CONCURRENT PROGRAMS ARE EASIER TO VERIFY
THAN SEQUENTTIAL PROGRAMS

Edmund M, Clarke%

Department of Computer Science
Duke University ;

July 20, 1978
CS-1978+6

ABSTRACT

We investigate the problem of automatically synthesizing correctness
proofs for synchronization skeletons of concurrent programs., These syn=—
chronization skeletons are expressed in a simple concurrent programming
language (SCL) in which logically related variables accessed by more than
one process are grouped together as resources. Correctness proofs for SCL
programs are expressed in a proof system similiar to the system of Hoare
(H072) and Owicki and Gries (0W76), Proofs of synchronization properties
are constructed by devising predicates called resource invariants which
describe relationships among the variables of a resource when no process
is in a critical region for the resource. In the system of Hoare-Owicki-
Gries, these resource invariants must be supplied by the programmer. We
show that for a large class of SCL programs it is possible to automatically
generate appropriate resource invariants directly from the text of the
program.

% Supported by National Science Foundation Grant No. MCS5-7508146.

CONCURRENT PROGRAMS ARL EASIER TO VERLFY THAW SEQUENTIAL PROGRAMS

1,1 Background. Researchers in program verification have often argued that

it is premature to develop methods for proving the correctness of concurrent
programs. The argument usually runs as follows: "Since sequential programs
are a subset of concurrent programs, how can we expect to develop methods for
verifying concurrent programs when practical methods do not yet exist for the
verification of sequential programs." If we view sequential programs as a sub~-
class of concurrent programs, and if we attempt to prove the same type of cor-
rectness results for concurrent programs as for sequerntial programs (e.g.
program P computes function F), then the above argument may be correct. On

the other hand, if we abstract from a concurrent program that portion of the

program which deals with synchronization (the synchronization gkeleton), and
if we restrict correctness proofs to synchronization properties (e.g. absence
of deadlock), then it is possible to argue that concurrent programs are easier
to verify than sequential programs. Three reasons in support of this view are:
(1) The synchronization skeleton of a concurrent program is generally
very small in comparison to the entire program. A crude count of the UNIX
operating system indicates that less then 5% of the total statements are
synchronization statements. Because long concurrent programs need not have
long synchronization‘skeletons, we believe that the arguments expressed in
(DE77) regarding the feasibility of correctneés proofs for sequential pro-
grams are not applicable to proofs of correctness for synchronization skeletons.
(2) 1In many cases, it is relatively easy to isolate the synchronization
skeleton of a concurrent program from the sequential part of the program.
Consider, for example, the typical producer-consumer program in which two pro-
cesses communitcate via a message buffer; here the synchronization skeleton is

independent of the sequential producer and consumer processes.

(3) A large class of synchronization problems are counting problems.
Thus, the verification conditions generated in the correctness proofs can be
expressed in terms of linear inequalities involving the synchronization vari-
ables, and techniques such as integer programming can be exploited to deter-—
mine their validity. |

What verification techniques are best suited for proving the correctness
of synchronization skeletons? Hoare (H072), and Owicki and Gries (OW76) have

developed a proof system for conditional critical repgions in which logically

related variables which must be accessed by more than one process are grouped
together as resources. Individual processes are allowed to access a resource
only within a conditional critical region for that resource. Proofs of
synchronization properties are constructed by devising predicates called
resource invariants which describe the relationship among the variables of a
resource when no process is within a critical section for the resource. Re-
lated methods for verifying concurrent programs which use resource invariants
have been described by Habermann (HA72), Lauer (LU72), Keller (KE76), Lamport
(LM77), and Pneuli (PN77).

