
August 7, 2001 10:52 WSPC/115-IJPRAI 00119

International Journal of Pattern Recognition and Artificial Intelligence
Vol. 15, No. 5 (2001) 859–868
c© World Scientific Publishing Company

IMAGE-PROCESSING PROJECTS FOR AN

ALGORITHMS COURSE

EUGENE FINK and MICHAEL HEATH

Computer Science & Engineering, University of South Florida,
Tampa, FL 33620, USA

E-mail: {eugene,heath}@csee.usf.edu

Courses on algorithm analysis often include little programming, and do not emphasize
application of advanced techniques to practical problems. On the other hand, students
usually prefer hands-on learning, and may lack motivation to study theory.

We augmented an algorithms course with a series of programming tasks, which
involved application of the course material to image processing. These tasks motivated
the students, and led to better understanding and retention of theoretical material. They
also enabled the students to learn the basics of representing and manipulating images,
along with the algorithm theory.

Keywords: Algorithm theory; image processing; computer vision; undergraduate
education.

1. Introduction

Software development often involves advanced data structures, and requires

knowledge of algorithm theory. The ability to choose and implement appropriate

algorithms is a crucial skill for a software engineer.7

Undergraduate students learn relevant theory through courses on data struc-

tures and algorithms; however, they often have difficulty applying the learned theory

in actual programming. Some students initially perceive algorithms as impractical

material, and the right motivation has proved an essential part of theoretical

courses. Even graduate students are sometimes reluctant to utilize algorithm theory

in their research, and need close guidance in their implementation of advanced

techniques.

This problem may be partially due to the traditional methods of teaching the

algorithm analysis. A survey of university curriculums reveals that advanced algo-

rithms courses usually include little programming, and do not emphasize the role

of theoretical techniques in software development. An integration of an algorithms

course with programming tasks may help the students to understand theory and

develop skills for its application.

To test this strategy, we included programming projects into a senior-level

algorithms course at the University of South Florida. The projects were centered on

859

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

860 E. Fink & M. Heath

image processing, and the students applied the learned theory to develop efficient

image-analysis programs. The use of this common theme allowed the students to

acquire basic experience with digital images, along with a deeper knowledge of

algorithms.

This use of programming tasks was a continuation of work by Sarkar and

Goldgof, who integrated image analysis into a sophomore-level course on data

structures.5 They emphasized the growing need for images in software develop-

ment, and suggested that basics of image manipulation should become a part of

the core curriculum. Their integrated course proved a success: the students not only

learned the foundations of image analysis, but also deepened their understanding

of data structures.

The described programming projects are also related to recent work by

Stevenson, who used computational geometry and image analysis in an algo-

rithms course.6 His projects included convex-hull computation, triangulation, and

convolution; they emphasized algorithm design strategies and advanced program-

ming techniques, such as object-oriented programming, graphical user interfaces,

and multiple threads.

On the other hand, we focussed on the implementation of specific algorithms and

data structures, empirical analysis of their performance, and its comparison with the

theoretical time complexity. We outline the course (Sec. 2), describe programming

projects (Secs. 3 and 4), and conclude with a discussion of the observed results

(Sec. 5). The reader may find a more detailed description of the course and all

related materials at www.csee.usf.edu/∼eugene/algs/.

2. Course Overview

The undergraduate algorithms course at the University of South Florida is a

fifteen-week course that covers standard foundations of algorithm analysis and

design; the class size is about forty students. The course includes a series of

theoretical homeworks, two midterm exams, and a final. It usually involved little

or no programming, and did not provide a strong tie between theoretical concepts

and specific applications.

The students take a data-structures course before the algorithms class. This

prerequisite course includes basic structures and their implementation in C; the

students learn to work with arrays, linked lists, stacks, queues, hash tables, trees,

recursion, and simple sorting. The algorithms course is a continuation of this

material, which includes not only standard algorithms and design techniques, but

also advanced data structures, such as priority queues and disjoint sets.

Many students feel that this material is harder than other courses, and that the

underlying theoretical tools are counterintuitive. They often have difficulty with the

concepts of time and space complexity, as well as with properties of advanced data

structures. The lack of intuitive understanding not only makes the course harder,

but also leads to retaining less material after the exam.

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

Image-Processing Projects for an Algorithms Course 861

Undergraduate Algorithms Course

• Mathematics review, asymptotic notation, and recurrences.

• Sorting: Insertion sort, merge sort, heap sort, quick sort, counting sort, and radix sort.

• Data structures: Priority queues, binary search trees, and disjoint sets.

• Graphs: Representation, search, topological sort, spanning trees, and shortest path.

• Dynamic programming and greedy algorithms, including Huffman codes.

• Introduction to NP-completeness.

Fig. 1. Main topics of the algorithms course; the italics show the theoretical material underlying
the image-processing projects (see the list of projects in Fig. 3).

