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We describe a technique for fast compression of time-series, indexing of the 

resulting compressed series, and retrieval of series similar to a given pattern. 

 The compression algorithm identifies "important" points of a time-series and 

discards the other points.  It runs in linear time, takes constant memory, and gives good 

results for a wide variety of time-series. 

 We use the important points not only for compression, but also for indexing a 

database of time-series, which supports efficient search for patterns and allows the user to 

control the trade-off between the speed and accuracy of search.  The experiments show 

the effectiveness of the developed technique for identifying patterns in stock prices, 

meteorological data, and electrocardiograms. 
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CHAPTER 1 – INTRODUCTION 

 
 The purpose of the described work is to develop a technique for fast search for a 

given pattern in a time-series.  For example, suppose we believe that the pattern in the 

stock prices in Figure 1.1 helps predict future prices, or that the pattern in the 

electrocardiogram in Figure 1.2 indicates a disease.  If these patterns are useful, we may 

need to search for similar patterns.  In Figures 1.1 and 1.2, we show instances of similar 

patterns located by the developed technique. 

 The analysis of time-series, which includes compressing, indexing and searching 

time-series, is an active research area.  We may use the similarity among time-series for 

the following purposes: 

♦ classification and taxonomy, 

♦ query and retrieval, 

♦ grouping similar series together (clustering), and 

♦ identification of unusual series or intervals within a series. 

 A similarity measure needs to be accurate and allow efficient implementation. A 

related problem is to develop a method for compressing time-series that preserves 

similarity between series.  

 Efficient search for patterns in time-series may find applications in many 

domains.  For example, a pattern in stock prices may correlate with economic events.  As 

another example, a pattern in an electrocardiogram may precede onset of a disease. 
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Figure 1.1: Example of a pattern in a stock chart and  similar patterns located in a 
stock database.   

 
 
 
 

 

Figure 1.2: Example of two patterns in an electrocardiogram and a located similar 
pattern. 
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1.1   Contributions 

The main contributions of the presented work include a technique for 

compressing time-series and an algorithm for fast retrieval of time-series that closely 

match a given pattern.   

Formally, a time-series is a sequence of values, measured at equal time intervals; 

we assume that all values in the series are positive.  For example, the lower time-series in 

Figure 1.3 has the values 20, 22, 25, 22, 25, 27, 27, and so on.  We may use a 

subsequence as a  compressed representation of a full sequence.  For example, we can 

select every tenth value, or all local maxima and minima. When using maxima and 

minima for compression, we often call them "important points" of the sequence.  We 

circled these important points in the lower curve in Figure 1.3. 

We give a compression technique based on extraction of certain important points 

from a time-series, which works in linear time and takes constant memory.  It requires 

one pass through the time-series, with no pre-processing.  The technique gives good 

results for a variety of time-series, including erratic time-series, such as shown in  

Figure 1.1. 

 

Figure 1.3: Example of two time -series which are similar, but not identical. 
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 Then, we propose a metric for measuring the similarity of two time-series, 

compare it with alternative metrics, and show that it works well with compressed data.  

We measure similarity on a scale from zero to one, where zero means no likeness and one 

means perfectly alike. 

Finally, we present a technique for indexing time-series, and show its utility for 

fast retrieval of similar patterns, using the described similarity metric. 

 Historically, most time-series research has been done with data that is already 

fully collected, such as last year's stock prices; however, we often have to analyze data in 

the process of collection.  For example, we may need to process a continuous 

electrocardiogram of a patient in an emergency room.  We refer to it as streaming data.  

The developed techniques work for streaming data, as well as for traditional "static" data.  

 

1.2  Data sets  

 We tested the developed techniques on large time-series from different domains, 

summarized in Table 1.1.  All these data are publicly available.  

 

♦ Standard and Poor's 100 stock prices 

We used stocks from the Standard and Poor's 100 listing of large companies, as 

well as the Dow Jones Industrials, for the period from January 1, 1998 to April 20, 2000.  

The ending date was the last available date when we downloaded the data; it had no 

special significance.  We downloaded daily split-corrected prices from America Online 

and repaired missing values by duplicating the prior-day prices.   We discarded newly 

listed and de-listed stocks, and used ninety-eight stocks in experiments.  

 

♦ Air and sea temperatures 

 We used daily temperature readings from sixty-eight buoys in the Pacific Ocean 

from1980 to 1998, downloaded from the Knowledge Discovery and Data Mining 

database at the University of California at Irvine, at 
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Table 1.1: Test data sets. 

Data set Number 
of series  

Description Total 
number of 
points 

Measure- 
ment 
intervals 

Stock prices 
 

98 98 stocks, 2.3 years, 252 
values per year for each stock 

        
60,000 

1 day 

Air and sea 
temperatures 

68 68 buoys, 2 sensors per buoy, 
18 years, 365 values per year 
for each sensor 

      
445,000 

1 day 

Wind speeds 12 12 stations, 18 years, 365 
values per year for each 
station 

        
79,000 

1 day 

Electroen-
cephalogram 

61 61 electrodes, 256 values per 
electrode 

        
17,000 

0.004 
second 

Electro-
cardiogram 

1 1 electrode,  2200 values           
2,200 

0.006 
second 

 
 
 
kdd.ics.uci.edu/databases.  These buoys do not have fixed locations, and often 

drift.  To repair the data, we developed a routine to position the buoys on a map and 

interpolate missing values. 

Air and sea temperatures are related.  For example, we may see two patterns in 

the air temperature at zero latitude in Figure 1.4. The first pattern is very similar to the 

pattern in the sea temperature at the same location.  It is roughly similar to the air and sea 

temperatures two degrees further south.  The second pattern in the air temperature at zero 

latitude is close to the sea temperature at the same location.  It is absent two degrees 

further south.  

 

♦ Wind speed 

 We used daily wind speeds from twelve sites in the Republic of Ireland from 1961 

to 1978, obtained from the Statistical Database at Carnegie Mellon University, at 

www.stat.cmu.edu/datasets/wind.desc. 
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Figure 1.4: Example of patterns in air and sea temperatures.  

The first pattern appears in all time-series, whereas the second is only in the first two. 
 
 
 
♦ Electroencephalograms 

These data show electrical changes in the scalp, and help to analyze brain activity.  

In Figure 1.5, we illustrate electroencephalograms for a scalp location designated "CZ," 

and four immediately surrounding locations.  We used electroencephalograms of a human 

subject obtained by Henri Begleiter at the Neurodynamics Laboratory of the State 

University of New York Health Center at Brooklyn.  These data are from sixty-four 

electrode sensors located at standard sites on the scalp, and were downloaded from the 

Knowledge Discovery and Data Mining database at the University of California at Irvine, 

at kdd.ics.uci.edu/databases. 

 

♦ Electrocardiograms 

 Electrocardiograms track electrical activity of the heart.  The healthy activity has 

several standard patterns, and deviations from them may indicate pathology (see Figure 

1.2).  We applied the developed technique to search for abnormal patterns in an 
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electrocardiogram, downloaded from the University of Washington at 

www.ms.washington.edu/~s530/data.html. 

