
LOCATING PATTERNS IN DISCRETE TIME-SERIES

by

KEVIN B. PRATT

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

May 2001

Major Professor: Eugene Fink, Ph.D.

Copyright by Kevin B. Pratt 2001

All rights reserved

DEDICATION

To Merl and William T. Ward, Lance Armstrong, and Terrence W. Pratt,

for their inspiration.

ACKNOWLEDGMENT

This thesis has greatly benefited from the thoughtful comments, insightful observations,

and careful editorial suggestions of Eugene Fink. I am very grateful to him.

 i

TABLE OF CONTENTS

LIST OF TABLES……………………………………………….……………………….ii

LIST OF FIGURES……………………………………………….……..……………….iii

ABSTRACT……………………………………….……………………………………...v

1. INTRODUCTION .. 1

1.1 Contributions... 3
1.2 Data sets .. 4

2. PREVIOUS WORK.. 8
2.1 Feature sets.. 8
2.2 Similarity measures... 9
2.3 Indexing and retrieval ... 11

3. IMPORTANT POINTS .. 13
3.1 Choice of important points .. 13
3.2 Compression accuracy.. 17

4. MEASURING SIMILARITY... 22
4.1 Standard similarity metrics ... 22
4.2 Peak similarity... 25
4.3 Empirical comparison... 26

5. PATTERN RETRIEVAL ... 48
5.1 Retrieval algorithm ... 48
5.2 Extended legs .. 50
5.3 Search results .. 53

6. CONCLUDING REMARKS.. 67

REFERENCES……………………………………………………………….………….68

 ii

LIST OF TABLES

Table 1.1: Test data sets.. 5
Table 3.1: Accuracy of three compression techniques, at different compression levels. . 18
Table 4.1: Comparison of similarity metrics. ... 24
Table 4.2: Differences between selected similar series. ... 27
Table 4.3: Ability to find members of the same neighborhood. 30
Table 4.4: Correlation between peak similarity and distance. .. 31
Table 5.1: Experiments with different prominence definitions and values of C. 55

 iii

LIST OF FIGURES

Figure 1.1: Example of a pattern in a stock chart and similar patterns located in a stock

database... 2
Figure 1.2: Example of two patterns in an electrocardiogram and a located similar

pattern. .. 2
Figure 1.3: Example of two time-series which are similar, but not identical. 3
Figure 1.4: Example of patterns in air and sea temperatures. ... 6
Figure 1.5: Electroencephalogram data at five electrodes. ... 7
Figure 2.1: Example of bounding rectangles. ... 11
Figure 3.1: Important points in stock prices. .. 14
Figure 3.2: Examples of important minimum (left) and important maximum (right). 15
Figure 3.3: Compression algorithm. ... 16
Figure 3.4: Measures of difference between original and compressed data. 17
Figure 3.5: Accuracy of compression as determined by mean difference. 19
Figure 3.6: Accuracy of compression as determined by maximum difference. 20
Figure 3.7: Accuracy of compression as determined by root mean square difference. 21
Figure 4.1: Example of similarity among stock charts. .. 23
Figure 4.2: Triangle similarity of numeric values a and b. ... 25
Figure 4.3: Industry groups. .. 28
Figure 4.4: Buoy and electrode ground-truth neighborhoods. .. 30
Figure 4.5: Peak similarity versus distance for stock prices. .. 32
Figure 4.6: Peak similarity versus distance for air temperatures. 33
Figure 4.7: Peak similarity versus distance for sea temperatures. 34
Figure 4.8: Peak similarity versus distance for wind speeds. ... 35
Figure 4.9: Peak similarity versus distance for electroencephalograms. 36
Figure 4.10: Peak similarity versus distance for stock prices, with w = 0. 37
Figure 4.11: Peak similarity versus distance for stock prices, with w = 0.10. 38
Figure 4.12: Peak similarity versus distance for stock prices, with w = 0.34. 39
Figure 4.13: Peak similarity versus distance for stock prices, with w = 0.50. 40
Figure 4.14: Peak similarity versus distance for stock prices, with w = 0.66. 41
Figure 4.15: Peak similarity versus distance for stock prices, with w = 0.90. 42
Figure 4.16: Peak similarity versus distance for stock prices, with w = 1.00. 43
Figure 4.17: Peak similarity versus distance for stock prices, with c = 0.25. 44
Figure 4.18: Peak similarity versus distance for stock prices, with c = 0.50. 45
Figure 4.19: Peak similarity versus distance for stock prices, with c = 0.75. 46
Figure 4.20: Correlation between peak similarity of compressed data and peak similarity

of uncompressed data.. 47
Figure 5.1: Basic data for a leg. .. 48

 iv

Figure 5.2: Example of legs. ... 49
Figure 5.3: Search for segments similar to a given pattern. .. 50
Figure 5.4: Identifying a segment that may match the pattern. ... 51
Figure 5.5: Alternative prominence measures. ... 51
Figure 5.6: Example of extended legs... 52
Figure 5.7: Identifying extended legs of a compressed series. ... 53
Figure 5.8: Patterns used in the retrieval experiments. ... 56
Figure 5.9: Retrieval of stock charts matching the pattern in Figure 5.8(a). 57
Figure 5.10: Retrieval of stock charts matching the pattern in Figure 5.8(b). 58
Figure 5.11: Retrieval of stock charts matching the pattern in Figure 5.8(c). 59
Figure 5.12: Retrieval of stock charts matching the pattern in Figure 5.8(d). 60
Figure 5.13: Retrieval of air and sea temperature combined segments matching the

pattern in Figure 5.8(e).. 61
Figure 5.14: Retrieval of sea temperature segments matching the pattern in Figure 5.8(f).

... 62
Figure 5.15: Retrieval of wind speeds segments matching the pattern in Figure 5.8(g). . 63
Figure 5.16: Retrieval of electroencephalogram segments matching the pattern in Figure

5.8(h). .. 64
Figure 5.17: Retrieval time. .. 65
Figure 5.18: Examples of retrieved stock charts. .. 66

 v

LOCATING PATTERNS IN DISCRETE TIME-SERIES

by

KEVIN B. PRATT

An Abstract

of a thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

May 2001

Major Professor: Eugene Fink, Ph.D.

 vi

We describe a technique for fast compression of time-series, indexing of the

resulting compressed series, and retrieval of series similar to a given pattern.

 The compression algorithm identifies "important" points of a time-series and

discards the other points. It runs in linear time, takes constant memory, and gives good

results for a wide variety of time-series.

 We use the important points not only for compression, but also for indexing a

database of time-series, which supports efficient search for patterns and allows the user to

control the trade-off between the speed and accuracy of search. The experiments show

the effectiveness of the developed technique for identifying patterns in stock prices,

meteorological data, and electrocardiograms.

Abstract Approved:__
 Major Professor: Eugene Fink, Ph.D.
 Assistant Professor,

Department of Computer Science and Engineering

 Date Approved:___

 1

CHAPTER 1 – INTRODUCTION

 The purpose of the described work is to develop a technique for fast search for a

given pattern in a time-series. For example, suppose we believe that the pattern in the

stock prices in Figure 1.1 helps predict future prices, or that the pattern in the

electrocardiogram in Figure 1.2 indicates a disease. If these patterns are useful, we may

need to search for similar patterns. In Figures 1.1 and 1.2, we show instances of similar

patterns located by the developed technique.