In constructing correctness proofs for synchronization skeletons using
the proof system of Hoare—Owicki-Gries, the programmer is required to supply
the resource invariants. In this paper we investigate the problem of auto-
matically synthesizing resource invariants for synchronization skeletons of
concurrent programs. The synchronization skeletons are expressed in a simple
concurrent programming language (SCL) in which parallelism is introduced
via "cobegin...coend" blocks and processes access shared data via conditional
critical regions. This paper will consider only invariance (PN77) or safety
properties (LA77) of SCL programs. This class of properties includes mutual
exclusion and absence of deadlock and is analoguous to partial correctness of

sequential programs. Correctness proofs of SCL programs are expressed in a

proof system similar to the system of Hoave-Owicki=Gries; we will refer to

such proofs as resource invariant proofs.

1.2 New results of this paper. To gain insight on synthesis methods for

resource invariant proofs we restrict the SCL language SO that all processes
are nonterminating loops of the form "eycle Sl""’sn end" and the only state-
ments allowed in a process are P and V operations on semaphores. We call this
class of SCL programs PV programs. For PV programs there is a simple method

for generating resource invariants, i.e. the semaphore invariant method of

Habermann (HA72) which expresses the current value of a semaphore in terms of
jts initial value and the number of P and V operations which have been executed.
Although the semaphore invariant is simple to state, it is quite powerful

as a technique for proving PV programs. We show that the semaphore invariant

method is at least as powerful as the reduction method of Lipton (L175) for

proving freedom from deadlock.

The semaphore invariant method, however, is not complete for proving
either absence of deadlock or mutual exclusion of PV programs. We prove that
it is possible to devise PV programs for which deadlock (mutual exclusion) is
impossible, but the semaphore invariant method is not sufficiently powerful
to establish this fact. This incompleteness result is important because it
demonstrates the role of convexity in the generation of powerful resource in-
varisnts. We also give a characterization of the class of PV programs for
which the semaphore invariant method is complete for proving absence of dead-
lock (mutual exclusion).

The semaphore invariant method can be generalized to the class of linear

SCL programs in which solutions to many standard synchronization problems

including the dining philosopher's problem, the reader's writers problem and

the cigarette smoker's problem can be expressed. Although the generalized

semaphore invariant fails to be complete for exactly- the same reason as the
standard semaphore invariant method, it is sufficiently-powerful to pexrmit
proofs of mutual exclusion and absence of deadlock for a significant class of
concurrent programs (e.g. an implementation of the reader and writers problem
with writer priority).

When the generalized semaphore invariant is not sufficiently powerful to
prove some desired property of an SCL program, is it possible to synthesize a
stronger resource invariant? We argue that resource invariants are fixedpoints,
and that by viewing them as fixedpoints it is possible to automatically generate
invariants which are considerably stronger than the semaphore invariants pre-
viously described. Specifically we show that the resource invariants of an SCL

program C are fixedpoints of a functional FC which can be obtained in a

natual manner from the text of program C. The least fixed point u(FC) of FC
is the "strongest" such resource invariant, e. g. if the program C is free of
deadlock then this fact may be established using u(F.). Since the functional

FC is continuous, the least fixedpoint p(FC) may be expressed as the limit

F%(false). Because of the infinite disjunction in the formula
1

< 8

u(r) =
¢ i

for u(FC), this characterization of p(FC) cannot be used directly to compute
u(FC) unless C has only a finite number of possible different states.

By using-the notion of widening of Cousot (CO77) however, we are able to
speed up the convergence of the chain Fg(false) and obtain a close approximation
to u(FC) in a finite number of steps. The widening operator which we use
exploits our earlier observation on the importance of convexity in the genera-
tion of resource invariants. Examples are given in the text to illustrate the
power of this new technique for generating resource invariants. Although fixed-
point techniques have been previously used in the study of resource invariants
((LA76), (¥1.77)), we believe that this is tée first research on methods for

speeding up the convergence of the sequence of approximations toip(FC} .

