Research Directions
in Programming Language Semantics
and Formal Program Verification

Edmund M. Clarke, Jr.

TR-22-81

Center for Research in Computing Technology
Harvard University



v’

Research Directions in Programming Language
Semantics and Formal Program Verification

1. Introduction

Program correctness is one of the most serious problems in the construction of large
software systems. Between one-third and one-half of the effort that goes into the development
of a large software system is spent on program testing and debugging [Ko76]. If the indirect
costs of program errors (e.g. loss of critical information in a data base management system) are
taken into account, the problem becomes even more disturbing. Although correctness is not
the only desirable property of a software system, it is definitely the most basic. When a
program contains an error, issues such as efficiency and hardware fault tolerance may become
meaningless.

One method for obtaining more reliable software is to prove programs correct in the same
way that we prove mathematical theorems. We should be able to have as much confidence in
the correctness of a sorting program as we have in the Pythagorean Theorem. Critics of this
method for obtaining reliable software point to two apparent obstacles: the high degree of
mathematical sophistication required by programmers and the complexity of proofs needed for
large programs. If these obstacles are to be overcome, programming languages must be
designed for which the proof systems are simple and easy to use. In addition, methods for
automatically constructing program proofs will be needed. In this paper we describe some of
the recent research at Harvard on these two aspects of formal program verification. In section
2 we characterize the class of programming languages for which an axiomatic semantics is
appropriate, and in section 3 we describe techniques that can be used to automate the
construction of correctness proofs for concurrent programs.

2. Hoare Axioms and the Semantics of Control Structures

A key trend in program verification has been the use of axioms and rules of inference to
specify the meanings of programming language constructs. This approach was first suggested
by C.A.R. Hoare in 1969 [Ho69]. Although the most complicated control structure in Hoare’s
original paper was the while statement, there has been considerable success in extending his
method to other language features. Axioms have been proposed for the goto statement,
functions, recursive procedures with value and reference parameter passing, simple coroutines,
and concurrent programs. Research by Clarke [CI179] has shown, however, that there are
natural programming language control structures which are impossible to describe adequately be
means of Hoare axioms. Specifically, Clarke has shown that there are control structures for
which it is impossible to obtain axiom systems which are sound and complete in the sense of
Cook [Co78]. These constructs include procedures with procedure parameters under standard



_

Algol 60 scope rules, recursive procedures with call by name parameter passing, and coroutines
in a language with parameterless recursive procedures.

In this section we outline how the incompleteness results are obtained in the case of
procedure parameters and suggest ways of modifying Algol 60 scope rules to obtain good axiom
systems. We also discuss the significance of these results. We argue that the incompleteness
theorems provide additional evidence for the importance of programming languages with
simple, clean control structures.

2.1. Background

The formulas in a Hoare axiom system ate triples {P} S {Q} where S is a statement of the
programming language and P and Q are predicates describing the initial and final states of the
program S. The logical system in which the predicates P and Q are expressed is called the
assertion language (AL) and is an applied version of first order predicate calculus. The triple
{P} S {Q} is true iff whenever P holds for the initial program state and S is executed, then either
S will fail to terminate or Q will be satisfied by the final program state. We call such triples
partial correctness formulas.

The control structures of the programming language are specified by axioms and rules of

inference for the partial correctness formulas. A typical rule of inference is
{P A b} S {P}
{P} while bdo S {P A ~ b} .

The predicate P is the invariant of the while loop. Proofs of correctness for programs are
constructed by using the axioms together with a proof system T for the assertion language. We
write Fy {P} S {Q} if the partial correctness formula {P} S {Q} is provable using the Hoare
axiom system H and the proof system T for the assertion language AL.

To discuss whether a particular Hoare axiom system adequately describes the
programming language PL, it is necessary to have a definition of fruth for partial correctness
formulas which is independent of the axiom system H. The definition of truth requires two
steps. First, we give an interpretation I for the assertion language AL. The interpretation I
specifies the primitive data objects of our programming language; it consists of a set D (the
domain of the interpretation) and an assignment of predicates and functions on D to the
predicate and function symbols of AL. Typical interpretations might be the integers with the
standard functions and predicates of arithmetic, or linear lists with the list processing functions
car, cdr, etc. ’

Second, we provide an interpreter for the statements of the programming language.
There are many ways such an interpreter may be specified—in terms of computation sequences
or as the least fixed point of a continuous functional (denotational semantics). The net result



3 4
is a function M[S](s) = s" which associates with each statement S and state s a new state .