 The analysis of time-series, which includes compressing, indexing and searching

time-series, is an active research area. We may use the similarity among time-series for

the following purposes:

♦ classification and taxonomy,

♦ query and retrieval,

♦ grouping similar series together (clustering), and

♦ identification of unusual series or intervals within a series.

 A similarity measure needs to be accurate and allow efficient implementation. A

related problem is to develop a method for compressing time-series that preserves

similarity between series.

 Efficient search for patterns in time-series may find applications in many

domains. For example, a pattern in stock prices may correlate with economic events. As

another example, a pattern in an electrocardiogram may precede onset of a disease.

 2

Figure 1.1: Example of a pattern in a stock chart and similar patterns located in a
stock database.

Figure 1.2: Example of two patterns in an electrocardiogram and a located similar
pattern.

 3

1.1 Contributions

The main contributions of the presented work include a technique for

compressing time-series and an algorithm for fast retrieval of time-series that closely

match a given pattern.

Formally, a time-series is a sequence of values, measured at equal time intervals;

we assume that all values in the series are positive. For example, the lower time-series in

Figure 1.3 has the values 20, 22, 25, 22, 25, 27, 27, and so on. We may use a

subsequence as a compressed representation of a full sequence. For example, we can

select every tenth value, or all local maxima and minima. When using maxima and

minima for compression, we often call them "important points" of the sequence. We

circled these important points in the lower curve in Figure 1.3.

We give a compression technique based on extraction of certain important points

from a time-series, which works in linear time and takes constant memory. It requires

one pass through the time-series, with no pre-processing. The technique gives good

results for a variety of time-series, including erratic time-series, such as shown in

Figure 1.1.

Figure 1.3: Example of two time -series which are similar, but not identical.

 4

 Then, we propose a metric for measuring the similarity of two time-series,

compare it with alternative metrics, and show that it works well with compressed data.

We measure similarity on a scale from zero to one, where zero means no likeness and one

means perfectly alike.

Finally, we present a technique for indexing time-series, and show its utility for

fast retrieval of similar patterns, using the described similarity metric.

 Historically, most time-series research has been done with data that is already

fully collected, such as last year's stock prices; however, we often have to analyze data in

the process of collection. For example, we may need to process a continuous

electrocardiogram of a patient in an emergency room. We refer to it as streaming data.

The developed techniques work for streaming data, as well as for traditional "static" data.

1.2 Data sets

 We tested the developed techniques on large time-series from different domains,

summarized in Table 1.1. All these data are publicly available.

♦ Standard and Poor's 100 stock prices

We used stocks from the Standard and Poor's 100 listing of large companies, as

well as the Dow Jones Industrials, for the period from January 1, 1998 to April 20, 2000.

The ending date was the last available date when we downloaded the data; it had no

special significance. We downloaded daily split-corrected prices from America Online

and repaired missing values by duplicating the prior-day prices. We discarded newly

listed and de-listed stocks, and used ninety-eight stocks in experiments.

♦ Air and sea temperatures

 We used daily temperature readings from sixty-eight buoys in the Pacific Ocean

from1980 to 1998, downloaded from the Knowledge Discovery and Data Mining

database at the University of California at Irvine, at

 5

Table 1.1: Test data sets.

Data set Number
of series

Description Total
number of
points

Measure-
ment
intervals

Stock prices

98 98 stocks, 2.3 years, 252
values per year for each stock

60,000

1 day

Air and sea
temperatures

68 68 buoys, 2 sensors per buoy,
18 years, 365 values per year
for each sensor

445,000

1 day

Wind speeds 12 12 stations, 18 years, 365
values per year for each
station

79,000

1 day

Electroen-
cephalogram

61 61 electrodes, 256 values per
electrode

17,000

0.004
second

Electro-
cardiogram

1 1 electrode, 2200 values
2,200

0.006
second

kdd.ics.uci.edu/databases. These buoys do not have fixed locations, and often

drift. To repair the data, we developed a routine to position the buoys on a map and

interpolate missing values.

Air and sea temperatures are related. For example, we may see two patterns in

the air temperature at zero latitude in Figure 1.4. The first pattern is very similar to the

pattern in the sea temperature at the same location. It is roughly similar to the air and sea

temperatures two degrees further south. The second pattern in the air temperature at zero

latitude is close to the sea temperature at the same location. It is absent two degrees

further south.

♦ Wind speed

 We used daily wind speeds from twelve sites in the Republic of Ireland from 1961

to 1978, obtained from the Statistical Database at Carnegie Mellon University, at

www.stat.cmu.edu/datasets/wind.desc.

 6

Figure 1.4: Example of patterns in air and sea temperatures.

The first pattern appears in all time-series, whereas the second is only in the first two.

♦ Electroencephalograms

These data show electrical changes in the scalp, and help to analyze brain activity.

In Figure 1.5, we illustrate electroencephalograms for a scalp location designated "CZ,"

and four immediately surrounding locations. We used electroencephalograms of a human

subject obtained by Henri Begleiter at the Neurodynamics Laboratory of the State

University of New York Health Center at Brooklyn. These data are from sixty-four

electrode sensors located at standard sites on the scalp, and were downloaded from the

Knowledge Discovery and Data Mining database at the University of California at Irvine,

at kdd.ics.uci.edu/databases.

♦ Electrocardiograms

 Electrocardiograms track electrical activity of the heart. The healthy activity has

several standard patterns, and deviations from them may indicate pathology (see Figure

1.2). We applied the developed technique to search for abnormal patterns in an

 7

electrocardiogram, downloaded from the University of Washington at

www.ms.washington.edu/~s530/data.html.

Figure 1.5: Electroencephalogram data at five electrodes.

 8

CHAPTER 2 - PREVIOUS WORK

We now review previous work on the comparison of time-series and search for

patterns. Note that this work does not directly relate to the prediction of future values,

which has been another active direction in time-series analysis [Franses, 1998; Spiegel,

1996; Plane, 1996].

2.1 Feature sets

Researchers have investigated the use of various feature sets for compressing

time-series and measuring similarity between series.

In particular, they have extensively studied discrete Fourier Transforms, which

convert a series into a set of coefficients [Singh, 1998; Sheikholeslami, 1998; Stoffer,

1999; Yi, 2000]. These transforms allow fast, accurate compression of a time-series;

however, they have several disadvantages. In particular, the transforms smooth local

extrema, which may lead to a loss of important information in some domains, such as

stock charting. Also they do not work well for erratic time-series [Ikeda, 1999]. Finally,

there is no way to select a segment as a pattern [Han, 1998], without reconstituting the

original series and obtaining new coefficients for the segment.

Recently, researchers have studied the use of small, descriptive alphabets for

compressing time-series. For example, Guralnik [1997] compressed stock prices using a

nine-letter alphabet to describe three features, each of which had three values. Sing

[1998] represented stock prices, particle dynamics, and stellar light intensity with small

words defined over a three-letter alphabet. Chi [1995] used an alphabet of simple DNA

molecule combinations for genome sequences. Lin [1998] used a two-letter alphabet to

encode major spikes in a series. The prime advantage of this technique is high

compression rate; however, its descriptive power is limited, which makes it unusable in

many domains.