1.3 Outline of paper. Section 2 contains a description of the concurrent

programming language SCL which will be used tc illustrate our ideas on the
automatic sysnthesis of resource invariants. In Section 3 a proof system is
described for SCL programs; this proof system is based on the use of resource
invariants and is similar to the system of Hoare-Owicki-Gries. The semaphore
invariant method and its generalization to linear SCL programs are discussed

in Sections 4, 5; and 6. In Section 7 fixedpoint techniques are described which
enable a resource invariant to be expressed as the limit of a sequence of
successively better approximations. Section 8 presents the technique for
speeding up the convergence of the sequence of approximations to a resource
invariant. The paper concludes with a discussion of the results and additional

open problems in Section 9.

2. A simple concurrent programming language (SCL). An SCL program will consist

of two parts:

(1) an initialization part

v, i=e; v2:=ez;...; Ve ime,

in which initial values are assigned to the program variables Viser Vs and

(2) a concurrent execution part

1 1 b r
resource Rl(vl,...,vm),...,Rr(vl,...,vm R

1 T

cobegin P1//P2//...Pn end
which permits the simultaneous or interleaved execution of the statements
in the processes Pl,.«eePi,

Logically related sets of variables which must be accessed by more than one

process are grouped together (e.g. Rl(vi,...vi)) in the resource prefix of
1

the "cobegin,..coend" statement.

Processes have the form

Pi:cycle Si; S%;...;_Si end
i
where Si; S;...S; is a list of synchronization statements, The "eycle"” con-

i

struct is a nonterminating loop with the property that the next statement to

be executed after S; is the first statement Si of the loop. Although the
i

"cycle" statment simplifies the generation of loop invariants, we will also
treat terminating loops (e.g. while loops) in a later paper (CL78),
Synchronization statements are conditional critical regions of the form
"with R when b do A 0d" where R is one of the resources listed in the prefix
of the "cobegin...coend" statement. Only variables listed in R can appear in
the boolean expression b and the body A of the conditional critical region,
When execution of a process reaches the conditional ecritical region "with
R when b do A od" the process is delayed until no other process is using
resource R and the condition b is satisfied. When the process has control ofr

R and b is satisfied, the statement A may be executed.

3. _Resource invariant proofs. In this Section we adapt the proof system of

Hoare-Owicki-Gries to SCL programs. We will use the standard triple notation

{P} A {Q} of Hoare (HO69) to express the partial correctness of the sequential

statement A with respect to the precondition P and postcondition Q. SP[AI(P)

will denote the strongest postconcition (CL77) corresponding to statement A

and precondition P, Proof systems for partial correctness of sequential
statements have been widely discussed in the literature and will not be further
discussed in this paper.

Let C be an SCL program and let ST be the set of statements occurring
within the processes of C. A resource invariant system RSC for C will consist
of two parts:

(A) A set IRl""IRr of predicates (the resource invariants) corresponding to
the r resources in the resource prefix of C.
(B) Proofs of sequential correctness for each of the individual processes of

C. For our purposes, these correctness proofs will be represented by a set

(2) 1f S; is a conditional critical region with associated auxiliary
i

)
J

Thic technique for adding auxiliary variables and generating verification

variable c; then post(S = pre(S?) [(c;wl)/c; 1

conditions will be used throughout the paper and will be called the canonical
annotation associated with the program C.

For a PV program C, we will refer to the resource invariant system con-
sisting of the semaphore invariants for each of the semaphores in the program

and the canonical annotation as the semaphore invariant system corresponding

to C.

5. Incompleteness of the semaphore invariant method. The incompleteness of

the semaphore invariant method is best explained by means of progress graphs

(D167). The progress graph is a graphical method for representing the feasible

computations of a PV program, Consider, for example, the program C:

a:=1; b:=1
cobegin
A:cycle P(a); P(b); V(a); V(b) end
//
B:=cycle P(b); P(a); V(b); V(a) end
end

Feasible computations of this program can be represented by a graph in which

the number of instructions executed by a process is used as a measure of the

progress of the process, e.g.

b A .