 

 

 

 

 

 

   

 

Figure 1.5: Electroencephalogram data at five electrodes.  
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CHAPTER 2 - PREVIOUS WORK 

 
We now review previous work on the comparison of time-series and search for 

patterns.  Note that this work does not directly relate to the prediction of future values, 

which has been another active direction in time-series analysis [Franses, 1998; Spiegel, 

1996; Plane, 1996]. 

 

2.1  Feature sets  

Researchers have investigated the use of various feature sets for compressing 

time-series and measuring similarity between series.   

In particular, they have extensively studied discrete Fourier Transforms, which 

convert a series into a set of coefficients [Singh, 1998; Sheikholeslami, 1998; Stoffer, 

1999; Yi, 2000].  These transforms allow fast, accurate compression of a time-series; 

however, they have several disadvantages.  In particular, the transforms smooth local 

extrema, which may lead to a loss of important information in some domains, such as 

stock charting.  Also they do not work well for erratic time-series [Ikeda, 1999].  Finally, 

there is no way to select a segment as a pattern [Han, 1998], without reconstituting the 

original series and obtaining new coefficients for the segment. 

Recently, researchers have studied the use of small, descriptive alphabets for 

compressing time-series.  For example, Guralnik [1997] compressed stock prices using a 

nine-letter alphabet to describe three features, each of which had three values.  Sing 

[1998] represented stock prices, particle dynamics, and stellar light intensity with small 

words defined over a three-letter alphabet.  Chi [1995] used an alphabet of simple DNA 

molecule combinations for genome sequences.  Lin [1998] used a two-letter alphabet to 

encode major spikes in a series. The prime advantage of this technique is high 

compression rate; however, its descriptive power is limited, which makes it unusable in 

many domains. 
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 Han [1998] used small categories of discretized values, similar to alphabets.  The 

categories are fully ordered, whereas letters in an alphabet may not be ordered.  While 

offering substantial compression, the discretized values suffer the traditional problem that 

values near a category boundary can be misclassified. 

 Das [1998] studied another variety of a limited alphabet, based on primitive 

shapes, and used it to develop efficient compression algorithms.  He has not developed a 

universal set of primitive shapes, and the technique requires the user to hand-code 

appropriate basic shapes for each domain. 

  Several researchers used statistics for multiple intervals of a series to summarize 

the properties of a time-series; however, this technique gives poor results for erratic time-

series [Policker, 2000; Geva, 1999; Stoffer 1999; Popivanov, 1998].  These statistics 

usually require equal length intervals, and do not allow comparison of patterns of 

different length. 

Perng [2000] investigated a compression technique based on extracting "landmark 

points" from a series, and discarding other points; his choice of landmark points included 

local maxima and minima of the series.  Keogh [1997; 1998] used the end-points of  best-

fit line segments to compress the series.  In Chapter 3, we offer an alternative 

compression technique, based on selecting local maxima and minima, and show that it is 

more accurate than other compressed representations.  We give a linear-time algorithm 

for finding important points, which is more efficient than Perng's iterative algorithm.  

 

2.2  Similarity measures 

 The choice of feature sets affects techniques for measuring similarity of time-

series.  Researchers have studied a number of similarity measures, which include the 

computation of similarity through weighted feature differences, use of qualitative 

categories, and various clustering techniques.  
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♦ Euclidean distance 

Some researchers defined similarity as the distance between vectors in an n-

dimensional feature space.  For example, Caraca-Valente [2000] used Euclidean distance 

to compute similarity of  the feature vectors containing angle of knee movement and 

muscle strength.  Lee [2000] applied Euclidean distance to compare feature vectors 

containing color, texture, and shape of sequential video pictures.  This metric works well 

when different features have the same units and scale [Goldin, 1995]; however, it causes 

errors when combining disparate features, such as time and dollars [Gunopulos, 2000].  

 

♦ Bounding rectangles 

An alternative definition of similarity is based on the notion of  bounding 

rectangles, illustrated in Figure 2.1.  Two series are similar if their bounding rectangles 

are similar.  The use of bounding rectangles allows fast pruning of clearly dissimilar 

curves [Perng, 2000; Lee, 2000]; however, it is less effective for selecting the most 

similar curve among close candidates.  This technique requires intelligent selection of 

segments for bounding rectangles, which usually involves human assistance. 

 

♦ Envelope count 

We may divide the time axis into short segments, called envelopes, and define a 

yes/no similarity for each envelope.  Specifically, two series are similar within an 

envelope if their point-by-point differences are within a certain threshold.  The overall 

similarity is measured by the largest number of consecutive envelopes where the series 

are similar [Agrawal, 1996].  This measure allows fast computation of similarity; 

furthermore, we can readily adapt it for handling noisy and missing data [Das, 1997; 

Bollobas, 1997]. 

 

♦ Aggregate similarity  

We can measure point-by-point similarities of two series, and then aggregate 

these measures.  This technique often involves interpolation to obtain values for missing 

points.  For example, Keogh [1997; 1998] used linear interpolation with this technique, 
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Figure 2.1: Example of bounding rectangles. 

A bounding rectangle of series on a given interval is the minimal rectangle that includes 
all points of the series.  We may consider two curves similar if they have identical 
bounding rectangles. 
 

 

and Perng [2000] applied cubic approximation.  Keogh [2000] also described the use of 

point-by-point similarity with modified Euclidean distance, which does not require 

interpolation. 

We use a similar approach in the reported work; specifically, we define similarity 

between individual points of compressed time-series and use a weighted aggregation of 

these similarities. 

  

2.3  Indexing and retrieval 

 Researchers have studied a variety of techniques for indexing and retrieval of 

time-series.  They utilized several advanced techniques from algorithm theory, including 

tree structures and grids.  

 In particular, they used B-tree indexing, which is an extension of red-black trees 

where a node may have more than two children; for example, see the textbook by 

Cormen et al.[1990].  They have also used R-trees, which extend B-trees for indexing 
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points in multi-dimensional space [Kamel, 1993].  Although the traditional use of R-trees 

was indexing spatial data, this structure also allows indexing of time-series by their 

position in feature space [Gunopulos, 2000].   

 The kd-tree technique is an extension of binary search trees, which uses different 

features of an object at different levels of the tree, and allows the both numeric and 

qualitative features [Gunopulos, 2000].  Deng [1998] applied this structure to index 

sequences by their significant features. 

 Bozkaya [1997; 1999] used vantage-point trees for indexing time-series by their 

numerical features.  Aggarwal [2000] considered the use of grid structures for a similar 

problem, but found that generally their performance in high-dimensional space is no 

better than exhaustive linear search.   

 Gunopulos [2000] and Aggarwal [2000] reviewed the use of compression with 

linear-search retrieval, and concluded that exhaustive search in the database of 

compressed sequences is often faster than sophisticated indexing techniques.   

 We also use compression for efficient retrieval, and combine it with a simple 

indexing technique and heuristics for identifying "prominent" features of a time-series.  

In Chapter 5, we describe this approach, which allows fast retrieval of similar time-series 

and enables the user to control the trade-off between speed and accuracy of retrieval. 