 9

 Han [1998] used small categories of discretized values, similar to alphabets. The

categories are fully ordered, whereas letters in an alphabet may not be ordered. While

offering substantial compression, the discretized values suffer the traditional problem that

values near a category boundary can be misclassified.

 Das [1998] studied another variety of a limited alphabet, based on primitive

shapes, and used it to develop efficient compression algorithms. He has not developed a

universal set of primitive shapes, and the technique requires the user to hand-code

appropriate basic shapes for each domain.

 Several researchers used statistics for multiple intervals of a series to summarize

the properties of a time-series; however, this technique gives poor results for erratic time-

series [Policker, 2000; Geva, 1999; Stoffer 1999; Popivanov, 1998]. These statistics

usually require equal length intervals, and do not allow comparison of patterns of

different length.

Perng [2000] investigated a compression technique based on extracting "landmark

points" from a series, and discarding other points; his choice of landmark points included

local maxima and minima of the series. Keogh [1997; 1998] used the end-points of best-

fit line segments to compress the series. In Chapter 3, we offer an alternative

compression technique, based on selecting local maxima and minima, and show that it is

more accurate than other compressed representations. We give a linear-time algorithm

for finding important points, which is more efficient than Perng's iterative algorithm.

2.2 Similarity measures

 The choice of feature sets affects techniques for measuring similarity of time-

series. Researchers have studied a number of similarity measures, which include the

computation of similarity through weighted feature differences, use of qualitative

categories, and various clustering techniques.

 10

♦ Euclidean distance

Some researchers defined similarity as the distance between vectors in an n-

dimensional feature space. For example, Caraca-Valente [2000] used Euclidean distance

to compute similarity of the feature vectors containing angle of knee movement and

muscle strength. Lee [2000] applied Euclidean distance to compare feature vectors

containing color, texture, and shape of sequential video pictures. This metric works well

when different features have the same units and scale [Goldin, 1995]; however, it causes

errors when combining disparate features, such as time and dollars [Gunopulos, 2000].

♦ Bounding rectangles

An alternative definition of similarity is based on the notion of bounding

rectangles, illustrated in Figure 2.1. Two series are similar if their bounding rectangles

are similar. The use of bounding rectangles allows fast pruning of clearly dissimilar

curves [Perng, 2000; Lee, 2000]; however, it is less effective for selecting the most

similar curve among close candidates. This technique requires intelligent selection of

segments for bounding rectangles, which usually involves human assistance.

♦ Envelope count

We may divide the time axis into short segments, called envelopes, and define a

yes/no similarity for each envelope. Specifically, two series are similar within an

envelope if their point-by-point differences are within a certain threshold. The overall

similarity is measured by the largest number of consecutive envelopes where the series

are similar [Agrawal, 1996]. This measure allows fast computation of similarity;

furthermore, we can readily adapt it for handling noisy and missing data [Das, 1997;

Bollobas, 1997].

♦ Aggregate similarity

We can measure point-by-point similarities of two series, and then aggregate

these measures. This technique often involves interpolation to obtain values for missing

points. For example, Keogh [1997; 1998] used linear interpolation with this technique,

 11

Figure 2.1: Example of bounding rectangles.

A bounding rectangle of series on a given interval is the minimal rectangle that includes
all points of the series. We may consider two curves similar if they have identical
bounding rectangles.

and Perng [2000] applied cubic approximation. Keogh [2000] also described the use of

point-by-point similarity with modified Euclidean distance, which does not require

interpolation.

We use a similar approach in the reported work; specifically, we define similarity

between individual points of compressed time-series and use a weighted aggregation of

these similarities.

2.3 Indexing and retrieval

 Researchers have studied a variety of techniques for indexing and retrieval of

time-series. They utilized several advanced techniques from algorithm theory, including

tree structures and grids.

 In particular, they used B-tree indexing, which is an extension of red-black trees

where a node may have more than two children; for example, see the textbook by

Cormen et al.[1990]. They have also used R-trees, which extend B-trees for indexing

 12

points in multi-dimensional space [Kamel, 1993]. Although the traditional use of R-trees

was indexing spatial data, this structure also allows indexing of time-series by their

position in feature space [Gunopulos, 2000].

 The kd-tree technique is an extension of binary search trees, which uses different

features of an object at different levels of the tree, and allows the both numeric and

qualitative features [Gunopulos, 2000]. Deng [1998] applied this structure to index

sequences by their significant features.

 Bozkaya [1997; 1999] used vantage-point trees for indexing time-series by their

numerical features. Aggarwal [2000] considered the use of grid structures for a similar

problem, but found that generally their performance in high-dimensional space is no

better than exhaustive linear search.

 Gunopulos [2000] and Aggarwal [2000] reviewed the use of compression with

linear-search retrieval, and concluded that exhaustive search in the database of

compressed sequences is often faster than sophisticated indexing techniques.

 We also use compression for efficient retrieval, and combine it with a simple

indexing technique and heuristics for identifying "prominent" features of a time-series.

In Chapter 5, we describe this approach, which allows fast retrieval of similar time-series

and enables the user to control the trade-off between speed and accuracy of retrieval.

The developed technique meets most of the criteria suggested by Gunopulos

[2000], who pointed out that a retrieval algorithm should:

♦ work for erratic time-series,

♦ accept any prototype pattern,

♦ find inexact matches,

♦ evaluate the accuracy of matches,

♦ work when some points are missing, and

♦ work on streaming data.

 13

CHAPTER 3 - IMPORTANT POINTS

We compress a time-series by selecting some of its local maxima and minima,

called important points, and dropping the other points (see Figure 3.1). We can control

the number of selected points, which determines the compression rate. This compression

technique is lossy, that is, we cannot restore the original series from the compressed

version. In other words, the compressed curve is an approximation of the initial curve.

3.1 Choice of important points

The intuitive idea is to discard minor fluctuations in a series, and keep major

maxima and minima. We control the compression rate with a knob parameter, called R,

which is always greater than one. Increasing R leads to selecting fewer points.

A point am is an important minimum if there are indices i and j, where i ≤ m ≤ j,

such that

♦ am is the minimum among ai,…, aj, and

♦ ai/am ≤ R and aj/am ≤ R.

Intuitively, am is an important minimum if it is the minimal value of some

segment ai,…, am,…, aj of the series, and the end-point values of this segment are much

larger than am. For example, the point am in Figure 3.2(a) is an important minimum,

since it is the minimum of the segment ai,…, aj, and the end-point values of this segment

are greater than am • R. On the other hand, the local minimum ak is not an important

point.

The definition of an important maximum is symmetric. That is, a point am is an

important maximum if there are indices i and j, where i ≤ m ≤ j, such that

♦ am is the maximum among ai,…, aj, and

♦ am/ai ≤ R and am/aj ≤ R.

 14

Figure 3.1: Important points in stock prices.

We circle important points for 10% compression (top) and 5% compression (bottom).

For example, am in Figure 3.2(b) is an important maximum, whereas ak is not an

important maximum.

In Figure 3.3, we give an algorithm for selecting important points, which

performs one pass through the series and outputs the values and indices of the selected

points. First, we apply FIND-FIRST-TWO and then alternately invoke FIND-MINIMUM and

 15

(a) (b)

Figure 3.2: Examples of important minimum (left) and important maximum (right).

FIND-MAXIMUM. We can easily adapt the algorithm to process streaming data by

replacing "if i ≤ n" with "if stream not terminated."