S .

a Pa

\ L
v

Progress for Process A

A
|
|
S—

b a ﬁ, a

Progress for process B

10

The dashed line represents a computation of the program C in which process B
executes P(b) and process A executes P(a). The shaded region of the graph
respresents those program states which fail to satisfy the semaphore invariants

for a or b; such states are called unfeasible states. The point labeled X in

the graph is a deadlock state; further progress for either process A or process

B would violate either the invariant for semaphore a or the invariant for
semaphore b. Those poiﬁts in the graph (states of C) which are not reachable
from the origin (initial state) by a polygonal path composed of horizontal and
vertical line segments which never cross an unfeasible region (by a valid com-

putation sequence of C) are called an unreachable points (states). All un-

feasible points are unreachable. The point labeled Y in the graph is an

example of an unreachable feasible point; if the program C were started in

state Y, the semaphore invariants would not be violated.
Consider the PV program C:
a:=b:=ci=d:=1
cobegin

A:cycle P(a); P(b); P(d): V(a); P(c); V(b); V(e); V(d) end

B:eyele P(a); P(b); P(c); V(b); P(d); V(a); V(c); V(d) end
coend

The progress graph for C is shown below:

A4

i //
| //// .
| A

Y
e

N\

11

Let SIC be the semaphore invariant system for the program C. It is not
difficult to show that the condition D(SIC) for absence of deadlock given in
Section 3 is satisfiable. Thus absence of deadlock cannot be proven by means
of the semaphore invariant method., From the progress graph for C Ve ob—
serve that deadlock can never occur during an execution of the program C.

The state Z which satisfies D(SIC) is an example of an unreachable feasible

state which is also a deadlock state; we will call such states trap states.

In a later paper (CL78), the terms progress ‘graph, trap states,
etc. will be extended to SCL programs with more than two processes and the

following characterization of the semaphore invariant method will be proven.

5.1 Theorem: The semaphore invariant method is complete for proving dead-—

lock freedom for those PV programs whose progress graphs do not contain any

trag states,

A similar characterization may be given for the progress graphs of those
PV programs for which mutual exclusion may be established by the semaphore
invariant method. How can the semaphore invariant method be strengthened to
handle trap states? Since trap states correspond to "holes" in the unfeasible
region of a PV program's progress graph, a method which employs convexity con-
siderations seems promising. We will return to this question again in Section

Although the semaphore invariant method is not complete for proving
absence of deadlock, it 1s a powerful tool for constructing proofs of PV pro-
grams which occur in practice. Evidence for the power of the semaphore in-
Qariant method may be obtained by comparing it to other methods which have

been proposed for proVing deadlock freedom of PV programs.

5.2 Theorem: If a PV program has a proof of deadlock freedom using the reduc-—

tion method of Lipton, then it also has a proof of deadlock freedom using the

12

semaphore invariant method.
The key lemma used in the proof of the theorem is the following:
5.3 Lemma: If the process graph of a PV program C contains a trap state, then

the process graph of the D-reduction C/S also contains a trap state.

6. Generalizations of the semaphore invariant method. Since a large class of

synchronization techniques can be modeled by counting operations on shared

variables, the class of linear SCL programs is of particular interest. The

conditional critical regions of a linear SCL program have the form
14 {3
with R when,B(vl, VZ""ViP do A(vl, V2""V39 od. where
(1) the wvariables Vi vz,...vm belong to resource R
(2) the condition E(vl, v2,...vi9 is a truth functional combination of atomic
<
formulas of the form a,vy + a,v, + cwe b %mYm + émfl =0
(3) the body A(vl, V2""Vm) is a series of assignment statements which in-
crement the shared variables vl,...vm, e.g.
: = S = +
1 1 + bl, vy v2 + b2’ Ym Yﬁ ?m
Arguments are given in (8C76) and (AG74) that linear SCL programs are universal