The developed technique meets most of the criteria suggested by Gunopulos 

[2000], who pointed out that a retrieval algorithm should: 

♦ work for erratic time-series,  

♦ accept any prototype pattern, 

♦ find inexact matches, 

♦ evaluate the accuracy of matches, 

♦ work when some points are missing, and 

♦ work on streaming data.   
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CHAPTER 3 - IMPORTANT POINTS 

 
We compress a time-series by selecting some of its local maxima and minima, 

called important points, and dropping the other points (see Figure 3.1).  We can control 

the number of selected points, which determines the compression rate.  This compression 

technique is lossy, that is, we cannot restore the original series from the compressed 

version.  In other words, the compressed curve is an approximation of the initial curve. 

 

3.1  Choice of important points 

The intuitive idea is to discard minor fluctuations in a series, and keep major 

maxima and minima.  We control the compression rate with a knob parameter, called R, 

which is always greater than one.  Increasing R leads to selecting fewer points. 

A point am is an important minimum if there are indices i and j, where i ≤ m ≤ j, 

such that 

♦ am is the minimum among ai,…, aj, and 

♦ ai/am ≤ R and aj/am ≤ R. 

Intuitively, am is an important minimum if it is the minimal value of some 

segment ai,…, am,…, aj of the series, and the end-point values of this segment are much 

larger than am.  For example, the point am in Figure 3.2(a) is an important minimum, 

since it is the minimum of the segment ai,…, aj, and the end-point values of this segment 

are greater than am • R.  On the other hand, the local minimum ak is not an important 

point.  

The definition of an important maximum is symmetric. That is, a point am is an 

important maximum if there are indices i and j, where i ≤ m ≤ j, such that 

♦ am is the maximum among ai,…, aj, and 

♦ am/ai ≤  R and am/aj ≤ R. 
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Figure 3.1: Important points in stock prices. 

We circle important points for 10% compression (top) and 5% compression (bottom). 
 
 

For example, am in Figure 3.2(b) is an important maximum, whereas ak is not an 

important maximum.  

In Figure 3.3, we give an algorithm for selecting important points, which 

performs one pass through the series and outputs the values and indices of the selected 

points.  First, we apply FIND-FIRST-TWO  and then alternately invoke FIND-MINIMUM and 
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(a)      (b) 

Figure 3.2: Examples of important minimum (left) and important maximum (right). 

 
 

FIND-MAXIMUM.  We can easily adapt the algorithm to process streaming data by 

replacing "if i ≤ n" with "if stream not terminated." 

 The algorithm performs one pass through the series; its time complexity is linear, 

θ(n), and it takes constant memory.  We have implemented it in Visual Basic 6.0 and 

tested on a 300 MHz PC.  For an n-point sequence, the processing time is about 0.014 • n 

milliseconds.  The algorithm works well with erratic series, such as the series in Figure 

3.1, where traditional thresholding [Sahoo, 1988] does not find local minima among the 

higher values in the center of the series, nor local maxima among the lower values on the 

left and right. 
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___________________________________________________________________ 

IMPORTANT-POINTS  
♦  Top-level function for finding important points. 
i =  FIND-FIRST-TWO  
if i < n and ai > a1 then i = FIND-MINIMUM(i) 
while  i < n do 
 i = FIND-MAXIMUM(i) 
 if i < n then i = FIND-MINIMUM(i) 
 
FIND-FIRST-TWO  
♦ Find the first and second important points. 
iMax = 1;  iMin = 1 
while   i ≤ n  and aiMax/ai  < R  and  ai/aiMin < R do 
 if ai > aiMax  then iMax = i 
 if ai < aiMin  then iMin = i 
 i = i + 1 
if i < n  and (aiMax/ai < R or ai/aiMin < R) then  
 if iMax < iMin then output(aiMax, iMax); output(aiMin, iMin) 
 else output(aiMin, iMin); output(aiMax, iMax) 
return i 
 
FIND-MINIMUM(i)  
♦ Find the first important minimum after the ith element. 
iMin = i 
while  i < n  and  ai /aiMin  < R do   
 if ai  < aiMin then iMin = i 
 i = i + 1 
output(aiMin, iMin)  
return i 
 
FIND-MAXIMUM(i)  
♦ Find the first important maximum after the ith element. 
iMax = i  
while  i < n and aiMax/ai < R do   
 if ai  > aiMax  then iMax = i  
 i = i + 1 
output(aiMax, iMax)  
return i 
_____________________________________________________________________ 

Figure 3.3: Compression algorithm.   

We process a global series a1,…, an, and use a global variable n that denotes the series' 
size.  The algorithm outputs the values and indices of the selected important points. 
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3.2  Compression accuracy 

We applied the compression algorithm to the data sets from Chapter 1, and 

compared it with two simpler techniques, specifically, equally spaced points and 

randomly selected points.  For each of these techniques, we used the compressed data to 

interpolate the missing points, and measured the difference between the original sequence 

and the approximated sequence.  We used three difference measures, listed in Figure 3.4. 

We summarize the results in Table 3.1 and Figures 3.5–3.7, which show that 

important points are significantly more accurate than the other two methods.  For 

example, if we apply these techniques to stock prices, then 5% compression with 

important points is as accurate as 16% compression by the other two techniques. 

 

_____________________________________________________________________  

(a) Mean difference: 
 m    n 

∑  ∑ | aij – bij | 
j=1 i=1 

       m • n 
 
 
(b) Maximum difference: 
m 

∑  max  | aij – bij |  
j=1    i ∈[1.. n] 

                    m 
 
 
(c) Root mean square difference: 
                    n 

m           ∑ (  aij – bij  )2 
∑               i=1 

j=1                    n 
              m 
 
_____________________________________________________________________ 

Figure 3.4: Measures of difference between original and compressed data.   

Series a is the original data and series b is interpolation from the compressed data.  We 
test compression on m data series, n points each, and average the resulting differences.  
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Table 3.1: Accuracy of three compression techniques, at different compression 
levels. 

Mean difference Maximum difference Root mean square 
difference 

 

Impor-
tant 
points 

Fixed 
points 

Ran- 
dom 
points 

Impor-
tant 
points 

Fixed 
points 

Ran-
dom 
points 

Impor-   
tant 
points 

Fixed 
points 

Ran-
dom 
points 

Five-percent compression 
Stocks 
Air temperature 
Sea temperature 
Wind speed 
Encephalogram 

0.05 
0.029 
0.030 
0.047 
0.13 

0.10 
0.085 
0.079 
0.042 
0.17 

0.12 
0.082 
0.079 
0.044 
0.16 

1.30 
0.74 
0.78 
0.075 
0.90 

1.80 
0.83 
0.85 
1.09 
1.10 

1.80 
0.83 
0.85 
1.10 
1.10 

0.11 
0.12 
0.12 
0.070 
0.24 

0.32 
0.23 
0.23 
0.081 
0.31 

0.30 
0.21 
0.21 
0.081 
0.28 

Ten-percent compression 
Stocks 
Air temperature 
Sea temperature 
Wind speed 
Encephalogram 

0.03 
0.022 
0.014 
0.034 
0.08 

0.06 
0.050 
0.043 
0.036 
0.13 

0.07 
0.050 
0.046 
0.038 
0.12 

1.10 
0.64 
0.60 
0.055 
0.82 

1.70 
0.80 
0.83 
1.09 
1.10 

1.70 
0.78 
0.82 
1.03 
1.09 

0.08 
0.08 
0.07 
0.050 
0.17 

0.21 
0.16 
0.16 
0.062 
0.27 

0.21 
0.14 
0.14 
0.062 
0.24 

Twenty-percent compression 
Stocks 
Air temperature 
Sea temperature 
Wind speed 
Encephalogram 

0.02 
0.010 
0.008 
0.022 
0.03 

0.03 
0.030 
0.025 
0.027 
0.06 

0.04 
0.030 
0.025 
0.031 
0.07 

0.70 
0.33 
0.35 
0.040 
0.68 

1.70 
0.77 
0.81 
1.09 
1.08 

1.60 
0.72 
0.75 
1.01 
1.00 

0.05 
0.03 
0.03 
0.035 
0.10 

0.14 
0.01 
0.10 
0.048 
0.18 

0.14 
0.01 
0.10 
0.052 
0.17 
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Figure 3.5: Accuracy of compression as determined by mean difference. 