Once the meaning function M has been specified a formal definition may be given for partial
correctness.

2.1.1 Definition: The partial correctness formula {P} S {Q} is true with respect to
interpretation 1 (k= {P} S {Q}) iff for all states s and s, if predicate P holds for state s
under interpretation I and M[S](s) = 5", then Q must hold for s under I also.

2.2. Soundness and Completeness

When can we be satisfied that a Hoare axiom system H adequately describes the
programming language PL? There are two possible ways a Hoare axiom system may be
inadequate. First, some theorem {P} S {Q} which can be proven in the axiom system may fail to
hold for actual executions of the program S, i.e., there is a terminating computation of S such
that the initial state satisfies P but the final state fails to satisfy Q. A way of preventing this
source of error is to adopt an operational or denotational semantics for the programming
language which is close to the way statements are actually executed. We then show that every
theorem which can be proven using the axiom system will be true in the model of program
execution that we have adopted. In the notation defined above we prove that for all P, Q, S, if
by 1 (P} S {Q} then k= {P} S {Q}. Logicians call this property soundness or consistency.

A second source of inadequacy is that the axioms for the programming language may not
be sufficiently powerful to handle all combinations of the control structures of the language.
The question of when it is safe to stop looking for new axioms is much more difficult to answer
than the question of soundness. One solution is to prove a completeness theorem for the Hoare
axiom system. We can attempt to prove that every partial correctness formula which is true of
the execution model of the programming language is provable in the axiom system. In general
it is impossible to prove such completeness theorems; the proof system for the assertion
language may itself fail to be complete. For example, when dealing with the integers for any
consistent axiomatizable proof system, there will be predicates which are true of the integers
but not provable within the system. Also‘the assertion language may not be powerful enough
to express the invariants of loops. This difficulty occurs if the assertion language is Presburger
arithmetic (integer arithmetic without multiplication). Note that both of the above difficulties
are faults of the underlying assertion language and not of the Hoare axiom system. _

How can we talk about the completeness of a Hoare axiom system independently of its
assertion language? Cook [Co78] gives a Hoare axiom system for a subset of Algol including
the while statement and nonrecursive procedures. He then proves that if there is a complete
proof system for the assertion language (e.g. all true statements of the assertion language) and
if the assertion language satisfies a certain natural expressibility condition, then every partial
correctness assertion will be provable,



_

2.2.1 Definition: A Hoare axiom system H for a programming language PL is sound
and complete (in the sense of Cook) iff for all AL, T, and I such that (a) AL is
expressive with respect to I, and (b) T is a complete proof system for AL with

respect to I,
iy {P} S {Q} & Fyr {P} S {Q}

2.3. Incompleteness Results
We next consider the problem of obtaining a sound and complete axiom system for an
Algol-like language which allows procedures as parameters of procedure calls.

2.3.1 Theorem: It is impossible to obtain a system of Hoare-like axioms H which is
sound and complete in the sense of Cook for a programming language PL which
allows:

(i) procedures as parameters of procedure calls

(ii) recursion

(iii) static scope

(iv) global variables

(v) internal procedures as parameters of procedure calls

All of the features (i) - (v) are found in Algol 60 and in Pascal. In [C179] we show that a
sound and complete axiom system can be obtained by modifying any one of the five features of
the language PL. Thus if we change from sratic scope to dynamic scope, a complete set of
axioms may be obtained for (i) procedures with procedure parameters, (ii) recursion, (iv) global
variables, and (v) internal procedures as parameters; or if we disallow internal procedures as
parameters, a complete system may be obtained for (i) procedures with procedure parameters,
(ii) recursion, (iii) static scope, and (iv) global variables.

The incompleteness results are established by observing that if a programming language P
has a sound and relatively complete proof system for all expressive interpretations, then the
halting problem for P must be decidable for finite interpretations. Lipton [Li77] considered a
form of converse: If P is an acceptable programming language and the halting prdblem is
decidable for finite interpretations, then P has a sound and relatively complete Hoare logic for
expressive and effectively presented interpretations. The acceptability of the programming
language is a mild technical assumnption which ensures that the language is closed under certain
reasonable programming constructs, and that given a program, it is possible to effectively
ascertain its step-by-step computation in interpretation I by asking some quantifier-free
questions about I.