 The algorithm performs one pass through the series; its time complexity is linear,

θ(n), and it takes constant memory. We have implemented it in Visual Basic 6.0 and

tested on a 300 MHz PC. For an n-point sequence, the processing time is about 0.014 • n

milliseconds. The algorithm works well with erratic series, such as the series in Figure

3.1, where traditional thresholding [Sahoo, 1988] does not find local minima among the

higher values in the center of the series, nor local maxima among the lower values on the

left and right.

 16

IMPORTANT-POINTS
♦ Top-level function for finding important points.
i = FIND-FIRST-TWO
if i < n and ai > a1 then i = FIND-MINIMUM(i)
while i < n do
 i = FIND-MAXIMUM(i)
 if i < n then i = FIND-MINIMUM(i)

FIND-FIRST-TWO
♦ Find the first and second important points.
iMax = 1; iMin = 1
while i ≤ n and aiMax/ai < R and ai/aiMin < R do
 if ai > aiMax then iMax = i
 if ai < aiMin then iMin = i
 i = i + 1
if i < n and (aiMax/ai < R or ai/aiMin < R) then
 if iMax < iMin then output(aiMax, iMax); output(aiMin, iMin)
 else output(aiMin, iMin); output(aiMax, iMax)
return i

FIND-MINIMUM(i)
♦ Find the first important minimum after the ith element.
iMin = i
while i < n and ai /aiMin < R do
 if ai < aiMin then iMin = i
 i = i + 1
output(aiMin, iMin)
return i

FIND-MAXIMUM(i)
♦ Find the first important maximum after the ith element.
iMax = i
while i < n and aiMax/ai < R do
 if ai > aiMax then iMax = i
 i = i + 1
output(aiMax, iMax)
return i

Figure 3.3: Compression algorithm.

We process a global series a1,…, an, and use a global variable n that denotes the series'
size. The algorithm outputs the values and indices of the selected important points.

 17

3.2 Compression accuracy

We applied the compression algorithm to the data sets from Chapter 1, and

compared it with two simpler techniques, specifically, equally spaced points and

randomly selected points. For each of these techniques, we used the compressed data to

interpolate the missing points, and measured the difference between the original sequence

and the approximated sequence. We used three difference measures, listed in Figure 3.4.

We summarize the results in Table 3.1 and Figures 3.5–3.7, which show that

important points are significantly more accurate than the other two methods. For

example, if we apply these techniques to stock prices, then 5% compression with

important points is as accurate as 16% compression by the other two techniques.

(a) Mean difference:
 m n

∑ ∑ | aij – bij |
j=1 i=1

 m • n

(b) Maximum difference:
m

∑ max | aij – bij |
j=1 i ∈[1.. n]

 m

(c) Root mean square difference:
 n

m ∑ (aij – bij)2
∑ i=1

j=1 n
 m

Figure 3.4: Measures of difference between original and compressed data.

Series a is the original data and series b is interpolation from the compressed data. We
test compression on m data series, n points each, and average the resulting differences.

 18

Table 3.1: Accuracy of three compression techniques, at different compression
levels.

Mean difference Maximum difference Root mean square
difference

Impor-
tant
points

Fixed
points

Ran-
dom
points

Impor-
tant
points

Fixed
points

Ran-
dom
points

Impor-
tant
points

Fixed
points

Ran-
dom
points

Five-percent compression
Stocks
Air temperature
Sea temperature
Wind speed
Encephalogram

0.05
0.029
0.030
0.047
0.13

0.10
0.085
0.079
0.042
0.17

0.12
0.082
0.079
0.044
0.16

1.30
0.74
0.78
0.075
0.90

1.80
0.83
0.85
1.09
1.10

1.80
0.83
0.85
1.10
1.10

0.11
0.12
0.12
0.070
0.24

0.32
0.23
0.23
0.081
0.31

0.30
0.21
0.21
0.081
0.28

Ten-percent compression
Stocks
Air temperature
Sea temperature
Wind speed
Encephalogram

0.03
0.022
0.014
0.034
0.08

0.06
0.050
0.043
0.036
0.13

0.07
0.050
0.046
0.038
0.12

1.10
0.64
0.60
0.055
0.82

1.70
0.80
0.83
1.09
1.10

1.70
0.78
0.82
1.03
1.09

0.08
0.08
0.07
0.050
0.17

0.21
0.16
0.16
0.062
0.27

0.21
0.14
0.14
0.062
0.24

Twenty-percent compression
Stocks
Air temperature
Sea temperature
Wind speed
Encephalogram

0.02
0.010
0.008
0.022
0.03

0.03
0.030
0.025
0.027
0.06

0.04
0.030
0.025
0.031
0.07

0.70
0.33
0.35
0.040
0.68

1.70
0.77
0.81
1.09
1.08

1.60
0.72
0.75
1.01
1.00

0.05
0.03
0.03
0.035
0.10

0.14
0.01
0.10
0.048
0.18

0.14
0.01
0.10
0.052
0.17

 19

Figure 3.5: Accuracy of compression as determined by mean difference.

The horizontal axis shows the compression rate, whereas the vertical axis is the mean
difference between the original series and compressed series.

 20

Figure 3.6: Accuracy of compression as determined by maximum difference.

The horizontal axis is the compression rate, and the vertical axis is the maximum
difference between the original and compressed series.

 21

Figure 3.7: Accuracy of compression as determined by root mean square difference.

The horizontal axis is the compression rate, and the vertical axis is the root mean square
difference between the original and compressed series.

 22

CHAPTER 4 - MEASURING SIMILARITY

 We consider four alternative measures of similarity between time-series, and then

empirically evaluate their effectiveness. We illustrate application of these measures to

the four time-series in Figure 4.1 and show the results in Table 4.1.

4.1 Standard similarity metrics

 We measure similarity on a zero-to-one scale, where zero means no likeness and

one means perfectly alike. Note that it differs from distance measures, which usually

range from zero to infinity, with zero meaning perfect likeness. We use similarity rather

than distance because a small similarity value in an outlier point does not skew the mean

as much as a large distance.

Researchers have often measured similarity between time-series by aggregating

point similarity. We review three aggregate metrics, which are based on mean, root mean

square, and correlation coefficient, and then propose a new metric. We assume that all

values of time-series are positive, and use this assumption in defining similarity

measures. First, we define a similarity between two positive numeric values, a and b:

 | a - b |
 sim(a, b) = 1 - 2 •

 a + b

This definition is symmetric, that is, sim(a, b) = sim(b, a).

 23

Figure 4.1: Example of similarity among stock charts.

We show four stock charts for the period from January 2, 1998 to September 30, 1998.
We offset the curves vertically for easier visibility; all actually have the same initial
value. Intuitively, we expect the International Paper and Alcoa curves are most similar.

 24

Table 4.1: Comparison of similarity metrics.

We show the ranking of similarity for all pairs of stock charts in Figure 4.1. We rank the
most similar pair as 1, and the least similar pair as 6.
 Mean

similarity
Root mean
square
similarity

Correlation
coefficient

Peak
similarity

McDonald's – Int'l Paper
McDonald's – Alcoa
McDonald's – Philip Morris
Int'l Paper – Alcoa
Int'l Paper – Philip Morris
Alcoa – Philip Morris

4
5
6
1
3
2

3
5
6
1
3
2

2
3
5
1
6
4

4
5
6
1
3
2

 The mean similarity between two series, a1, …, an and b1, …, bn, is the mean of

the point-by-point similarity:

 n

 ∑ sim(ai , bi)
 i =1 .

 n

Similarly, we may define the root mean square similarity:

 n

 ∑ sim(ai , bi)2
 i =1 .

 n

We also consider correlation coefficient, which is a standard statistical method for

measuring similarity of two sequences. It ranges between minus one and one, but we can

readily convert it to the "traditional similarity range" by adding one and dividing by two.

