then be implemented in hardware using an appropriate design tool.
The resulting state transition table can also be given to a temporal logic model checker [Bro85,EC83] that allows
certain properties of the state machine to be automatically verified. ‘

This report describes an extended version of SML called CSML, for Compositional State Machine Language.
CSML is a strict extension of SML; all SML programs should be compiled identically by the CSML compiler. The
CSML extensions, however, allow the specification of separate communicating modules. This means that a state
machine that has too many states to be implemented directly may be implemented as a number of much smaller
modules. It also allows compositional model checking techniques to be used, to reduce the complexity of verifying
state machines using a temporal logic model checker [CLM89a,CLM89b)].

2 The SML Programming Language

An SML program represents a synchronous circuit that implements a Moore machine. At a clock transition, the
program examines its input signals and changes its internal state and output signals accordingly. Since we are dealing
with digital circuits where wires are either high or low, the major data type is boolean. Each boolean variable my
be declared to be either an input changed only by the external world but visible to the program, an output changed
only by the program but visible to the external world, or an internal changed and seen only by the program. The
hardware implementation of boolean variables may also be declared to be either active high or active low. Internal
non-negative integer variables are also provided.

SML programs are similar in appearance to many imperative programming languages. SML statements include
if, while, and loop/exit. A parallel statement is provided to allow several statements to execute concurrently in
lockstep.

An SML program has the following form:

program identifier;
declaration list;
statement list;
endprog

where identifier is the name of the program, declaration list is a sequence of declarations separated by semicolons,
and statement list is a sequence of statements separated by semicolons.



2.1 SML Declarations

There are two types of declarations in SML: variable declarations and procedure declarations. Procedure declarations
are of the form

procedure identifier (identifier list)
statement list
endproc

where identifier is the name of the procedure and identifier listis a sequence of formal parameter identifiers separated
by commas. SML uses call-by-name parameter passing, so that a procedure call of the form:

wdentifier (ezpression list)

has the same effect as statement list with the formal parameter identifiers replaced with the actual parameter
ezpressions!
There are four different variable declarations in SML: internal integer, input boolean, output boolean, and internal

boolean. The internal integer has the declaration has the form:
integer identifier[integer] initializer

where identifier is the variable being declared, integer is the number of bits used to implement the variable, and the
initializer is either the empty string or “= integer”. If the instializer is the empty string, the variable is initialized to
zero. An integer variable can be thought of as an array of active high internal booleans. Therefore, it is possible to
refer to an individual bit of an integer by using an array reference of the form:

identifier(integer]

where 1nteger must be greater than or equal to zero and less than the number of bits in the variable. Identifier|0] is
defined to be the least significant bit.
The input boolean declaration has the form:

input identifier type

where identifier is the variable being declared, and the type is either “H” (active high), “.L” (active low), or the
empty string (in which case the default is active high).
The output boolean and internal boolean declarations have the form:

output wdentifier type initializer
internal identifier type initializer

where identifier is the variable being declared, and the type is the same as for input booleans. A boolean initializer
is either “= true”, “= false”, or the empty string (in which case the default value is false).

Several instances of the same type of variable declaration can be combined into one declaration by following the
keyword (integer, input, output, or internal) with a list of the identifiers and other information separated by
commas.

In order to clarify the use of variable declarations, consider the declaration list:

input A.H, B.L, C;
output D = true, E.L, F;
integer X[3] = 5, Y|2] = 7, Z[5];

As a result of these declarations:
e A and C are active high boolean inputs.
* B is an active low boolean input.

® D is an active high boolean output that will be high (active) in the initial state.

ISML procedures are actually implemented as macros.



e Eis an active low boolean output that will be high (inactive) in the initial state.
e F is an active high boolean output that will be low (inactive) in the initial state.
e X is an internal integer (that can have values from 0 to 7) that will have the value 5 in the initial state.

* Y is an internal integer (that can have values from 0 to 3) that will have value 3 in the initial state. (The
binary representation of “7” needs three bits, but Y is only two bits long. Therefore, the value of the high
order bit of “7” is lost.)

e Z is an internal integer (that can have values from 0 to 31) that will have the value O in the initial state.