The horizontal axis shows the compression rate, whereas the vertical axis is the mean 
difference between the original series and compressed series. 
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Figure 3.6: Accuracy of compression as determined by maximum difference. 

The horizontal axis is the compression rate, and the vertical axis is the maximum 
difference between the original and compressed series. 
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Figure 3.7: Accuracy of compression as determined by root mean square difference. 

The horizontal axis is the compression rate, and the vertical axis is the root mean square 
difference between the original and compressed series. 
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CHAPTER 4 - MEASURING SIMILARITY 

 
  We consider four alternative measures of similarity between time-series, and then 

empirically evaluate their effectiveness.  We illustrate application of these measures to 

the four time-series in Figure 4.1 and show the results in Table 4.1. 

 

4.1  Standard similarity metrics 

 We measure similarity on a zero-to-one scale, where zero means no likeness and 

one means perfectly alike.  Note that it differs from distance measures, which usually 

range from zero to infinity, with zero meaning perfect likeness.  We use similarity rather 

than distance because a small similarity value in an outlier point does not skew the mean 

as much as a large distance. 

Researchers have often measured similarity between time-series by aggregating 

point similarity.  We review three aggregate metrics, which are based on mean, root mean 

square, and correlation coefficient, and  then propose a new metric.  We assume that all 

values of time-series are positive, and use this assumption in defining similarity 

measures.  First, we define a similarity between two positive numeric values, a and b: 

        | a - b |  
 sim(a, b) = 1 - 2 • 

            a + b 
  
 
This definition is symmetric, that is, sim(a, b) = sim(b, a). 
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Figure 4.1: Example of similarity among stock charts.  

We show four stock charts for the period from January 2, 1998 to September 30, 1998.  
We offset the curves vertically for easier visibility; all actually have the same initial 
value.  Intuitively, we expect the International Paper and Alcoa curves are most similar. 
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Table 4.1: Comparison of similarity metrics. 

We show the ranking of similarity for all pairs of stock charts in Figure 4.1.  We rank the 
most similar pair as 1, and the least similar pair as 6.   
 Mean 

similarity 
Root mean 
square 
similarity 

Correlation 
coefficient 

Peak 
similarity 

McDonald's – Int'l Paper 
McDonald's – Alcoa 
McDonald's – Philip Morris 
Int'l Paper – Alcoa 
Int'l Paper – Philip Morris 
Alcoa – Philip Morris 

4 
5 
6 
1 
3 
2 

3 
5 
6 
1 
3 
2 

2 
3 
5 
1 
6 
4 

4 
5 
6 
1 
3 
2 

 
 
 The mean similarity between two series, a1, …, an and b1, …, bn, is the mean of 

the point-by-point similarity: 

    n 

 ∑  sim(ai , bi) 
   i =1   . 

                                              n 
 
Similarly, we may define the root mean square similarity: 

    n 

 ∑  sim(ai , bi)2 
   i =1   . 

                                                n 
 

We also consider correlation coefficient, which is a standard statistical method for 

measuring similarity of two sequences.  It ranges between minus one and one, but we can  

readily convert it to the "traditional similarity range" by adding one and dividing by two.  

For two time-series, a1, …, an and b1, …, bn, with mean values ma = (a1+ … + an)/n and 

mb = (b1+ … + bn)/n, the correlation coefficient is: 

      n 

    ∑ (ai – ma ) • ( bi – mb)  

     i = 1 

          . 
    
       n                         n 

          ∑  (ai – ma) 2  •  ∑  (bi – mb) 2 
      i = 1                i = 1 
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4.2  Peak similarity 

We now define a new similarity metric, called triangle similarity, whose value 

also ranges from zero to one.  The definition includes a positive knob parameter c, which 

allows us to adjust the resolution of this metric.  The triangle similarity, between two 

positive numeric values, a and b, is as follows: 

tsim(a, b) = max(0, 1– |a – b| /a • c).  
 
Note that the triangle similarity is not symmetric, that is, tsim(a, b) may be different from 

tsim(b, a).  In Figure 4.2, we illustrate the intuitive meaning of this definition.  We 

construct an equilateral triangle with the upper vertex (a, 1) and the other two vertices    

(a • (1 - c), 0) and (a • (1 + c), 0).  To determine the similarity of a and b, we place b on 

the horizontal axis.  If b is outside the triangle, the similarity is zero.  On the other hand, 

if b is within the triangle, we draw a vertical line through b to obtain its intersection, b', 

with a side of the triangle.  The ordinate of b' is the similarity between a and b. 

We now define a peak similarity of two time-series, a1, …, an and b1, …, bn, in 

terms of the triangle similarity of their points.  The definition includes an additional knob 

parameter, w, which must be between zero and one: 

     n     n 
     ∑ tsim(ai, bi)  ∑ tsim(bi, ai)  
w • max(  i=1                       ,   i=1                  )  + (1 - w) • max(min tsim(ai, bi),  min tsim(bi, ai)) 

 n  n                     i∈ [1..n]                   i∈ [1..n] 

 
Intuitively, the first part of the expression represents the mean triangle similarity of the 

points, whereas the second part is the smallest similarity of the points.  The weight w 

 

 

 
       1               
               tsim(a, b)     b' 
             
               
       0 
          a •(1 - c)                 b       a      a • (1 + c) 
 

Figure 4.2: Triangle similarity of numeric values a and b. 
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determines the relative importance of these two parts in the aggregated similarity 

measure.  The resulting similarity is symmetric; furthermore, it allows computing 

similarity between curves whose points do not exactly coincide.  

 The peak similarity is effective only when two sequences have the same starting 

value, that is, a1 = b1.  If they do not satisfy this assumption, we re-scale the sequences 

before applying the metric; specifically, we divide all values in the first series by a1, and 

all values in the second series by b1.   

The main advantage of peak similarity for this research is that it works well with 

compressed curves.  The experiments show that it gives better results than other 

similarity metrics.    

 

4.3  Empirical comparison    

We next give empirical evaluation of the metrics described in sections 4.1 and 

4.2.  We applied these metrics to select similar series, and then measured the mean 

difference between similar series.  For each given series, we found the five most similar 

series, and then determined the mean distance between the given series and the other five;  

we repeated this experiment for each similarity metric.  When selecting similar series, we 

used compressed data, with two different compression rates, 5% and 10%.  