Lipton actually proved a partial'form of the converse. He showed that given a program P
and the effective presentation of I, it is possible to enumerate all the partial correctness
assertions of the form {trué S {false} which are true in L. From this it easily follows that we can
enumerate all true quantifier-free partial correctness assertions, since we can encode



\,/"/

quantifier-free tests into the programs. But it does nor follow that we can enumerate all
first-order partial correctness assertions, since an acceptable programming language will not in
general allow first-order tests.

In [CI81b] we consider acceptable programming languages which permit recursive
procedure calls. We also require, for technical reasons, that every element of the domain of I
correspond to some term in the assertion language. (These requirements seem quite
reasonable.) Under these assumptions we are able to significantly extend the results of [C179]
and [Li77}

1. We are able to eliminate the requirement that pre- and post-conditions be
quantifier-frec and that the interpretation be effectively presented. Under the
assumption that the halting problem for P is decidable for finite interpretations, we
show that for all expressive interpretations P has a sound and relatively complete
Hoare axiom system for partial correctness assertions with arbitrary first-order pre-
and post-conditions.

2. We show, in fact, that the set of partial correctness assertions true in I is actually
(uniformly) decidable in the theory of I (Th(I)) provided that the halting problem
for P is decidable for finite interpretations. Lipton’s proof, on the other hand,
produces an enumeration procedure for partial correctness assertions and, thus,
shows only that the set of true partial correctness assertions is r.e. in Th(l).

3. We extend the decidability result to termination assertions (which coincide with
total correctness assertions for deterministic programming languages). Here even
stronger results can be obtained. The set of true termination assertions is
(uniformly) decidable in Th(I) iff the halting problem for P is decidable for finite
interpretations. Moreover, the set of true termination assertions is (uniformly) r.e.
in Th(I) even if the halting problem for P is not decidable for finite interpretations.

This last result unexpectedly suggests that good axiom systems for total correctness may
exist for a wider spectrum of languages than is the case for partial correctness. In particular, it
may be possible to find a sound and relatively complete total correctness proof system for a
language with call by name parameter passing, recursive procedures, functions, and global
variables, even though no corresponding partial correctness proof system can exist.

3. Verification of Concurrent Systems

The rapid development of computer networks and multiprocessor systems has increased
the need for methods of constructing reliable concurrent systems. Traditional techniques such
as hierarchical development and exhaustive testing that have been successfully used in
constructing large sequential programs are no longer adequate because of the high degree of
nondeterminism that is inherent in parallel computation. In this section we describe two
techniques that can be used to automate the construction of correctness proofs for parallel
programs.



3.1. Techniques for Finding Resource Invariants

Parallel processes which operate on disjoint sets of variables are called - disjoint or
noninteracting processes. With disjoint processes it is theoretically possible to achieve the full
power of parallelism, since it is never necessary for one process to wait for another. Disjoint
processes can therefore be analyzed as a collection of independent sequential programs.
Unfortunately, the usefulness of disjoint processes is limited; in most applications, processes
must access and change common variables. In order to exploit the full power of parallelism in
these cases, it is important to understand and be able to control process interactions.

Hoare [Ho72] and Brinch Hansen [BH73] have proposed conditional critical regions as a
language primitive for controlling process interactions. With this primitive, logically related
variables which must be accessed by more than one process are grouped together as resources.
Individual processes are allowed access to a resource R only in a critical region of the form
“with R when b do A od” where b is a boolean expression and A is a statement whose
execution may change the values of the shared variables in R. When execution of a process
reaches the conditional critical region, the process is delayed until no other process is using
resource R and condition b is satisfied. The statement A is then executed as an indivisible
operation.