2.2 SML Expressions

There are two types of expressions in SML, integer expressions and boolean expressions. An integer expression
is either a natural number, an integer variable, or an application of an infix arithmetic operator to two integer
expressions. The arithmetic operations in SML are sum (“+”), difference (“-”), product (“**), quotient (“/”), or
remainder (*

A boolean expression is either a boolean constant (true or false), a boolean variable (true if the variable is
currently active), the negation of a boolean expression (prefix“!”), an application of an infix logical operator to two
boolean expressions, or a comparison of two integer expressions. The logical operations in SML are conjunction
(“&”), disjunction (“|”), equivalence {“=="), and exclusive or (“I="). The integer comparisons are equality (#=="),
inequality (“!="), greater than (“;”), or less than ().

In addition, int is a function that takes a boolean expression as a parameter and returns 1 if the expression is
true and O if it is false. (int can be used to convert a boolean expression into an integer expression.)

All binary operators associate from left to right. The operators have the following precedence (from lowest to
highest): ' :
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T

_|._

2.3 SML Statements

The semantics of SML programs are different from most programming languages, since we are not only interested
in what a statement does, but also how much time the statement takes to execute. The basic idea in SML is that
computation is instantaneous, but changing a variable takes one clock cycle. (We should note when we refer to the
“time” that a statement takes we are referring to the execution time of the finite state machine. It is possible for
computation to take no execution time since the computation is actually done at compile time.)

Sequencing of Statements A statement may consist of two statements separated by a semicolon (%”). After
the first statement has finished executing, the second one starts executing immediately.

Delay Statements There are two methods of delaying execution:

skip _
delay natural number

The skip statement will do nothing for one clock cycle. The delay statement will do nothing for natural number
clock cycles. (delay 1 is identical to skip.)



Assignment Statements Boolean input variables can not be assigned new values, since inputs are changed by
the environment only. Boolean output and boolean internal variables may be changed by:

raise (vartable)
lower (variable)
invert (variable)

Each of these statements delays until the next clock transition, at which time the value of variable will be changed.
The raise statement will assert vartable (make it active), lower will deassert it, and invert will force a change of
value. (Note that variable can also be an individual bit of an internal integer.)

Integer variables may be changed by:

variable 1= integer ezpression

The integer ezpression is evaluated immediately, and after delaying until the next clock transition, variable will be
assigned the low order bits of the two’s complement representation of the expression’s value.

Conditional Statements There are two forms of conditional execution:

if boolean ezpression then statement-1 else statement-2 endif
if boolean ezpression then statement endif

In the first case, the boolean expression is evaluated. If the expression is true, statement-1 is executed, otherwise
statement-2 is executed. Evaluating the expression and changing the flow of control does not take any time!
The second case is similar, except that nothing is done (in zero time!) if the boolean ezpression is false.

Looping Statements There are two types of looping statements in SML: the while statement and the loop
statement. The while statement has the form:

while boolean ezpression do loop statement endloop

At the beginning of the while, the boolean ezpression is evaluated, and nothing is done (in zero time) if the expression
is false. If it is true, statement is executed. If statement completes execution in no time, the while statement delays
until the next clock transition and then restarts the loop. If statement completes execution after some delay, the
while statement is immediately restarted.

The loop statement has the form:

loop statement endloop

This statement is the same as while true do statement endwhile.
The exit statement has the form:

exit
The effect of this statement is to immediately jump out of the smallest enclosing while or loop statement. If there
is no enclosing while or loop, this statement is an error.

The Switch Statement The switch statement has the form:

switch
case boolean ezpression-1: statement-1;
case boolean expression-2: statement-2;

default: statement-n;
endswitch

When the switch statement is entered, boolean ezpression-1 is evaluated. If the expression is true, statement-1
1s executed, otherwise it is skipped (the evaluation and change in control flow takes no time, of course). After
statement-1 is completed, boolean exzpression-2 is evaluated and statement-2 is executed if it is true and skipped if
it is false. This procedure is continued until the default case is reached, whereupon statement-n is executed and
the switch is completed. (The switch statement in SML is different from the C switch statement in that execution
does not “fall though” cases!)