In Table 4.2, we summarize the results, and compare them with the results of the 

perfect exhaustive-search selection, as well as with random selection.  We conclude that 

the use of similarity with compressed data is much better than random selection, though it 

is not as good as exhaustive search.  The results also show that the peak similarity 

performs somewhat better than other metrics, and that the correlation coefficient is the 

least effective.  Peak similarity, mean similarity and root mean square similarity have 

similar running times; similarity based on correlation coefficient is about twice slower. 

We also used the four metrics to identify close matches for each series, and 

compared the results with ground-truth neighborhoods.  For stocks, we used expert 

opinion to define these neighborhoods: we consider stocks similar if they belong to the 

same industry group, according to the classification by Standard and Poor's (see Figure  
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Table 4.2: Differences between selected similar series. 

For each given series, we selected the five most similar series, and measured the mean 
difference between the given series and the other five, using distance measures given in 
Figure 3.4.  Smaller differences correspond to better selection of similar series.  We also 
show the running time of selecting similar series, for each similarity metric. 
 

Stock Sea temperatures Air temperatures Metric Comp. 
rate Mean 

diff. 
Max. 
diff. 

Time 
(sec) 

Mean 
diff. 

Max. 
diff. 

Time 
(sec) 

Mean 
diff. 

Max. 
diff. 

Time 
(sec) 

Exhaustive search 0.094 0.437  .016 .072  .024 .121  
Random selection 0.287 1.453  .078 .215  .070 .235  
Peak 
similarity 

  5% 
10% 

0.110 
0.103 

0.534 
0.429 

.022 

.024 
.019 
.018 

.073 

.068 
.019 
.021 

.030 

.029 
.136 
.103 

.020 

.022 
Mean 
similarity 

  5% 
10% 

0.126 
0.110 

0.570 
0.525 

.024 

.026 
.033 
.026 

.112 

.092 
.021 
.022 

.037 

.031 
.152 
.134 

.022 

.022 
Root mean 
square sim. 

  5% 
10% 

0.115 
0.103 

0.588 
0.497 

.024 

.026 
.031 
.024 

.106 

.090 
.021 
.022 

.035 

.030 
.147 
.133 

.022 

.022 
Correlation 
coefficient 

  5% 
10% 

0.210 
0.206 

1.101 
1.019 

.045 

.048 
.063 
.054 

.179 

.162 
.042 
.044 

.051 

.051 
.224 
.214 

.043 

.046 
 

Wind speeds Electroencephalograms Metric Comp. 
rate Mean 

diff. 
Max. 
diff. 

Time 
(sec) 

Mean 
diff. 

Max. 
diff. 

Time 
(sec) 

Exhaustive search .021 .136  .038 .170  
Random selection .029 .185  .072 .370  
Peak 
similarity 

  5% 
10% 

.023 

.023 
.148 
.138 

.016 

.016 
.063 
.052 

.306 

.241 
.015 
.015 

Mean 
similarity 

  5% 
10% 

.025 

.023 
.152 
.137 

.017 

.017 
.066 
.055 

.323 

.279 
.014 
.016 

Root mean 
square sim. 

  5% 
10% 

.023 

.023 
.153 
.134 

.017 

.017 
.064 
.051 

.317 

.261 
.014 
.016 

Correlation 
coefficient 

  5% 
10% 

.024 

.024 
.154 
.138 

.033 

.042 
.068 
.056 

.349 

.281 
.028 
.030 

 

 
  

 

4.3).  We considered "small neighborhoods," formed by industry sub-categories, as well 

as "large neighborhoods," formed by industry groups.  Gavrilov [2000] used similar 

classification as ground-truth in testing similarity measures and clustering techniques; 

however, he used an earlier classification which was different from Figure 4.3. 

For air and sea temperatures, we used geographic proximity to define two ground-

truth neighborhoods.  The first neighborhood is a rectangle around the given buoy.  The 

second neighborhood consists of the two buoys to the east, and the two buoys to the west  
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Energy 
Baker Hughes 
Halliburton 
Schlumberger 
Coastal 
Occidental Petroleum  

Materials  
Du Pont 
Dow Chemical 
International Flavors and Fragrances 
Alcoa 
Homestake Mining 
Bethlehem Steel 
Weyerhauser 
International Paper 
Boise Cascade 

Capital Goods  
Boeing 
Honeywell 
United Technologies 
General Dynamics 
Raytheon 
Fluor 
Rockwell International 
General Electric 
Minnesota Mining and Manufacturing 
Catepillar 

Transportation  
FedEx 
Delta Air Lines 
Burlington Northern Santa Fe 
Norfolk Southern  

Automobiles & Components  
General Motors 
Ford 

Consumer Durables & Apparel    
Black & Decker 
Brunswick 
Eastman Kodak 
Polaroid  

Hotels Restaurants & Leisure  
Harrah's Entertainment 
McDonald's 

Media   
Disney 
Viacom 

Retailing 
May Department Stores 
Sears 
Walmart 
K mart 
Limited 
Home Depot 
Toys R Us Holding 

Food Beverage & Tobacco  
Coca Cola 
Pepsi 
Campbell Soup 
Heinz 
Ralston-Ralston Purina 
Sara Lee 
Philip Morris  

 
 
 
 
 
 

Household & Personal Products 
Proctor & Gamble 
Colgate-Palmolive 
Avon Products 

Health Care Equipment & Services 
Baxter International 
Mallinckrodt 
CIGNA  

Pharmaceuticals & Biotechnology 
Amgen 
Johnson and Johnson 
Merck 
Bristol-Myers Squibb  

Banks  
J P Morgan 
Bank of America 
Bank One 
U. S. Bancorp 
Wells Fargo 

Diversified Financials  
American Express 
Citigroup 
Merrill Lynch 
Morgan Stanley, Dean Witter 

Insurance  
American General 
American International 
Hartford Financial Services 

Software & Services 
America Online 
Ceridian 
Computer Sciences 
Unisys 
Microsoft 
Oracle 

Technology Hardware & Equipment 
Cisco 
Lucent 
Nortel Networks Holding 
Hewlett-Packard 
International Business Machines 
EMC 
Tektronix 
Xerox 
Intel 
National Semiconductor 
Texas Instruments 

Telecommunication Services 
American Telephone and Telegraph 
SBC Communications 
American Electric Power 
Entergy 
Southern 
Unicom 
Williams  

 
 
Figure 4.3:  Industry groups. 
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of the given buoy, as shown in Figure 4.5(a).  For wind data, we also used geographic 

proximity.  The first neighborhood included sites within 70 miles, and the second 

included sites within 140 miles.  For electroencephalograms, the first neighborhood was a  

three-by-three neighborhood of electrodes; the second was a five-by-five neighborhood, 

as shown in Figure 4.5(b). 

We applied the available similarity metrics to identify similar series, and then 

determined how many of the selected series belonged to the same neighborhood.  For 

each compressed series, we found the five most similar ones, and then determined the 

average number of the series among them that belonged to the same neighborhood as the 

given series.  In Table 4.3, we summarize the results, and compare them with the prefect 

selection and with random selection. 