Owicki and Gries [Ow76] have developed a proof system for conditional critical regions.
Proofs of synchronization properties are constructed by devising predicates called resource
invariants. These predicates describe relationships among the variables of a resource when no
process is in a critical region for the resource.:

In constructing proofs using the system of Hoare-Owicki-Gries, the programmer is
required to supply the resource invariants. In [CI80a] we investigate the possibility of
automatically synthesizing resource invariants for a simple concurrent programming language
(SCL) in which processes access shared data via conditional critical regions. We consider only
invariance or safety properties of SCL programs. This class of properties includes mutual
exclusion and absence of deadlock and is analogous to partial correctness for sequential
programs. Correctness proofs of SCL programs are expressed in a proof system similar to that
of Hoare-Owicki-Gries. '

To gain insight on the synthesis of resource invariants we restrict the SCL language so
that all processes are nonterminating loops, and the only statements allowed in a process are P
and V operations on semaphores. We call this class of SCL programs PV programs. For PV
programs there is a simple method for generating resource invariants, i.e. the semaphore invariant
method of [Ha72] which expresses the current value of a semaphore in terms of its initial value
and the number of P and V operations which have been executed. The semaphore invariant
method, however, is not complete for proving either absence of deadlock or mutual exclusion
of PV programs. We show in [CI80c] that there exist PV programs for which deadlock is



impossible, but the semaphore invariant method is insufficiently powerful to establish this fact.
This incompleteness result is important because it demonstrates the role of convexity in the
generation of powerful resource invariants. We also give a characterization of the class of PV
programs for which the semaphore invariant method is complete for proving absence of
deadlock (mutual exclusion).

The semaphore invariant method is generalized to the class of linear SCL programs in
which solutions to many synchronization problems can be expressed. Although the generalized
semaphore invariant also fails to be complete, it is sufficiently powerful to permit proofs of
mutual exclusion and absence of deadlock for a significant class of concurrent programs (e.g-
the readers and writers problem). |

When the generalized semaphore invariant is insufficiently powerful to prove some
desired property of an SCL program, is it possible to synthesize a stronger résource invariant?
We argue that resource invariants are fixedpoints of continuous functionals, and that by viewing
them as fixedpoints it is possible to generate invariants which are stronger than the semaphore
invariants previously described. We show that the resource invariants of an SCL program C are
fixedpoints of a functional F which can be obtained from the text of program C and that the
Jeast fixedpoint uF of F is the “strongest” such resource invariant. Since the functional F is
continuous, the least fixedpoint uF may be expressed as the limit

uF = U Fi(false),
20

Because of the infinite disjunction, this ‘characterization of F cannot be used to compute
uF directly unless C has only a finite aumber of different states or unless a good initial
approximation is available for pF. By using the notion widening of Cousot [Cou76], however,
we are able to speed up the convergence of the chain Fi(false) and obtain a close
approximation of uF in a finite number of steps. The widening operator which we use exploits
our observation on the importance of convexity in the generation of resource invariants and is
described in [C180c]. Although fixpoint techniques have been previously used in the study of
resource invariants [Si76], we believe that this is the first research on methods for speeding up
the convergence of the sequence of approximations to uF. We have developed at Harvard an
EL1 program [Cl180c] which uses the above ideas to find resource invariants of nontrivial
parailel programs.

3.2. Synthesis of Parallel Programs from Temporal Logic Specifications

Another direction of research focuses on the use of Temporal Logics to specify properties
of parallel programs. While these logics differ in their notation and in their expressive power,
most have operators such as '

OP which means that in every possible future, P sometimes holds



and
O0P which means that for every possible future, P a/ways holds.

OP is useful in defining safety properties which insure that “nothing bad happens”. For
example, to indicate that two processes P, and P, satisfy the requirement that they are never in
their respective critical sections at the same time (mutual exclusion) we write

O(~Cs; A ~CS,)
where C§; indicates that P; is in its critical section. Freedom from deadlock is another safety

property. OP is useful in describing /iveness properties such as absence of starvation and
inevitability which insure that “something good does happen”. For example, we can write

TRY; — 0CS;

1o indicate that if process P; is started in its trying region, it inevitably enters its critical section
at some time in the future,

We are currently investigating a method of constructing concurrent programs in which
the synchronization skeleton of the program is automatically synthesized from a high-level
Temporal Logic specification. The synchronization skeleton is an abstraction of the actual
program where detail irrelevant to synchronization is suppressed. For example, in the
synchronization skeleton for a critical section problem each process’s critical section may be
viewed as an atomic step since the internal structure of the critical section is unimportant.
Most solutions to synchronization problems in the literature are in fact given as synchronization
skeletons. Because synchronization skeletons are in general finite state, the propositional
version of Temporal Logic suffices for specification.