• Show the operation of the counting sort on the array 〈6, 3, 4, 5, 6, 4, 3, 8, 4, 1, 2〉.
• Write an efficient procedure that prints out all nodes of a binary search tree whose keys are

between two given values, min and max.

• Give a nonrecursive version of depth-first search; the time complexity should be the same as
the complexity of the recursive version.

Fig. 2. Sample questions from the paper-and-pencil homeworks.

Traditionally, the course did not emphasize the use of multiple algorithms in

a single application, and students did not acquire skills for integrating several

techniques. For example, some students complained that the use of disjoint-set

operations in graph algorithms was confusing, because it required integration of

two different data structures.

We added image-processing projects with the goal to help the students acquire

hands-on experience with algorithms. Most students had no prior experience with

images; since Sarkar and Goldgof had not taught data structures in the previous

year, the students had not taken their integrated course on data structures and

image analysis.

We used the textbook by Cormen et al.1 and covered the topics listed in

Fig. 1. The students had to complete not only programming projects, but also nine

paper-and-pencil homeworks, which asked them to simulate algorithms by hand,

design new algorithms using pseudocode, and analyze time complexity (see example

questions in Fig. 2). The homeworks covered all topics of the course, whereas the

projects utilized only a subset of the material (see the italicized topics in Fig. 1).

The homeworks were worth 25% of the final grade, and the programming tasks

amounted to 15%; the remaining points were divided between the two midterms

and final exam.

3. Programming Projects

The course included the four projects listed in Fig. 3. The first project familiarized

the students with image encoding, whereas the other three involved implementation

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

862 E. Fink & M. Heath

Representation of images: Image encoding and basic operations with arrays.
Median filtering: Insertion sort, quick sort, and counting sort.
Connected components: Graph representation, search, and disjoint-set operations.
Compression of images: Priority queues and Huffman’s compression algorithm.

Fig. 3. Programming projects and the underlying theoretical concepts.

Fig. 4. Images for the programming projects.

and testing of efficient algorithms. For each project, the students had to integrate

several theoretical concepts, from different textbook chapters.

The empirical comparison of different algorithms was a significant part of these

tasks. For example, the median-filtering project required the students to plot the

running time of three sorting algorithms, and analyze their relative performance for

different array sizes. As another example, the students had to compare two different

ways of implementing disjoint sets in the connected-component algorithm. Thus,

they observed close relationship between theoretical time complexity and empirical

efficiency.

We used images in the Portable Gray Map (pgm) format, which allowed simple

low-level operations for loading images and accessing pixel values. The students

could view pgm images on both Unix and PC machines, by converting them to

either pcx or gif, and then using a standard image viewer, such as xv. We provided

the images given in Fig. 4 for testing the students’ programs. The first two pictures

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

Image-Processing Projects for an Algorithms Course 863

are NASA astronomical images, the third is a mammogram, and the others are

from the image repository of the Vision Lab at the University of South Florida.

The students had to program in C or C++; most students selected C, because

they learned it in the data-structures course. For each project, we provided the code

that supported relevant low-level operations, and the students had to integrate their

implementation with the prepackaged procedures. This code included predefined

data structures, functions for loading pgm images, and tools for debugging and

running the project implementation. It helped the students to avoid pgm-specific

details and concentrate on the algorithms. In addition, it led to the standardization

of output, and allowed the use of scripts for testing the submitted programs.

The students had to complete each project in three weeks. We encouraged them

to work in groups of two or three, but also allowed individual work; since the project

size did not depend on the group size, most students chose to work in groups of

three. They had to e-mail their source code and then give a ten-minute demo; in

addition, the teaching assistant used a script to run the submitted code on several

test files.

The students also submitted reports with performance graphs and answers

to related questions; they included empirical results and compared the observed

running time with the expected asymptotic behavior. In addition, they had to

write a summary of their experience with the project and point out the hardest

part of the work. The project grade depended on the correct functionality of the

implementation (40%), code readability and good interface (30%), and quality of

the report (30%).

4. Specific Tasks

We now describe each programming project and the related theoretical material. We

started with a simple well-defined project, and then gradually increased complexity

of underlying algorithms and software design. Toward the end, the students had

freedom to construct their own data structures.

4.1. Project 1: Representation of images

Since most students had no previous experience with images, the goal of the first

task was to familiarize them with image encoding. They had to understand the pgm

format and write their own basic functions for loading images into the memory and

saving them to the disk. In addition, they implemented a procedure for finding the

brightest pixel, darkest pixel, and mean gray level of all pixels in a given image.

The students tested their code on several images, measured the running time

of each function, and determined the dependency of the time on the image size.

In particular, they compared the time of disk operations with the time of linear

search in memory, and verified that the search time was proportional to the array

size. All students successfully completed this task and received the full grade;

two submissions earned extra credit for an exceptionally good interface.