For two time-series, a1, …, an and b1, …, bn, with mean values ma = (a1+ … + an)/n and

mb = (b1+ … + bn)/n, the correlation coefficient is:

 n

 ∑ (ai – ma) • (bi – mb)

 i = 1

 .

 n n

 ∑ (ai – ma) 2 • ∑ (bi – mb) 2
 i = 1 i = 1

 25

4.2 Peak similarity

We now define a new similarity metric, called triangle similarity, whose value

also ranges from zero to one. The definition includes a positive knob parameter c, which

allows us to adjust the resolution of this metric. The triangle similarity, between two

positive numeric values, a and b, is as follows:

tsim(a, b) = max(0, 1– |a – b| /a • c).

Note that the triangle similarity is not symmetric, that is, tsim(a, b) may be different from

tsim(b, a). In Figure 4.2, we illustrate the intuitive meaning of this definition. We

construct an equilateral triangle with the upper vertex (a, 1) and the other two vertices

(a • (1 - c), 0) and (a • (1 + c), 0). To determine the similarity of a and b, we place b on

the horizontal axis. If b is outside the triangle, the similarity is zero. On the other hand,

if b is within the triangle, we draw a vertical line through b to obtain its intersection, b',

with a side of the triangle. The ordinate of b' is the similarity between a and b.

We now define a peak similarity of two time-series, a1, …, an and b1, …, bn, in

terms of the triangle similarity of their points. The definition includes an additional knob

parameter, w, which must be between zero and one:

 n n
 ∑ tsim(ai, bi) ∑ tsim(bi, ai)
w • max(i=1 , i=1) + (1 - w) • max(min tsim(ai, bi), min tsim(bi, ai))

 n n i∈ [1..n] i∈ [1..n]

Intuitively, the first part of the expression represents the mean triangle similarity of the

points, whereas the second part is the smallest similarity of the points. The weight w

 1
 tsim(a, b) b'

 0
 a •(1 - c) b a a • (1 + c)

Figure 4.2: Triangle similarity of numeric values a and b.

 26

determines the relative importance of these two parts in the aggregated similarity

measure. The resulting similarity is symmetric; furthermore, it allows computing

similarity between curves whose points do not exactly coincide.

 The peak similarity is effective only when two sequences have the same starting

value, that is, a1 = b1. If they do not satisfy this assumption, we re-scale the sequences

before applying the metric; specifically, we divide all values in the first series by a1, and

all values in the second series by b1.

The main advantage of peak similarity for this research is that it works well with

compressed curves. The experiments show that it gives better results than other

similarity metrics.

4.3 Empirical comparison

We next give empirical evaluation of the metrics described in sections 4.1 and

4.2. We applied these metrics to select similar series, and then measured the mean

difference between similar series. For each given series, we found the five most similar

series, and then determined the mean distance between the given series and the other five;

we repeated this experiment for each similarity metric. When selecting similar series, we

used compressed data, with two different compression rates, 5% and 10%.

In Table 4.2, we summarize the results, and compare them with the results of the

perfect exhaustive-search selection, as well as with random selection. We conclude that

the use of similarity with compressed data is much better than random selection, though it

is not as good as exhaustive search. The results also show that the peak similarity

performs somewhat better than other metrics, and that the correlation coefficient is the

least effective. Peak similarity, mean similarity and root mean square similarity have

similar running times; similarity based on correlation coefficient is about twice slower.

We also used the four metrics to identify close matches for each series, and

compared the results with ground-truth neighborhoods. For stocks, we used expert

opinion to define these neighborhoods: we consider stocks similar if they belong to the

same industry group, according to the classification by Standard and Poor's (see Figure

 27

Table 4.2: Differences between selected similar series.

For each given series, we selected the five most similar series, and measured the mean
difference between the given series and the other five, using distance measures given in
Figure 3.4. Smaller differences correspond to better selection of similar series. We also
show the running time of selecting similar series, for each similarity metric.

Stock Sea temperatures Air temperatures Metric Comp.
rate Mean

diff.
Max.
diff.

Time
(sec)

Mean
diff.

Max.
diff.

Time
(sec)

Mean
diff.

Max.
diff.

Time
(sec)

Exhaustive search 0.094 0.437 .016 .072 .024 .121
Random selection 0.287 1.453 .078 .215 .070 .235
Peak
similarity

 5%
10%

0.110
0.103

0.534
0.429

.022

.024
.019
.018

.073

.068
.019
.021

.030

.029
.136
.103

.020

.022
Mean
similarity

 5%
10%

0.126
0.110

0.570
0.525

.024

.026
.033
.026

.112

.092
.021
.022

.037

.031
.152
.134

.022

.022
Root mean
square sim.

 5%
10%

0.115
0.103

0.588
0.497

.024

.026
.031
.024

.106

.090
.021
.022

.035

.030
.147
.133

.022

.022
Correlation
coefficient

 5%
10%

0.210
0.206

1.101
1.019

.045

.048
.063
.054

.179

.162
.042
.044

.051

.051
.224
.214

.043

.046

Wind speeds Electroencephalograms Metric Comp.
rate Mean

diff.
Max.
diff.

Time
(sec)

Mean
diff.

Max.
diff.

Time
(sec)

Exhaustive search .021 .136 .038 .170
Random selection .029 .185 .072 .370
Peak
similarity

 5%
10%

.023

.023
.148
.138

.016

.016
.063
.052

.306

.241
.015
.015

Mean
similarity

 5%
10%

.025

.023
.152
.137

.017

.017
.066
.055

.323

.279
.014
.016

Root mean
square sim.

 5%
10%

.023

.023
.153
.134

.017

.017
.064
.051

.317

.261
.014
.016

Correlation
coefficient

 5%
10%

.024

.024
.154
.138

.033

.042
.068
.056

.349

.281
.028
.030

4.3). We considered "small neighborhoods," formed by industry sub-categories, as well

as "large neighborhoods," formed by industry groups. Gavrilov [2000] used similar

classification as ground-truth in testing similarity measures and clustering techniques;

however, he used an earlier classification which was different from Figure 4.3.