v, =V
in their power to express synchronization constraints for concurrent programs.
In a later paper (CL78) we will show how the semaphore iInvariant
of Section 4 can be generalized to linear SCL programs. The generalized
semaphore invariant is expressed in terms of a set of formal derivatives
B(Bi)/a(Aj) which express the effect of the execution of the body of the jth
critical region on the condition Bi in the ith critical region. Although the
generalized semaphore invariant fails to be complete for exactly the same
reason as the standard semaphore invariant, it is sufficiently powerful to
permit proofs of mutual exclusion and absence.of deadlock for a significant

class of concurrent programs (e.g. and implementarion of the readers and

writers problem with writer priority).

13

7. Fixedpoint techniques for generating resource invariants. Let C be the

linear SCL program'v:i=e; resource R(V):cobegin Pl//...//Pn coend. TFor
simplicity we assume that C uses only one resource.R and that C contains K
critical regions for R. We will denote the ith critical region by Si and
assume that it has the form 'with R when bi do Ai od". The canonical annota-
tion described in Section 4 will be used to generate pre and post functions
for C. Let the functional FC be defined by

K

FC(J) = J0 v izl SPLA] (pre(Si) A bi A J)

where the predicate J, = {v=e} describes the initial state of C.

0

7.1 Theorem:

(1) Let T be the set of possible states of SCL programs. The functional FC

is a continuous mapping on 2T, Thus, the least fixedpoint u(FC) of Fo. is
<

given by u(f,) = V Fl(false).
¢ T

(2) All resource invariants IR of C are post~fixedpoints of FC’ i.e.
FC(IR).E IR. Also u(FC) is a resource invariant for C.

(3) The resource invariant system RS_ consisting of u(FC) and the canonical

C

annotation is complete for proving absence of deadlock and mutual exclusion

of SCL programs.

(4) 1f L is a predicate such that J0+L and L+u(FC), then u(Fc) = -?1 Fg(L).
Part 4 of Theorem 7.1 is important because it gives a method %;r generating

resource invariants from reasonably close initial approximations. It is

analoguous to the use of back substitution for improving invariants of while

loops. In a later paper (CL78) .o yi11 show how part 4 can be used

to generate a resource invariant system for an SCL implementation of the
cigarette smoker's problem. We will also show that a number of other techniques
for generating resource invariants or verifying concurrent programs can be

regarded as special cases of Theorem 7.1. These techniques include the invariant

14

discovery method described by Keller (KE76), the symbolic evaluation

technique of Brand (BR78) and the finite state machine approach of Feldman (FE77).

8. Speeding up the convergence of fixedpoint techniques for approximating

resource invariants. The sequence of successive approximation to u(FC) will

in general fail to converge unless there are only a finite number of different
possible states for the resource R or unless a good initial approximation is
available to u(FC). For linear SCL programs the notion of widening developed
by Cousot ((CO77), (C078)) may be used to speed up convergence to u(FC). The
widening operator * is characterized by the following two proﬁerties: (a) for
all admissable predicates U and V, UU*y and V»Usy (b) for any infinite

ascending chain of admissable predicates U0 c Ul_g U, c... the ascending chain

2
defined by VO = UO’ Vi+l = Vi *Ui+1 is not strictly increaging.

For our treatment of linear SCL programs, the class admissable predicates
will be the polygonal convex sets in.Qm where Q is the set of rational numbetrs
and D is the tHumber of resource variables belonging to R. The widening operator

* that we will use is a modification of the one used by Cousot (co78). Let U

and V be polygonal convexX sets. Then U and V can be represented as conjunctions:

v] J 3 3 N k| J k| j
= . v= A s D5 ; ;
U iﬁl aivi + ayv, Lo + a 1 < 0, et blvl + b1v2 b,im + bm+li 0

We will further assume that the representation of U and V is minimal in that

no conjunct can be dropped without changing U or V. We will say that two
linear inequalities a{v1 s R aivﬁ + %3+1 < 0 and bivl + "'b;Yﬁ + b;+1 <0
are equivalent if they determine the same half plane in QF. UV will be the
conjunction of all those 1inear forms in the representation of U for which
there is an equivalent linear form in the representation of V. Thus the widen-

ing operator 'throws out" all those constraints in the representation of U

which do not also occur in the representation of V and visa versa.