For stock data, and air and sea temperatures, similarity metrics clearly outperform 

random selection, with 99% confidence.  On the other hand, the results for wind and 

electroencephalograms are mixed.  Recall that the 10% compression does not always 

preserve electroencephalograms, which is a likely reason for poor selection.   

We also measured the correlation between the peak similarity and the three 

distance measures given in Section 3.2.  In Figures 4.5–4.9, we give the results of this 

experiment for different compression rates; specifically, we show the correlation scatter 

plot and give the correlation coefficient for the most similar 20% of the points. In Table 

4.4, we summarize the correlations. 

In Figures 4.10–4.16, we show correlation results for different values of the knob 

variable w in the definition of peak similarity.  In Figures 4.17–4.19, we show similar 

results for different values of the knob c in the definition of triangle similarity.  By 

adjusting these knobs, we can obtain high correlation for high similarity values.  We are 

less interested in a correlation for low similarity values, since the purpose of the 

developed technique is retrieval of similar sequences. 

Finally, we checked how well peak similarity of compressed data correlates with 

the similarity of uncompressed data (see Figure 4.20).  We observed a good linear 

correlation, which degraded gracefully with increase of compression rate.  The only 

exception is the electroencephalogram data, which gave poor correlation at 5% 

compression, which resulted from poor compression accuracy. 
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x  x  x        x  x  x  x  x 
x  x  x         x  x  x x  x  x  x  x 
x  O x         x  x  O x  x         x  O x x  x  O x  x 
x  x  x         x  x  x x  x  x  x  x 
x  x  x        x  x  x  x  x 
(a)         (b) 

Figure 4.4: Buoy and electrode ground-truth neighborhoods.   

(a) We considered two neighborhoods of buoys in the experiments with air and sea 
temperatures,  3x5 and 5x1 neighborhoods.  We show the given buoy by an O and its 
neighbors by x's.  (b)  We considered 3x3 and 5x5 neighborhoods of electrodes in the 
experiments with electroencephalograms. 
 

 

 

 

  

Table 4.3: Ability to find members of the same neighborhood. 

For each compressed series, we found the five most similar series, and then determined 
the average number of the series among them that belong to the same neighborhood as 
the given series. 
 

Stock Sea  temp. Air temp. Wind speed Encephalogram Metric Comp. 
Rate 1 2 1 2 1 2 1 2 1 2 

Perfect selection 1.29 4.05 10.5 3.34 10.5 3.34 2.67 8.33 5.84 16.6 

Random selection 0.07 0.29 0.40 0.11 0.40 0.10 0.74 2.27 0.35 1.03 

Peak 
similarity 

  5% 
10% 

0.21 
0.22 

0.55 
0.62 

1.18 
1.09 

0.65 
0.54 

0.82 
0.89 

0.48 
0.49 

1.50 
1.16 

2.83 
2.83 

0.59 
0.81 

1.25 
1.81 

Mean 
similarity 

  5% 
10% 

0.12 
0.18 

0.47 
0.55 

0.75 
0.85 

0.17 
0.28 

0.65 
0.77 

0.25 
0.34 

1.58 
1.33 

2.66 
2.92 

0.36 
1.05 

0.90 
1.98 

Root mean 
square sim. 

  5% 
10% 

0.17 
0.14 

0.35 
0.53 

0.77 
0.88 

0.20 
0.32 

0.71 
0.83 

0.26 
0.34 

1.33 
1.50 

2.75 
2.92 

0.36 
1.20 

0.90 
2.19 

Correlation 
coefficient 

  5% 
10% 

0.19 
0.15 

0.50 
0.39 

0.72 
0.82 

0.29 
0.25 

0.60 
0.74 

0.34 
0.49 

1.50 
1.33 

2.75 
2.92 

0.68 
1.16 

1.65 
2.24 
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Table 4.4: Correlation between peak similarity and distance. 

We show the correlation of the peak similarity with three distance measures, which 
include the mean distance, the maximum distance, and the root mean square distance.  
The correlation is negative, since greater similarity corresponds to smaller distance. 
 

 Stock Sea temperatures Air temperatures 

Com- 
pression 

mean maxi-
mum 

root 
mean 
square 

mean maxi-
mum 

root 
mean 
square 

mean maxi-
mum 

root 
mean 
square 

none 
20% 
10% 
5% 

-0.76 
-0.71 
-0.64 
-0.54 

-0.65 
-0.63 
-0.56 
-0.46 

-0.79 
-0.74 
-0.65 
-0.55 

-0.86 
-0.75 
-0.62 
-0.37 

-0.93 
-0.84 
-0.75 
-0.58 

-0.92 
-0.79 
-0.66 
-0.40 

-0.66 
-0.14 
0.21 
0.33 

-0.82 
-0.39 
-0.05 
0.09 

-0.73 
-0.17 
0.19 
0.32 

 

 
 Wind Electroencephalograms 

Com-
pression 

mean maxi-
mum 

root 
mean 
square 

mean maxi-
mum 

root 
mean 
square 

none 
20% 
10% 
5% 

-0.84 
-0.60 
-0.49 
0.07 

-0.94 
-0.47 
-0.47 
-0.42 

-0.89 
-0.58 
-0.51 
0.03 

-0.93 
-0.63 
-0.04 
0.11 

-0.93 
-0.62 
-0.06 
0.10 

-0.96 
-0.64 
-0.05 
0.12 
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Figure 4.5: Peak similarity versus distance for stock prices. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.6: Peak similarity versus distance for air temperatures. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.7: Peak similarity versus distance for sea temperatures. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.8: Peak similarity versus distance for wind speeds. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.9: Peak similarity versus distance for electroencephalograms. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.10: Peak similarity versus distance for stock prices, with w = 0. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.11: Peak similarity versus distance for stock prices, with w = 0.10. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.12: Peak similarity versus distance for stock prices, with w = 0.34. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.13: Peak similarity versus distance for stock prices, with w = 0.50. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.14: Peak similarity versus distance for stock prices, with w = 0.66. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.15: Peak similarity versus distance for stock prices, with w = 0.90. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.16: Peak similarity versus distance for stock prices, with w = 1.00. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.17: Peak similarity versus distance for stock prices, with c = 0.25. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.18: Peak similarity versus distance for stock prices, with c = 0.50. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.19: Peak similarity versus distance for stock prices, with c = 0.75. 
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression. 
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Figure 4.20:  Correlation between peak similarity of compressed data and peak 
similarity of  uncompressed data. 
(a) 25% compression; (b) 10% compression; (c) 5% compression. 
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CHAPTER 5 - PATTERN RETRIEVAL 

 We give an algorithm that inputs a pattern series and retrieves similar series from 

a database, and then describe the results of applying it to the test domains.  

 

5.1    Retrieval algorithm 

The retrieval technique includes three main steps: identifying the "prominent 

feature" in a given pattern, finding similar features in the series stored in the database,  

and comparing the pattern with each series containing a similar feature. 

 We begin by defining a leg of a time-series, which is the segment between two 

consecutive important points.  For each leg of a compressed series, we store the values 

summarized in Figure 5.1, denoted as vl, vr, il, ir, ratio, and length.  We give an example 

of these values in Figure 5.2.  The prominent leg of a pattern series is the leg with the 

greatest ratio; for example, the prominent leg in Figure 5.2 is leg 4.  