The Parallel Statement The parallel statement provides a form of synchronous parallelism. This statement
has the form:

parallel
statement-1 | |
statement-2 | |

endparallel

Each statement in the parallel examines the inputs and the current state and determines what changes it should
be make to the output state at the next clock transition. The.semantics of the parallel determine which of these
changes are actually made. The rules are as follows:

L. If one or more of the statements executes an exit, the parallel does nothing and the exit causes a jump out
of the smallest loop or while statement that encloses the parallel statement.

2. If one or more of the statements executes a break, the parallel does nothing and the break causes a jump to
the statement following the parallel.

3. If one statement executes an exit and another statement executes a break, the statement closest to the
beginning of the program is executed.

4. If none of the statements tries to change a variable, the variable remains unchanged.
5. If exactly one statement tries to change a variable, this change is made at the next clock transition.

6. If two or more statements try to change a boolean variable and they all agree on the new value, this change is
~ made at the next clock transition:

7. If two or more statements try to change the same boolean variable and they do not agree on the new value,
the variable remains unchanged.

8. Integer variables are treated as arrays of booleans for the purposes of finding their new values.

The parallel terminates when all of the statements in the parallel have finished éxecuting or a break or exit is
executed.
The break statement has the form:

break

The effect of this statement is to immediately jump out of the smallest enclosing switch or parallel statement. The
main use of this statement is to prevent more than one case of a switch statement from executing. If there is no
enclosing switch or parallel, this statement is an error.

One of the major uses of the break statement is to stop normal processing when some sort of “interrupt” occurs.
For example, consider the following fragment:

loop
parallel
loop if RESET then break endif endloop
[
...=Normal processing
endparallel;
...—Reset processing
endloop

In this fragment, normal processing is done until RESET goes high. When RESET goes high, the break statement
jumps out of the loop AND the parallel to the reset routine. If SML had only one form of escape statement, it
would be necessary to follow the loop with another escape in order to jump out of the parallel. However, we believe
that the two forms of escape make this fragment easier to understand.



program blackjack;
input S3, S2, S1, SO;
integer newcard[4]| = 0;

newcard := int(S0) + 2 * int(S1) + 4 * int(S2) + 8 * int(S3);
if (newcard ; 10 & newcard | 14) then

newcard := 10
endif

Figure 1: Card Decoding in a Blackjack Program

The Compress Statement In some cases, the timing rules of SML prevent complicated relationships from being
simply described without delaying for more than one clock cycle. For example, consider fragment from a blackjack
dealing program in figure 2.3.

This fragment determines the value of a card presented to the input and stores the value in the integer newcard.
Then, if the card is a face card (i.e. the number is between 11 and 13), the value of the card is 10. Unfortunately, the
original assignment to newcard took one clock cycle and this new assignment takes another clock cycle. Although it
is possible to avoid the original assignment to newcard by using the expression that is assigned to newcard instead
of newcard in the if statement, this is very awkward. To alleviate this problem, SML has a compress statement of
the form:

compress statement endcompress

The effect of the compress statement is calculated as if variable assignment takes no time in statement. Then, after
delaying one clock cycle, the changes made by the compress statement actually take effect. (Even if the body of the
compress does nothing, the compress statement will always delay for one clock cycle.) For example, suppose we
compressed the blackjack fragment shown above. First, newcard would be assigned the value of the binary decoding
of the input in no time. Then, since no time has passed, execution will continue and newcard will be assigned the
value 10 if the binary decoding was between 11 and 13. At this point, the body of the compress has terminated and
its effect is to assign the value of the dealt card to newcard in zero time. So the compress statement will delay for
one clock cycle and then assign this value to newcard.

The compress statement does not effect the loop timing rules. In particular, time can still pass within the
compress if the statement contains a loop whose body executes in no time. Since variable assignment takes no time,
it is very likely that the body will execute in no time.