Our synthesis method is based on the finite model property for an appropriate
Propositional Temporal Logic, which asserts that if a formula of Propositional Temporal Logic is
satisfiable, it is satisfiable in a finite model. Decision procedures have been devised which, given a
Temporal Logic formula F, will decide whether F is satisfiable or unsatisfiable. If F is
satisfiable, a finite model of F is constructed. In our application unsatisfiability of the formula
F means that the specification F is inconsistent (and must be reformulated). If the formula F is
satisfiable, then the specification expressed by F is consistent. A model for F with a finite
number of states is constructed by the decision procedure. The synchronization skeleton of a
program meeting the specification can be read from this model.

The finite model property insures that any program whose synchronization properties can
be expressed in Temporal Logic can be realized by a system of concurrently running processes,
each of which is in fact a finite state machine. We remark that an inspection of the literature
reveals that many programs to solve synchronization problems are finite state. Initially, the
synchronization skeletons we synthesize will be for concurrent programs running in a
shared-memory environment. However, we also plan to investigate the possibility of



synthesizing distributed programs. We believe, for instance, that network communication
protocols can be specified in Propositional Temporal Logic and then automatically synthesized.
A preliminary account of our research is given in [Cl181a].

4. Conclusion

Formal program verification is in its infancy. It is unlikely that program proof techniques
will be developed to the point where a/l new software systems are routinely verified. However,
it is inevitable that certain crucial parts of ultra-reliable software systems will be verified (e.g.
the software that controls emergency shutdown of nuclear reactors and the software used in
automated air traffic control systems). The only alternative to formal verification is testing and
as Dijkstra [Di76] has wisely observed: “In software systems testing can only establish the
presence of errors never their absence.” We believe that the research described in this paper will
significantly contribute to an understanding of the relationship between proof methods and
* language design and to the development of techniques for automating the verification of
parallel programs.



[BHT73]
[C179]

[C180a]
[C180b]

[C180c]
[C181a]

[C181b]

[Co78]

[CouT76]

[Di76]
[Ha72]

[Ho69]
[Ho72]
[Ko76]
[Li77]

[Ow76]

[Si76]

10

References

Brinch Hansen, P. Operating System Principles. Prentice-Hall, 1973.

Clarke, EM. Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. JACM 26, 1 (January 1979).

Clarke, E.M. Program invarints as fixed points. Computing 21, 4 (1980), 273-294.

Clarke, EM. Proving correctness of coroutines without history variables. Acra
Informatica 13 (1980), 169-188.

Clarke, E.M. Synthesis of resource invariants. TOPLAS 2, 3 (July 1980), 338-358.

Clarke, E.M. and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. IBM Conference on Logics of Programs, May
4-6, 1981; to appear in Springer Lecture Notes in Computer Science.

Clarke, EM., with S.M. German and J.Y. Halperin. On effective axiomatizations of
Hoare logics. Accepted for presentation at the Ninth Annual Symposium on
Principles of Programming Languages, January 1982.

Cook, S.A. Soundness and completeness of an axiom system for program
verification. SI4AM J. Comput. 7, 1 (February 1978), 70-90.

Cousot, P. and R. Cousot. Static determination of dynamic properties of programs.
Proc. 2d Int. Symp. on Programming, Paris, April, 1976.

Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, 1976.

Habermann, A.N. Synchronization of communicating processes. CACM 15, 3
(1972), 171-176. ’

Hoare, C.A.R. An axiomatic approach to computer programming. CACM 12, 10
(1969), 322-329.

Hoare, C.A.R. Towards a theory of paraliel programming. In Hoare and Perrot,
eds., Operating Systems Techniques. Academic Press, 1972.

Kopetz, H. Software Reliability. Springer-Verlag Inc., 1976.

Lipton, R.J. A necessary and sufficient condition for the existence of Hoare logics.
18th IEEE Symposium on the Foundations of Computer Science, October, 1977, pp.
1-6.

Owicki, S.D. and D. Gries. Verifying properties of parallel programs: an axiomatic
approach. CACM 19, 5 (1976), 279-289.

Sintzoff, M. and A. Van Lamsveerde. Formal derivation of strongly correct parallel
programs. MBLE Research Report, Brussels, 1976. :