15

We will now describe our strategy for approximating u(FC). Since the
predicates Fg(false) in the chain Fg(false)_g Fé(false) ¢ ... are not in general
polygonal convex sets, we introduce the functional GC(J) = CV[FC(JII where CV
is the convex hull operator. The sequence obtained by iterating GC, i.e.
Gg(false) S_Gé(false) € ... is a chain and each element in the sequence is a
polygonal convex set. The sequence It, t>0 will be used in obtaining a good
approximation to the strongest resource invariant for R and is defined as
follows: ' f

o

= V HF where Ht == Gt(false), H
jul 0~ "c

Properties of the sequence It, t>0 are listed in the following theorem:

& t

- ubt % t
I §+1 = Hj GC(Hj).

8.1 Theorem:

(A) Each It can be computed in a finite number of steps.
(B) FC(It) c It. Thus b is a resource invariant for C.
© uF). c1°, €20,

; 3
(D) The sequence ;t is a decreasing chain in T, i.e. 11_3 12 217 ...

Thus the construction of It provides an algorithm for computing resource
invariants, and this algorithm can be used tO obtain successively better
approximations to the strongest resource invariant u(FC).

We demonstrate the use of this method of synthesizing resource invariants

by considering the program C:

a:=0;
cobegin
Pl:cycle produce; V(a) end
//
P2:cycle P(a); consume end
coend :

Note that while the program C quite simple and could in fact be handled by
the methods of Section 4, there are potentially an infinite number of states

‘and the method of successive approximations outlined in Section 7 will not

16

converge, Rewriting the synchronization skeleton of C in terms of conditional
critical regions and adding auxiliary variables as described in Section 3, we
obtain:

a:=0; np:=0, nv:=0;
resource R(a, np, nv):

cobegin
Pl:cycle with R when true do a:=at+l; nv:=nv+l od end
1/
P2:cycle with R when a>0 do a:=a-1; np:=np+l od end
coend '

Computing the sequence of approximations It, t>0 we obtain:

IO = true
1t = {230 A np>0 A nv>0}
12 =7{qipv A np>0 A a>0 A nv>0}

3 _ {atnv-np=0 A np>0 A nv>0 A a>0}

3 5 -
Note that I~ is exactly the semaphore invariant for the semaphore ''a''. More

substantial examples including the example of Section 5 will be considered in

a later paper (CL78).

9. Conclusion. A number of open problems remain regarding the power of the

generalized semaphore invariant described in Section 6 and the fixedpoint
methods for generating resource invariants described in Sections 7 and 8. 1In
particular it would be interesting to compare these proof techniques with other
techniques for proving correctness of concurrent programs which do not use
resource invariants, e,g. the Church-Rosser approach of Rosen (R076) and the
reachability tree construction of Keller (KE77). Another open problem concerns
the generation of resource invariants for other synchronization methods. Both
the discussion of the generalized semaphore invariant and the fixedpoint method

for generating resource invariants from linear SCL programs were based on the

17

assumption that synchronization constraints were expressed as linear in-
equalities involving resource variables. For high level synchronization
methods, such as path expressions (HA72), in which such linear restraints
are only implicit, a more direct method of generating resource invariants
is desirable,

Finally the author is currently designing an automatic wverification
system for concurrent programs based on the ideas in this paper. This system
will extract the synchronization skeleton of a concurrent program and use
the techniques of Sections 6 and 8 to generate the appropriate resource in-
variants. If this system or some similar system is successful in generating
correctness proofs for synchronization skeletons,then a particularly intriguing
idea for verifying large concurrent programs would be to combine formal proofs
of correctness for the synchronization part of the program with other techniques o

such as testing or symbolic execution for the sequential part of the program.