For air and sea temperatures, we used geographic proximity to define two ground-

truth neighborhoods. The first neighborhood is a rectangle around the given buoy. The

second neighborhood consists of the two buoys to the east, and the two buoys to the west

 28

Energy
Baker Hughes
Halliburton
Schlumberger
Coastal
Occidental Petroleum

Materials
Du Pont
Dow Chemical
International Flavors and Fragrances
Alcoa
Homestake Mining
Bethlehem Steel
Weyerhauser
International Paper
Boise Cascade

Capital Goods
Boeing
Honeywell
United Technologies
General Dynamics
Raytheon
Fluor
Rockwell International
General Electric
Minnesota Mining and Manufacturing
Catepillar

Transportation
FedEx
Delta Air Lines
Burlington Northern Santa Fe
Norfolk Southern

Automobiles & Components
General Motors
Ford

Consumer Durables & Apparel
Black & Decker
Brunswick
Eastman Kodak
Polaroid

Hotels Restaurants & Leisure
Harrah's Entertainment
McDonald's

Media
Disney
Viacom

Retailing
May Department Stores
Sears
Walmart
K mart
Limited
Home Depot
Toys R Us Holding

Food Beverage & Tobacco
Coca Cola
Pepsi
Campbell Soup
Heinz
Ralston-Ralston Purina
Sara Lee
Philip Morris

Household & Personal Products
Proctor & Gamble
Colgate-Palmolive
Avon Products

Health Care Equipment & Services
Baxter International
Mallinckrodt
CIGNA

Pharmaceuticals & Biotechnology
Amgen
Johnson and Johnson
Merck
Bristol-Myers Squibb

Banks
J P Morgan
Bank of America
Bank One
U. S. Bancorp
Wells Fargo

Diversified Financials
American Express
Citigroup
Merrill Lynch
Morgan Stanley, Dean Witter

Insurance
American General
American International
Hartford Financial Services

Software & Services
America Online
Ceridian
Computer Sciences
Unisys
Microsoft
Oracle

Technology Hardware & Equipment
Cisco
Lucent
Nortel Networks Holding
Hewlett-Packard
International Business Machines
EMC
Tektronix
Xerox
Intel
National Semiconductor
Texas Instruments

Telecommunication Services
American Telephone and Telegraph
SBC Communications
American Electric Power
Entergy
Southern
Unicom
Williams

Figure 4.3: Industry groups.

 29

of the given buoy, as shown in Figure 4.5(a). For wind data, we also used geographic

proximity. The first neighborhood included sites within 70 miles, and the second

included sites within 140 miles. For electroencephalograms, the first neighborhood was a

three-by-three neighborhood of electrodes; the second was a five-by-five neighborhood,

as shown in Figure 4.5(b).

We applied the available similarity metrics to identify similar series, and then

determined how many of the selected series belonged to the same neighborhood. For

each compressed series, we found the five most similar ones, and then determined the

average number of the series among them that belonged to the same neighborhood as the

given series. In Table 4.3, we summarize the results, and compare them with the prefect

selection and with random selection.

For stock data, and air and sea temperatures, similarity metrics clearly outperform

random selection, with 99% confidence. On the other hand, the results for wind and

electroencephalograms are mixed. Recall that the 10% compression does not always

preserve electroencephalograms, which is a likely reason for poor selection.

We also measured the correlation between the peak similarity and the three

distance measures given in Section 3.2. In Figures 4.5–4.9, we give the results of this

experiment for different compression rates; specifically, we show the correlation scatter

plot and give the correlation coefficient for the most similar 20% of the points. In Table

4.4, we summarize the correlations.

In Figures 4.10–4.16, we show correlation results for different values of the knob

variable w in the definition of peak similarity. In Figures 4.17–4.19, we show similar

results for different values of the knob c in the definition of triangle similarity. By

adjusting these knobs, we can obtain high correlation for high similarity values. We are

less interested in a correlation for low similarity values, since the purpose of the

developed technique is retrieval of similar sequences.

Finally, we checked how well peak similarity of compressed data correlates with

the similarity of uncompressed data (see Figure 4.20). We observed a good linear

correlation, which degraded gracefully with increase of compression rate. The only

exception is the electroencephalogram data, which gave poor correlation at 5%

compression, which resulted from poor compression accuracy.

 30

x x x x x x x x
x x x x x x x x x x x
x O x x x O x x x O x x x O x x
x x x x x x x x x x x
x x x x x x x x
(a) (b)

Figure 4.4: Buoy and electrode ground-truth neighborhoods.

(a) We considered two neighborhoods of buoys in the experiments with air and sea
temperatures, 3x5 and 5x1 neighborhoods. We show the given buoy by an O and its
neighbors by x's. (b) We considered 3x3 and 5x5 neighborhoods of electrodes in the
experiments with electroencephalograms.

Table 4.3: Ability to find members of the same neighborhood.

For each compressed series, we found the five most similar series, and then determined
the average number of the series among them that belong to the same neighborhood as
the given series.

Stock Sea temp. Air temp. Wind speed Encephalogram Metric Comp.
Rate 1 2 1 2 1 2 1 2 1 2

Perfect selection 1.29 4.05 10.5 3.34 10.5 3.34 2.67 8.33 5.84 16.6

Random selection 0.07 0.29 0.40 0.11 0.40 0.10 0.74 2.27 0.35 1.03

Peak
similarity

 5%
10%

0.21
0.22

0.55
0.62

1.18
1.09

0.65
0.54

0.82
0.89

0.48
0.49

1.50
1.16

2.83
2.83

0.59
0.81

1.25
1.81

Mean
similarity

 5%
10%

0.12
0.18

0.47
0.55

0.75
0.85

0.17
0.28

0.65
0.77

0.25
0.34

1.58
1.33

2.66
2.92

0.36
1.05

0.90
1.98

Root mean
square sim.

 5%
10%

0.17
0.14

0.35
0.53

0.77
0.88

0.20
0.32

0.71
0.83

0.26
0.34

1.33
1.50

2.75
2.92

0.36
1.20

0.90
2.19

Correlation
coefficient

 5%
10%

0.19
0.15

0.50
0.39

0.72
0.82

0.29
0.25

0.60
0.74

0.34
0.49

1.50
1.33

2.75
2.92

0.68
1.16

1.65
2.24

 31

Table 4.4: Correlation between peak similarity and distance.

We show the correlation of the peak similarity with three distance measures, which
include the mean distance, the maximum distance, and the root mean square distance.
The correlation is negative, since greater similarity corresponds to smaller distance.

 Stock Sea temperatures Air temperatures

Com-
pression

mean maxi-
mum

root
mean
square

mean maxi-
mum

root
mean
square

mean maxi-
mum

root
mean
square

none
20%
10%
5%

-0.76
-0.71
-0.64
-0.54

-0.65
-0.63
-0.56
-0.46

-0.79
-0.74
-0.65
-0.55

-0.86
-0.75
-0.62
-0.37

-0.93
-0.84
-0.75
-0.58

-0.92
-0.79
-0.66
-0.40

-0.66
-0.14
0.21
0.33

-0.82
-0.39
-0.05
0.09

-0.73
-0.17
0.19
0.32

 Wind Electroencephalograms

Com-
pression

mean maxi-
mum

root
mean
square

mean maxi-
mum

root
mean
square

none
20%
10%
5%

-0.84
-0.60
-0.49
0.07

-0.94
-0.47
-0.47
-0.42

-0.89
-0.58
-0.51
0.03

-0.93
-0.63
-0.04
0.11

-0.93
-0.62
-0.06
0.10

-0.96
-0.64
-0.05
0.12

 32

Figure 4.5: Peak similarity versus distance for stock prices.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 33

Figure 4.6: Peak similarity versus distance for air temperatures.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 34

Figure 4.7: Peak similarity versus distance for sea temperatures.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 35

Figure 4.8: Peak similarity versus distance for wind speeds.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 36

Figure 4.9: Peak similarity versus distance for electroencephalograms.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 37

Figure 4.10: Peak similarity versus distance for stock prices, with w = 0.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 38

Figure 4.11: Peak similarity versus distance for stock prices, with w = 0.10.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 39

Figure 4.12: Peak similarity versus distance for stock prices, with w = 0.34.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 40

Figure 4.13: Peak similarity versus distance for stock prices, with w = 0.50.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 41

Figure 4.14: Peak similarity versus distance for stock prices, with w = 0.66.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 42

Figure 4.15: Peak similarity versus distance for stock prices, with w = 0.90.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 43

Figure 4.16: Peak similarity versus distance for stock prices, with w = 1.00.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 44

Figure 4.17: Peak similarity versus distance for stock prices, with c = 0.25.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 45

Figure 4.18: Peak similarity versus distance for stock prices, with c = 0.50.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 46

Figure 4.19: Peak similarity versus distance for stock prices, with c = 0.75.
(a) uncompressed; (b) 20% compression; (c) 10% compression; (d) 5% compression.