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

864 E. Fink & M. Heath

The project helped the students to understand the representation of images in

computer memory, and to learn tools for viewing and printing out images. Many

students reported that learning pgm was harder than the implementation part,

and some of them had difficulty with the concept of representing an image as a

collection of numbers. Sarkar and Goldgof5 observed a similar conceptual barrier

in their data-structures course.

4.2. Project 2 : Median filtering

The next project required the students to apply sorting algorithms to median filter-

ing, which is a technique for smoothing a noisy image. For each pixel in the image,

the filtering procedure considers a rectangular window centered on that pixel, com-

putes the median of pixel values in the window, and replaces the original pixel with

the median value (see Fig. 5).

The students computed the median by sorting the pixel values in the window

and then picking the middle value. We provided functions for loading an image

from the disk, identifying the window for a given pixel, and converting this window

into a linear array. The students had to implement sorting algorithms and integrate

them with the prepackaged code; they wrote and tested three algorithms: insertion

sort, quick sort and counting sort.

Fig. 5. Images in the median-filtering project: The initial noisy image (left), and the results of
filtering with a 3× 3 window (middle) and 7 × 7 window (right).

0 100 200 300 400 500
0

20

40

60

80
Project 2: Sorting algorithms.

window size (pixels)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

insertion sort
quick sort
counting sort

0 10000 20000 30000 40000
0

0.05

0.1

0.15

0.2

Project 3: Disjoint−set algorithms.

graph size (vertices + edges)

ru
nn

in
g

tim
e

(s
ec

on
ds

)

linked−list structure
disjoint−set forest

Fig. 6. Experiments with sorting algorithms and disjoint-set structures.

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

Image-Processing Projects for an Algorithms Course 865

We asked the students to plot the performance of each algorithm for different

window sizes, and compare the resulting curves with the theoretical time complexity

(see an example graph in Fig. 6, left). This experiment demonstrated the importance

of time complexity for large arrays.

The students also had to determine the “constant factor” of each sorting pro-

cedure, hidden in the asymptotic notation. In addition, they compared the sorting

techniques for small arrays, which showed the practical significance of the “constant

factor.” They observed that the insertion sort is the fastest technique for 3× 3 and

5×5 windows, despite its poor asymptotic behavior. All students submitted correct

code; however, three groups lost part of the credit for insufficient written analysis

of their results.

4.3. Project 3 : Connected components

Next, the students wrote a procedure for identifying white objects on dark back-

ground, and applied it to count the number of stars in an astronomical image. They

converted an image into an undirected graph, and utilized an algorithm for identify-

ing connected components, described in Sec. 22.1 of the textbook by Cormen et al.1

The algorithm included basic graph operations along with disjoint-set structures.

The task involved implementation of the connected-component algorithm and

three data structures: an adjacency-lists graph, a linked-list representation of

disjoint sets, and a disjoint-set forest. We provided a function for converting an

image into a graph, and the students used it in their implementation.

They first tested the algorithm with linked-list sets, and then ran the same

algorithm with disjoint-set forests. They compared the efficiency of these two

structures and plotted the respective running times (see Fig. 6, right). In addition,

the students again compared the observed running time with the theoretical com-

plexity and determined the constant factor. The project convinced them that

the second representation is more efficient, and that it readily scales to very

large sets.

Most students reported that integration of a graph structure with disjoint sets

was the hardest part of the project, as they had little experience with combining

multiple structures. They had to figure out that the same object served both as a

vertex of the graph and an element of the disjoint-set structure. Almost all students

successfully completed the project; ten groups out of seventeen received the full

grade, and six groups lost part of the credit for their written reports. Only one

group was unable to complete implementation.

4.4. Project 4 : Compression of images

The purpose of the last task was to familiarize students with greedy algorithms.

They had to implement a compression program based on Huffman codes (see

Sec. 17.3 of Cormen et al.1), which served as an example of greedy design, and

apply it to several image files.

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

866 E. Fink & M. Heath

The students wrote a procedure that determined the frequency of pixel values

in an image and used the resulting frequency table to construct a tree of Huffman

codes. We provided a function that used the resulting codes to compress and

uncompress images, as well as a transformation function for reducing the image

entropy, which improved the compression rate.

The students had to implement not only the greedy-choice algorithm, but also

two related structures: a tree of Huffman codes and a priority queue of pixel-value

frequencies. Again, most students wrote that integration of two different structures

was the hardest part.

After implementing Huffman’s algorithm, the students measured its running

time and compression rate for a collection of images, and compared it with the

gzip procedure, which uses the Lempel-Ziv algorithm. They also had to explain

why the implemented greedy procedure gives globally optimal results.

The students reported that this task was harder than the other three projects. It

required more work on design and integration of data structures, and the resulting

code was almost twice larger than the previous projects. Ten groups submitted

working code, five groups did not fully debug their code and received partial credit,

and two groups were unable to design the necessary structures.