There are a few restrictions that are placed upon the statement that is to be compressed. The statement cannot
contain any parallel, skip, or delay statements. Moreover, exit and break cannot be used to jump out of the
compress.

3 The CSML extensions

In this section we describe two extensions we have made to SML which allow the hierarchical definition and inter-
connection of modules. A process in CSML has the following syntax:

process identifier;
declaration list
statement list
endproc

A process compiles into a separate Moore machine which communicates with other processes running concurrently (in
lockstep). The statement list in a program or process may be replaced by a list of processes. The scoping of variables
in CSML is similar to that of PASCAL. A process may access the variables of any process which lezically contains it
(all processes may access the variables of the main program). In order to alter a variable of another process, however,



a process must declare that variable as an output in its declaration list. By requiring that no variable may be declared
as an output by more than one process, we insure that CSML processes can be implemented as communicating Moore
machines. Variables which are not declared as outputs by any process are considered inputs to the program.

The other way tn which CSML extends SML is the processtype statement, which defines a reusable process
type. The processtype statement may appear in the declaration list of a program or process, and has
the following form:

Processtype identifier (formal parameter list);
declaration list
statement [ist

endtype

A process type is instantiated as a process by a statement of the following form:

process process identifier : processtype identifier (actual parameter list);

The scoping rules for process type identifiers and variables referenced in process types are the same
as for variables referenced in processes. In particular, since lexical scoping is used, an instantiated
Process operates in the context in which it was defined, not in the context in which it is instantiated.
Figure 2 gives a simple example of a CSML Program-—a system composed of a producer module
and a consumer module which synchronize using a four-phase handshake. The formal model of
communicating Moore machines which underlies the semantics of CSML is described in [CLM89a].

4 Compilation of SML Programs

The output of the CSML compiler is a set of finite state machines in @i(FIF) (FSM Intermediate
Format). An example of this format is given in figure @ref(FIF). FIF is accepted as input by a program
named afc (A FSM Compiler) which will produce a ROM, PLA, or PLA based implementation of the
state machine. Afc can produce output that is compatible with the Berkeley tools KIS5 and presto as
well as several other formats.

The compiler produces a state machine table in the output file for each process statement in
the program. In programs that have a hierarchical module structure, there is a need for a naming
convention for referring to nets in the ocutput file. CSML uses the following rules:

* A net corresponding to a variable declared in the main Program is referred to by that variable
name.

e A net that corresponds to an internal variable of a process is referred to by the variable name,
prefixed by the hierarchical name of the Process, separated by an underscore character.

e The hierarchical name of a process declared in the main pProgram is the name of the process.

e The hierarchical name of a process nested within another Process is the process name prefixed
by the hierarchical name of the parent process, separated by an underscore character.

Thus, for example, if variable c is declared internal in process b, which is declared in process a, which
is declared in the main program, the net name is a_b_c.

In order to allow the temporal logic model checker to be used on CSML programs, there is a
separate program called the state machine composer. This Program takes as input a set of finite state
machines generated by the CSML compiler, and produces a single state machine which represents the
Parallel composition of the modules in the CSML program. For information on running the CSML
compiler and state machine composer, see the manual entry for “csml”.



program prodcom;
output produce, consume;
internal req, ack;

processtype Producer(request,acknowledge,produce);
input request;
output acknowledge=false,produce=false;
loop
while(!request) do loop skip endloop;
raise(produce); lower (produce);
raise(acknowledge);
wvhile(request) do loop skip endloop;
lower(acknowledge)
endloop
endtype

processtype Consumer(acknowledge,request,consume);
input acknowledge;
output request=false,consume=false;
loop
raise(request);
while(!acknowledge) do loop skip endloop;
raise(consume); lower (consume);
lover (request);
vhile(acknowledge) do loop skip endloop
endloop
endtype

process producerl: Producer(req,ack,produce);

process consumerl: Consumer(ack,req,consume)
endprog

Figure 2: Producer-consumer program