The retrieval algorithm inputs a compressed pattern series, and outputs similar 

segments of compressed series in the database.  We summarize the algorithm in  

Figure 5.3. 

___________________________________________________________________ 
vl   value of the left important point of the leg 
vr   value of the right important point of the leg 
il   index of the left important point in the original sequence 
ir  index of the right important point in the original sequence 
ratio  ratio of the end-points, defined as (vr/vl) 
length  length of the segment, defined as (ir – il) 
____________________________________________________________________ 

Figure 5.1: Basic data for a leg. 

For each leg, we store the values related to pattern retrieval.  
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Figure 5.2: Example of legs.   

A leg is a segment of a compressed series between two important points.  We show the 
basic data for the two legs marked by thick lines. 
  
 

 First, the algorithm searches the pattern for the leg with the greatest end-point 

ratio, denoted ratiop, and identifies all legs in the database that have a similar ratio.  A 

ratio is considered similar to ratiop if its value is between ratiop /C and ratiop •  C, where 

C is a parameter for controlling the matching process. 

 To ensure efficient retrieval, we index all legs in the database by their ratio, using 

a red-black binary search tree.  If the total number of legs of all series in the database is n, 

and the number of legs with ratio between ratiop /C and ratiop •  C is k, then the retrieval 

time is O(k + lg n). 

 After identifying these legs, the algorithm discards those legs whose length is not 

similar to that of the pattern's prominent leg.  The length is considered similar when it is 

between lengthp /D and lengthp • D, where lengthp is the length of the pattern leg and D is 

another knob parameter. 
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___________________________________________________________________ 

PATTERN-RETRIEVAL 
Identify the pattern leg p with the greatest end-point ratio, denoted ratiop. 
Find all legs in the database with end-point ratio between ratiop /C and ratiop •  C. 
For each leg l in the set of selected legs: 
       If lengthl  < lengthp /D or lengthl > lengthp •  D, then discard l from the set. 
For each leg l in the remaining selected legs: 
       Identify the segment corresponding to the pattern (see Figure 5.4). 
       Compute the similarity between this segment and the pattern. 
       If the similarity is above the threshold T, then output the segment. 
___________________________________________________________________ 

Figure 5.3: Search for segments similar to a given pattern. 

The algorithm inputs a compressed pattern series, and searches for matches in a database 
of compressed time-series.  We use three knobs to control the search: maximal ratio 
deviation C, maximal length deviation D, and similarity threshold T. 
 
 
 

Finally, the algorithm compares the pattern segment with segments that contain 

the selected legs, and measures similarity to the pattern.  In Figure 5.4, we illustrate the 

procedure for identifying the segment of a series that may match a pattern.  If the 

similarity is above a given threshold T, the algorithm outputs the segment as a match. 

 Although we define prominence of a leg as its end-point ratio, we may use the 

same algorithm with different prominence measures. We have experimented with the 

alternative measures summarized in Figure 5.5; we give the results of using them in 

Section 5.3. 

 

5.2  Extended legs 

 The described algorithm can miss matching series that do not have a leg  

corresponding to the pattern's prominent leg.  We illustrate this problem in Figure 5.6, 

where the prominent leg of the pattern has no equivalent in the matching series. 
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Figure 5.4: Identifying a segment that may match the pattern. 

 
___________________________________________________________________ 

(a) Slope of a leg:  (vr - vl)/(ir - il) 

(b) Length of a leg, with time-scale knob s:      (vl - vr)2 + s2
• (il - ir)2   

(c) Height of the spike formed by two adjacent legs:  vr1 – (vl1 + vr2) / 2 

___________________________________________________________________ 

Figure 5.5: Alternative prominence measures. 

 

 To avoid this problem, we introduce the notion of extended legs.  Intuitively, a 

segment of a sequence is an extended leg if it would be a leg under a higher compression 

rate.  Since a compressed series includes all maxima and minima that would be part of 

the series under higher compression, we can identify all extended legs, as shown in  

Figure 5.6(c).  
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Figure 5.6: Example of extended legs.   

The pattern (a) matches the series (b), but the pattern's prominent leg has no equivalent in 
the series.  If we identify extended legs in the series (c), then the prominent leg matches 
one of them. 
 
 

Formally, two points i and j of a compressed series a1,…, an form an extended 

upward leg if 

♦ ai is a local minima and aj is a local maxima, and  

♦ for every m ∈ [i..j], we have ai < am < aj.   

The definition of an extended downward leg is symmetric.   

We identify all extended legs of all series in the database, compute the same 

values as for normal legs, and use them in indexing and retrieval in the same way as 

normal legs.  The advantage of this approach is more accurate retrieval, and the 

disadvantage is larger storage space.  In the worst case, a compressed n-leg series can 

give rise to n2/2 extended legs; however, if sequences in the database do not have an 

upward or downward trend, the average number of extended legs is θ(n •  lg n).   

In Figure 5.7, we give an algorithm for identifying upward extended legs in a 

time-series; the procedure for finding downward legs is symmetric.  The algorithm 

consists of two parts, called NEXT-POINTS and EXTENDED-LEGS.  We assume that normal 

upward legs in the input series are numbered from 1 to n, and the main loop of each 

procedure processes them in order. 
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___________________________________________________________________ 

NEXT-POINTS 
initialize an empty stack S of leg indices 
PUSH(S,1) 
for k= 2 to n do 
 while  S is not empty and irTOP(S) < irk do 
  next[TOP(S)] = k; POP(S) 
 PUSH(k) 
while  S is not empty do 
 next[TOP(S)] = NIL; POP(S) 
 
EXTENDED-LEGS 
initialize an empty list of extended legs 
for k = 1 to n do 
 m = next[k] 
 while  m is not NIL do 
  add (ilk, irm) to the list of extended legs 
  m = next[m] 
___________________________________________________________________ 

Figure 5.7: Identifying extended legs of a compressed series. 

 
The first part processes local maxima of the compressed series; for each 

maximum irk, it identifies the next larger maximum in the series, and stores the index of 

the next larger maximum in next[k].  Its running time is linear in the length of the 

compressed series.  The second part uses this information to identify extended legs.  Its 

running time is linear in the total number of extended legs. 

 

5.3  Search results 
 
 To evaluate the retrieval accuracy, we compared search results with the segments 

identified by a slow exhaustive-search procedure.  We show the patterns used in this 

experiment in Figure 5.8, and summarize the results in Figures 5.9–5.16.  We ranked the 

matches found by the algorithm, from most to least similar, and enumerated them in this 

order.  In Figures 5.9–5.16, we plotted the numbers of matches found by the fast 

algorithm versus the numbers of exhaustive-search matches.  For instance, if the fast 

retrieval algorithm missed the two best matches and marked the third closest match as the 

best one, then the graph would include the point (1,3). As another example if the fast 
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retrieval algorithm found only three among seven closest matches, and marked the 

seventh closest match as the third best, then the graph would include the point (3,7).  A 

perfect result would be a forty-five degree line, indicating that the fast retrieval algorithm 

had found the same segments as the exhaustive search.  If the fast procedure missed some 

of the segments, the graph slope was steeper.   

