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Motivation. The verification of bus protocols, i.e., of communication protocols between hardware devices
as in the case of the well-known PCI bus, is a central problem in hardware verification. Although bus proto-
col design and verification become increasingly important due to the integration of diverse components in IP
Core-based designs, even standard bus protocols are usually specified in English which makes specifications
often ambiguous, contradictory and certainly non-executable.

Traditional hardware verification languages are usually not well-suited for protocol specification because
they are based on existing concrete designs (or abstractions thereof) instead of specifications, and their
execution model therefore focuses on single-cycle transitions. With protocols, the specification is naturally
represented by constraints on signals which may connect relatively distant time points. Another problem of
transition-system based approaches is that naive composition of participants in the protocol may cover up
important protocol inconsistencies due to synchronization faults or write conflicts among non-cooperative
participants. On the other hand, it is important that the specification language is executable, i.e., that a
machine model can be computed from the specification.

The EPSL logic. We propose the new logical language EPSL which facilitates specification, verification,
and simulation of protocols. EPSL is based on a variant of linear temporal logic (LTL) where atomic
propositions are constraints on signals in the protocol, e.g. REQ 2 flow; highg. The core of EPSL are so-
called EPSL scripts, i.e., finite collections of executable temporal formulas similar to Horn clauses. More
precisely, a script is a finite collection of axioms ' )  where ' is a temporal formula involving P (past-
time) as unique temporal operator, and  is a positive temporal formula involving X as unique temporal
operator. Atoms in ' are interpreted as tests about previous signals, while asserts constraints in the future.
Scripts may contain local variables which are not visible in the traces (i.e., models) of the script.

An EPSL moduleE is a finite collection S1k : : :kSn of EPSL scripts. The intended semantics is that
EPSL scripts describe sequential machines (similar to Mealy Machines), and that the EPSL module specifies
the synchronous composition of the sequential machines. Different scripts of a module potentially conflict
if they employ common output signals.

A finite collection P of EPSL modules with pairwise disjoint output signals is called an EPSL protocol.
The semantics of EPSL protocol is the synchronous composition of its modules. EPSL modules cannot
directly conflict with each other, but they may have receptiveness failures.

In real protocols, EPSL scripts describe distinct functionalities and features of hardware devices, while
EPSL modules correspond to the devices themselves. Note that different scripts can constrain the same
signal, which is important when translating natural language specifications.
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Results and Experiments. We show that semantically EPSL expresses exactly the regular safety proper-
ties. This property is crucial for synthesizing executable models of the protocol, and distinguishes it from
other executable logics as in [3]. Note that a fragment of LUSTRE has been shown to capture the same
expressive power [7], but provides a fairly different framework. We present efficient algorithms to obtain
executable models of the protocols. The algorithm is based on an LTL tableau construction [1]. The tableau
construction is used to obtain tableaus for the script formulas. (Formally, scriptsS are translated into quanti-
fied temporal logic (QTL) formulas 9l1 � � � lnG(S) where l1 � � � ln are the local variables.) A determinization
algorithm transforms the tableau into a Mealy machine whose outputs are controlled by the assertion atoms
(i.e., the atoms in  ) of the script. A combinator machine then is used to obtain values for each output and
internal signal as the intersection of their constraints in the respective script traces. Finally, the protocol can
be translated into either Verilog or the SMV input language. In the full paper, the logic is described in detail,
and the formal correctness and generality of our approach is demonstrated.

Since each script is converted into a Mealy machine separately, there is no state explosion during the
translation phase. The execution of EPSL in Verilog and SMV makes it possible to use the power of well-
known and highly developed verification paradigms; in particular, it is possible to verify important features
about the EPSL protocol, such as synchronization contradictions between different scripts, receptiveness
[6] of the EPSL modules, local redundancy of EPSL scripts, and completeness of the specification.

Another important debugging method is property checking, i.e., existing Verilog monitors and CTL
formulas can be easily used to debug EPSL protocols. To improve coverage of the Verilog simulation, a
dynamically biased random simulation test bench can also be written directly in EPSL scripts.

In a case study, we have used EPSL to specify the PCI bus protocol Rev 2.2 [4]. Many errors were
identified, including some errors from the English specification. Verilog monitors and CTL formulas from
[2] have been checked against the generated Verilog and SMV models.
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