5. Results and Discussion

We have described a series of programming tasks, which allowed us to teach basics

of image processing along with algorithm analysis. Since visual data are now an

integral part of many computer applications, we expect that image manipulation

will become an important skill for software engineers.2 The projects did not distract

from the theoretical material, and we covered the same amount of material as in

the previous years. This conclusion was consistent with the results of Sarkar and

Goldgof,5 and Stevenson,6 who also reported that image-analysis projects did not

interfere with the course material.

Most students liked the hands-on style of learning and enjoyed their experience

with visual data. They rated the course as 4.32 out of 5.00, which was higher

than the departmental mean of 3.94. This evaluation was surprisingly high for the

algorithms course, which had usually been rated below the mean.

After the students completed the third programming task, we conducted a short

survey, which also confirmed the effectiveness of the projects. Specifically, 80% of

the students replied that the projects helped them to understand the material, 88%

confirmed that they liked working with visual data, and 68% indicated that they

wanted to get a fourth programming task.

The projects provided convincing evidence of the practical applicability of

algorithms, thus motivating the students. The hands-on experience helped the

students to grasp complex concepts, and the exams revealed an improvement

in their understanding and retention of the material. In particular, the empiri-

cal comparison of running times helped them to understand the notions of time

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

Image-Processing Projects for an Algorithms Course 867

complexity and scalability.

The students practiced working in groups and integrating their implemen-

tation with prepackaged code, which are crucial skills in software development.

Furthermore, they learned to combine several algorithms and data structures for

designing an efficient application.

We believe that the described projects can be readily added to existing

data-structures and algorithms courses, with little time overhead. The use of

these projects does not require expertise in image analysis, and other teach-

ers can readily reuse our course materials. The reader may find more ideas for

image-processing tasks in the article by Sarkar and Goldgof,5 which provides

a larger set of programming projects, and in Samet’s textbook on spatial data

structures.4

Course Materials

The course materials are available at www.csee.usf.edu/∼eugene/algs/. They

include the syllabus, theoretical homeworks, and programming tasks, along

with all related handouts, pgm images, and C code. The sample solutions for

the homeworks and solution code for programming projects are available on

request.

Acknowledgments

We are grateful to the faculty members of the Vision Lab at the University of

South Florida, Dmitry Goldgof, Sudeep Sarkar and Kevin Bowyer, who helped to

select image-processing tasks and integrate them into the course. Dmitry Goldgof

and Sudeep Sarkar provided valuable comments on the contents of the article. We

also appreciate the help of Josh Johnson, the teaching assistant for the algorithms

course.

The test images for the course included NASA photographs by a space-borne

radar and by the Hubble telescope. The work on the materials for the program-

ming projects was partially sponsored by the National Science Foundation grant

No. DUE-9980832.

References

1. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT
Press, Cambridge, MA, 1990.

2. B. B. Maxwell, “Teaching computer vision to computer scientists: issues and a
comparative textbook review,” Int. J. Pattern Recognition and Artificial Intelligence
12, 8 (1998) 1035–1051.

3. R. Murphy, “Teaching image computation in an upper level elective on robotics,” Int.
J. Pattern Recognition and Artificial Intelligence 12, 8 (1998) 1081–1093.

4. H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley,
Reading, MA, 1990.

August 7, 2001 10:52 WSPC/115-IJPRAI 00119

868 E. Fink & M. Heath

5. S. Sarkar and D. Goldgof, “Integrating image computation in undergraduate level
data-structure education,” Int. J. Pattern Recognition and Artificial Intelligence 12, 8
(1998) 1071–1080.

6. D. E. Stevenson, “Computational geometry and image processing applications for an
undergraduate algorithms course,” Proc. Workshop on Undergraduate Education and
Computer Vision, 2000.

7. R. Wodaski, C Programming Proverbs and Quick Reference, Sams Publishing, Carmel,
IN, 1992.

Eugene Fink received
the B.S. degree from
Mount Allison Univer-
sity (Canada) in 1991,
M.S. from the Uni-
versity of Waterloo
(Canada) in 1992, and
Ph.D. from Carnegie
Mellon University in
1999. He is currently

an Assistant Professor in the Computer
Science and Engineering Department at the
University of South Florida.

His primary research interests are in
various aspects of artificial intelligence, in-
cluding machine learning, planning, problem
solving, and theoretical foundations of AI.
His interests also include e-commerce and
computational geometry.

Michael Heath re-
ceived the M.S. (1996)
and Ph.D. (2000) from
the University of South
Florida, and he is cur-
rently working at the
Eastman Kodak Com-
pany in Rochester, NY.

His research interests
include image process-

ing and the automated analysis of hyperspec-
tral remote sensing imagery.