References.

(AG74) Agerwala, T. "A complete model for representing the coordination of
_ asynchronous processes., John Hopkins University, Baltimore, MD.
Computer Research Report 32, 1974,

(BR78) Brand, D. and Joyner, W. H. Verfication of protocols using symbolic
execution, Computer Network Protocols. A. Danthine, Editor,
University of Liege, 1978,

(CL77) Clarke, E. M., Program invariants as fixedpoints. 18th Annual
Symposium of Foundations of Computer Science, Nov. 1977.

(CL78) clarke, E. M. Synthesis of Resource invariants for concurrent pro-
grams. In preparatiom.

(C076) Cousot, P. and Cousot, R. Static determination of dynamic properties
of programs. Proc. 2nd International Symposium on Programming,
B. Robinet, Editor, Dunod, Paris, April 1976.

(C078) Cousot, P. and Halbwachs, N. Automatic discovery of linear restraints
among variables of a program, Proceeding of 5th ACM Symposium on
Principles of Programming Languages, 84-96, 1978,

(DE77)

(DI67)
(FE77)

(FL77)

(HA72)
(HA75)
(H069)

(HO72)
(KE77)

(KE76)

(LA76)
(LI75)

(LM77)
(LU72)
(0W76)
(PN77)

(RO76)

18

DeMillo, M. A., Lipton, R. J., and Perlis, A. J. Social Processes
and proofs of theorems and programs. The 4th ACM Symposium on
Principles of Programming Languages, January 1977,

Dijkstra, E. W. Cooperating sequential processes. Programming
Languages, F. Genuys, Editor, Academic Press, New York, 1968.

Feldman, Jerome. Synchronization of distant cooperating processes.
Computer Science Department Report TR26, University of Rochester.

Flon L. and Suzuki, N. Nondeterminism and the correctness of
parallel programs. Carnegie Mellon University, Department of
Computer Science, May 1977,

Habermann, A, N. Synchronization of Communicating processes¢ Comm.
ACM, 15, 3(March 1972), 171-176.

Habermann, A, N. Path expresssions. Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pa. June 1975).

Hoare, C. A. R. An axiomatic basis for computer programming. Comm,
ACM, 12, 10(October 1969), 576-580.

Hoare, C. A. R. Towards a theory of parallel programming. Operating
Systems Techniques, C, A. R. Hoare, R. H. Perrot, Editors,
Academic Press, 1972.

Keller, R. M. Generalized petri nets as models for system verifi-
cation. Computer Science Department Technical Report, University
of Utah.

Keller, R. M. Formal verification of parallel programs, CACM, 19
(7), 1976.

van Lamsveerde, A. and Sintzoff, M. Formal derivation of strongly
correct parallel programs. MBLE Research Report, Brussels, Belgium
1976.

Lipton, R. J. Reduction: A new method of proving properties of
systems of processes. Proceeding of 2nd ACM Symposium on Principles
of-Programming Languages, 78-86, 1975.

Lamport, L. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2), 1977, 125-143.

Lauer, H. C. Correctness in operating systems. Ph,D, Thesis,
Carnegie-Mellon University, 1972,

Owicki, S. and Gries, D. Verifying properties of parallel programs:
An axiomatic approach. CACM 19(5), 279-284, 1976.

Pnueli, A. The temporal logic of programs., 18th Annual Symposium
on Foundations of Computer Science, November 1977,

Rosen, B. K. Correctness of parallel programs: The Church-Rosser
Approach. Theoretical Computer Science 2:183-207, 1976.

(sC76)

Schmid, H. A, On the efficient implemarn
critical regions and the construction
Informatica, 6:227-249, 1976.

tation of conditional
of monitors. Acta

1%