 47

Figure 4.20: Correlation between peak similarity of compressed data and peak
similarity of uncompressed data.
(a) 25% compression; (b) 10% compression; (c) 5% compression.

 48

CHAPTER 5 - PATTERN RETRIEVAL

 We give an algorithm that inputs a pattern series and retrieves similar series from

a database, and then describe the results of applying it to the test domains.

5.1 Retrieval algorithm

The retrieval technique includes three main steps: identifying the "prominent

feature" in a given pattern, finding similar features in the series stored in the database,

and comparing the pattern with each series containing a similar feature.

 We begin by defining a leg of a time-series, which is the segment between two

consecutive important points. For each leg of a compressed series, we store the values

summarized in Figure 5.1, denoted as vl, vr, il, ir, ratio, and length. We give an example

of these values in Figure 5.2. The prominent leg of a pattern series is the leg with the

greatest ratio; for example, the prominent leg in Figure 5.2 is leg 4.

The retrieval algorithm inputs a compressed pattern series, and outputs similar

segments of compressed series in the database. We summarize the algorithm in

Figure 5.3.

vl value of the left important point of the leg
vr value of the right important point of the leg
il index of the left important point in the original sequence
ir index of the right important point in the original sequence
ratio ratio of the end-points, defined as (vr/vl)
length length of the segment, defined as (ir – il)
__

Figure 5.1: Basic data for a leg.

For each leg, we store the values related to pattern retrieval.

 49

Figure 5.2: Example of legs.

A leg is a segment of a compressed series between two important points. We show the
basic data for the two legs marked by thick lines.

 First, the algorithm searches the pattern for the leg with the greatest end-point

ratio, denoted ratiop, and identifies all legs in the database that have a similar ratio. A

ratio is considered similar to ratiop if its value is between ratiop /C and ratiop • C, where

C is a parameter for controlling the matching process.

 To ensure efficient retrieval, we index all legs in the database by their ratio, using

a red-black binary search tree. If the total number of legs of all series in the database is n,

and the number of legs with ratio between ratiop /C and ratiop • C is k, then the retrieval

time is O(k + lg n).

 After identifying these legs, the algorithm discards those legs whose length is not

similar to that of the pattern's prominent leg. The length is considered similar when it is

between lengthp /D and lengthp • D, where lengthp is the length of the pattern leg and D is

another knob parameter.

 50

PATTERN-RETRIEVAL
Identify the pattern leg p with the greatest end-point ratio, denoted ratiop.
Find all legs in the database with end-point ratio between ratiop /C and ratiop • C.
For each leg l in the set of selected legs:
 If lengthl < lengthp /D or lengthl > lengthp • D, then discard l from the set.
For each leg l in the remaining selected legs:
 Identify the segment corresponding to the pattern (see Figure 5.4).
 Compute the similarity between this segment and the pattern.
 If the similarity is above the threshold T, then output the segment.

Figure 5.3: Search for segments similar to a given pattern.

The algorithm inputs a compressed pattern series, and searches for matches in a database
of compressed time-series. We use three knobs to control the search: maximal ratio
deviation C, maximal length deviation D, and similarity threshold T.

Finally, the algorithm compares the pattern segment with segments that contain

the selected legs, and measures similarity to the pattern. In Figure 5.4, we illustrate the

procedure for identifying the segment of a series that may match a pattern. If the

similarity is above a given threshold T, the algorithm outputs the segment as a match.

 Although we define prominence of a leg as its end-point ratio, we may use the

same algorithm with different prominence measures. We have experimented with the

alternative measures summarized in Figure 5.5; we give the results of using them in

Section 5.3.

5.2 Extended legs

 The described algorithm can miss matching series that do not have a leg

corresponding to the pattern's prominent leg. We illustrate this problem in Figure 5.6,

where the prominent leg of the pattern has no equivalent in the matching series.

 51

Figure 5.4: Identifying a segment that may match the pattern.

(a) Slope of a leg: (vr - vl)/(ir - il)

(b) Length of a leg, with time-scale knob s: (vl - vr)2 + s2
• (il - ir)2

(c) Height of the spike formed by two adjacent legs: vr1 – (vl1 + vr2) / 2

Figure 5.5: Alternative prominence measures.

 To avoid this problem, we introduce the notion of extended legs. Intuitively, a

segment of a sequence is an extended leg if it would be a leg under a higher compression

rate. Since a compressed series includes all maxima and minima that would be part of

the series under higher compression, we can identify all extended legs, as shown in

Figure 5.6(c).

 52

Figure 5.6: Example of extended legs.

The pattern (a) matches the series (b), but the pattern's prominent leg has no equivalent in
the series. If we identify extended legs in the series (c), then the prominent leg matches
one of them.

Formally, two points i and j of a compressed series a1,…, an form an extended

upward leg if

♦ ai is a local minima and aj is a local maxima, and

♦ for every m ∈ [i..j], we have ai < am < aj.

The definition of an extended downward leg is symmetric.

We identify all extended legs of all series in the database, compute the same

values as for normal legs, and use them in indexing and retrieval in the same way as

normal legs. The advantage of this approach is more accurate retrieval, and the

disadvantage is larger storage space. In the worst case, a compressed n-leg series can

give rise to n2/2 extended legs; however, if sequences in the database do not have an

upward or downward trend, the average number of extended legs is θ(n • lg n).

In Figure 5.7, we give an algorithm for identifying upward extended legs in a

time-series; the procedure for finding downward legs is symmetric. The algorithm

consists of two parts, called NEXT-POINTS and EXTENDED-LEGS. We assume that normal

upward legs in the input series are numbered from 1 to n, and the main loop of each

procedure processes them in order.

 53

NEXT-POINTS
initialize an empty stack S of leg indices
PUSH(S,1)
for k= 2 to n do
 while S is not empty and irTOP(S) < irk do
 next[TOP(S)] = k; POP(S)
 PUSH(k)
while S is not empty do
 next[TOP(S)] = NIL; POP(S)

EXTENDED-LEGS
initialize an empty list of extended legs
for k = 1 to n do
 m = next[k]
 while m is not NIL do
 add (ilk, irm) to the list of extended legs
 m = next[m]

Figure 5.7: Identifying extended legs of a compressed series.

The first part processes local maxima of the compressed series; for each

maximum irk, it identifies the next larger maximum in the series, and stores the index of

the next larger maximum in next[k]. Its running time is linear in the length of the

compressed series. The second part uses this information to identify extended legs. Its

running time is linear in the total number of extended legs.