 We ran this experiment with the end-point ratio prominence, as well as with the 

three alternative prominences listed in Figure 5.5, and with three different value of the 

knob C.  We summarize the results in Table 5.1, which shows that the end-point ratio and 

spike prominence give better results than the other two prominence measures.  It also 

shows that the increase of C leads to more accurate identification of similar patterns, at 

the expense of greater search time.   

 The retrieval time grows linearly with the pattern length and with the number of 

candidate sequences identified at the first two steps of the retrieval algorithm.  In Figure 

5.17, we show the dependency of the running time on these two parameters, for the 

Visual Basic 6.0 implementation on a 300 MHz PC.  If the pattern includes m legs and 

the algorithm identifies k candidate matches, then the retrieval time is about 0. 07 • m • k 

milliseconds per match.  For a database with a total of 5000 legs, the retrieval takes from 

0.25 to 3.25 seconds, depending on the pattern length and C value.  

 In Figure 5.18, we give examples of sequences retrieved from a stock database, 

for a six-leg pattern. 
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Table 5.1: Experiments with different prominence definitions and values of C. 

For each experiment, we give the number of candidate matches and the mean similarity 
of the best ten matches among the candidates.  If we increase C, the algorithm finds more 
candidates and misses fewer matches; however, the retrieval time is proportional to the 
number of candidates. 

 Ratio prominence Slope prominence Length prominence Spike prominence 

value 
of C 

Num. 
candi-
dates 

Similar-
ity of 
best ten 

Num. 
candi-
dates 

Similar-
ity of 
best ten 

Num. 
candi-
dates 

Similar-
ity of best 
ten 

Num. 
candi-
dates 

Similar-
ity of 
best ten 

Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(a). 
1.5 
2 
5 

335 
659 
1957 

.9994 

.9993 

.9994 

852 
1360 
2361 

.9991 

.9992 

.9995 

555 
972 
2817 

.9990 

.9991 

.9995 

475 
926 
2254 

.9994 

.9996 

.9998 

Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(b). 
1.5 
2 
5 

640 
979 
2228 

1 
1 
1 

719 
1201 
2292 

.9999 

.9999 
1 

716 
1297 
3117 

1 
1 
1 

1202 
1774 
2467 

1 
1 
1 

Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(c). 
1.5 
2 
5 

1114 
1705 
2562 

.9998 

.9999 

.9999 

984 
1544 
2361 

.9999 

.9999 

.9999 

163 
375 
1701 

.9998 

.9998 

.9999 

1182 
1783 
2375 

.9999 

.9999 

.9999 
Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(d). 
1.5 
2 
5 

647 
964 
2383 

.9985 

.9986 

.9987 

339 
604 
1676 

.9980 

.9982 

.9984 

474 
941 
2237 

.9982 

.9983 

.9985 

  

Air and sea temperatures combined: 5557 legs in the database; retrieval of pattern in 
Figure 5.8(e). 
1.5 
2 
5 

257 
518 
2245 

.9999 
1 
1 

184 
327 
862 

.9994 

.9995 

.9996 

115 
210 
637 

.9999 
1 
1 

769 
1184 
1489 

.9995 

.9995 

.9995 
Sea temperatures: 200 legs in the database; retrieval of pattern in Figure 5.8(f). 
1.5 
2 
5 

11 
17 
78 

.9971 

.9979 

.9981 

14 
16 
55 

.9977 

.9978 

.9981 

31 
54 
132 

.9966 

.9970 

.9974 

40 
69 
93 

.9978 

.9981 

.9981 
Wind speeds: 10,591 legs in the database; retrieval of pattern in Figure 5.8(g). 
1.5 
2 
5 

1941 
3378 
5025 

.9904 

.9905 

.9905 

584 
1163 
3869 

.9909 

.9916 

.9918 

522 
1306 
6527 

.9885 

.9891 

.9903 

723 
1529 
4324 

.9905 

.9911 

.9918 
Electroencephalogram: 2898 legs in the database; retrieval of pattern in Figure 5.8(h). 
1.5 
2 
5 

150 
289 
891 

.9979 

.9980 

.9988 

380 
656 
1193 

.9997 

.9998 

.9999 

102 
159 
595 

.9981 

.9985 

.9992 

339 
572 
1023 

.9982 

.9983 

.9989 
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Figure 5.8: Patterns used in the retrieval experiments. 
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Figure 5.9: Retrieval of stock charts matching the pattern in Figure 5.8(a). 
 
The horizontal axes show the number assigned to the retrieved matches by the fast 
retrieval algorithm, in the best-to-worst order.  The vertical axes are the numbers 
assigned to the same matches by the exhaustive-search algorithm.  If the fast algorithm 
has found all close matches, then the graph is a forty-five degree line.  On the other hand, 
if the algorithm missed some matches, the line is steeper.   
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Figure 5.10: Retrieval of stock charts matching the pattern in Figure 5.8(b). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points. 
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Figure 5.11: Retrieval of stock charts matching the pattern in Figure 5.8(c). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points. 
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Figure 5.12: Retrieval of stock charts matching the pattern in Figure 5.8(d). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points. 
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Figure 5.13: Retrieval of air and sea temperature combined segments matching the 
pattern in Figure 5.8(e). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points.
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Figure 5.14: Retrieval of sea temperature segments matching the pattern in Figure 
5.8(f). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points.
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Figure 5.15: Retrieval of wind speeds segments matching the pattern in Figure 
5.8(g). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points. 
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Figure 5.16: Retrieval of electroencephalogram segments matching the pattern in 
Figure 5.8(h). 
 
The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm; 
the vertical axes are the exhaustive-search similarity numbers for the same points. 



 65

 
Figure 5.17: Retrieval time. 
 
We show the dependency of the retrieval time on total number of  candidate segments, 
identified by the first two steps of the retrieval algorithm.  The time grows linearly with 
the number of candidate segments; it is also linear in the size of the pattern 
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Figure 5.18:  Examples of retrieved stock charts. 
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CHAPTER 6 - CONCLUDING REMARKS 

 
 The contributions of the described work include an algorithm for compressing 

time-series, and the use of this compression for indexing and retrieval of time-series. 

The compression technique is based on selection of important points.  We gave a fast 

compression algorithm and showed that the compressed sequences closely approximated 

the original data, and that its quality gracefully degraded with the compression rate.  We 

then defined a new similarity metric and showed that it was often more accurate than 

similarity based on mean, root mean square, and correlation coefficient. 

 These compression and similarity techniques enabled us to develop a novel 

algorithm for finding a given pattern in a database of time-series.  The key idea is to 

index time-series by their prominent features, and retrieve the series whose compressed 

representation is similar to the compressed pattern.  The experiments have shown the 

effectiveness of this technique for identifying patterns in stock prices, meteorological 

data, and electrocardiograms.  The implemented algorithm found a given pattern in a 

database with 60,000 points in less than a second. 

 This work leaves many open problems, which include application of the 

developed technique to other time-series domains, investigation of its limitations, 

extending of this technique to finding patterns that are stretched over time, and applying 

it to identifying periodic patterns, such as weather cycles.  Another open problem is to 

apply statistical and machine-learning techniques to tune the knobs of the described 

algorithms. 
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