5.3 Search results

 To evaluate the retrieval accuracy, we compared search results with the segments

identified by a slow exhaustive-search procedure. We show the patterns used in this

experiment in Figure 5.8, and summarize the results in Figures 5.9–5.16. We ranked the

matches found by the algorithm, from most to least similar, and enumerated them in this

order. In Figures 5.9–5.16, we plotted the numbers of matches found by the fast

algorithm versus the numbers of exhaustive-search matches. For instance, if the fast

retrieval algorithm missed the two best matches and marked the third closest match as the

best one, then the graph would include the point (1,3). As another example if the fast

 54

retrieval algorithm found only three among seven closest matches, and marked the

seventh closest match as the third best, then the graph would include the point (3,7). A

perfect result would be a forty-five degree line, indicating that the fast retrieval algorithm

had found the same segments as the exhaustive search. If the fast procedure missed some

of the segments, the graph slope was steeper.

 We ran this experiment with the end-point ratio prominence, as well as with the

three alternative prominences listed in Figure 5.5, and with three different value of the

knob C. We summarize the results in Table 5.1, which shows that the end-point ratio and

spike prominence give better results than the other two prominence measures. It also

shows that the increase of C leads to more accurate identification of similar patterns, at

the expense of greater search time.

 The retrieval time grows linearly with the pattern length and with the number of

candidate sequences identified at the first two steps of the retrieval algorithm. In Figure

5.17, we show the dependency of the running time on these two parameters, for the

Visual Basic 6.0 implementation on a 300 MHz PC. If the pattern includes m legs and

the algorithm identifies k candidate matches, then the retrieval time is about 0. 07 • m • k

milliseconds per match. For a database with a total of 5000 legs, the retrieval takes from

0.25 to 3.25 seconds, depending on the pattern length and C value.

 In Figure 5.18, we give examples of sequences retrieved from a stock database,

for a six-leg pattern.

 55

Table 5.1: Experiments with different prominence definitions and values of C.

For each experiment, we give the number of candidate matches and the mean similarity
of the best ten matches among the candidates. If we increase C, the algorithm finds more
candidates and misses fewer matches; however, the retrieval time is proportional to the
number of candidates.

 Ratio prominence Slope prominence Length prominence Spike prominence

value
of C

Num.
candi-
dates

Similar-
ity of
best ten

Num.
candi-
dates

Similar-
ity of
best ten

Num.
candi-
dates

Similar-
ity of best
ten

Num.
candi-
dates

Similar-
ity of
best ten

Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(a).
1.5
2
5

335
659
1957

.9994

.9993

.9994

852
1360
2361

.9991

.9992

.9995

555
972
2817

.9990

.9991

.9995

475
926
2254

.9994

.9996

.9998

Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(b).
1.5
2
5

640
979
2228

1
1
1

719
1201
2292

.9999

.9999
1

716
1297
3117

1
1
1

1202
1774
2467

1
1
1

Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(c).
1.5
2
5

1114
1705
2562

.9998

.9999

.9999

984
1544
2361

.9999

.9999

.9999

163
375
1701

.9998

.9998

.9999

1182
1783
2375

.9999

.9999

.9999
Stock prices: 5413 legs in the database; retrieval of pattern in Figure 5.8(d).
1.5
2
5

647
964
2383

.9985

.9986

.9987

339
604
1676

.9980

.9982

.9984

474
941
2237

.9982

.9983

.9985

Air and sea temperatures combined: 5557 legs in the database; retrieval of pattern in
Figure 5.8(e).
1.5
2
5

257
518
2245

.9999
1
1

184
327
862

.9994

.9995

.9996

115
210
637

.9999
1
1

769
1184
1489

.9995

.9995

.9995
Sea temperatures: 200 legs in the database; retrieval of pattern in Figure 5.8(f).
1.5
2
5

11
17
78

.9971

.9979

.9981

14
16
55

.9977

.9978

.9981

31
54
132

.9966

.9970

.9974

40
69
93

.9978

.9981

.9981
Wind speeds: 10,591 legs in the database; retrieval of pattern in Figure 5.8(g).
1.5
2
5

1941
3378
5025

.9904

.9905

.9905

584
1163
3869

.9909

.9916

.9918

522
1306
6527

.9885

.9891

.9903

723
1529
4324

.9905

.9911

.9918
Electroencephalogram: 2898 legs in the database; retrieval of pattern in Figure 5.8(h).
1.5
2
5

150
289
891

.9979

.9980

.9988

380
656
1193

.9997

.9998

.9999

102
159
595

.9981

.9985

.9992

339
572
1023

.9982

.9983

.9989

 56

Figure 5.8: Patterns used in the retrieval experiments.

 57

Figure 5.9: Retrieval of stock charts matching the pattern in Figure 5.8(a).

The horizontal axes show the number assigned to the retrieved matches by the fast
retrieval algorithm, in the best-to-worst order. The vertical axes are the numbers
assigned to the same matches by the exhaustive-search algorithm. If the fast algorithm
has found all close matches, then the graph is a forty-five degree line. On the other hand,
if the algorithm missed some matches, the line is steeper.

 58

Figure 5.10: Retrieval of stock charts matching the pattern in Figure 5.8(b).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 59

Figure 5.11: Retrieval of stock charts matching the pattern in Figure 5.8(c).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 60

Figure 5.12: Retrieval of stock charts matching the pattern in Figure 5.8(d).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 61

Figure 5.13: Retrieval of air and sea temperature combined segments matching the
pattern in Figure 5.8(e).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 62

Figure 5.14: Retrieval of sea temperature segments matching the pattern in Figure
5.8(f).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 63

Figure 5.15: Retrieval of wind speeds segments matching the pattern in Figure
5.8(g).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 64

Figure 5.16: Retrieval of electroencephalogram segments matching the pattern in
Figure 5.8(h).

The horizontal axes show the similarity numbers assigned by the fast retrieval algorithm;
the vertical axes are the exhaustive-search similarity numbers for the same points.

 65

Figure 5.17: Retrieval time.

We show the dependency of the retrieval time on total number of candidate segments,
identified by the first two steps of the retrieval algorithm. The time grows linearly with
the number of candidate segments; it is also linear in the size of the pattern

 66

Figure 5.18: Examples of retrieved stock charts.

 67

CHAPTER 6 - CONCLUDING REMARKS

 The contributions of the described work include an algorithm for compressing

time-series, and the use of this compression for indexing and retrieval of time-series.

The compression technique is based on selection of important points. We gave a fast

compression algorithm and showed that the compressed sequences closely approximated

the original data, and that its quality gracefully degraded with the compression rate. We

then defined a new similarity metric and showed that it was often more accurate than

similarity based on mean, root mean square, and correlation coefficient.

 These compression and similarity techniques enabled us to develop a novel

algorithm for finding a given pattern in a database of time-series. The key idea is to

index time-series by their prominent features, and retrieve the series whose compressed

representation is similar to the compressed pattern. The experiments have shown the

effectiveness of this technique for identifying patterns in stock prices, meteorological

data, and electrocardiograms. The implemented algorithm found a given pattern in a

database with 60,000 points in less than a second.

 This work leaves many open problems, which include application of the

developed technique to other time-series domains, investigation of its limitations,

extending of this technique to finding patterns that are stretched over time, and applying

it to identifying periodic patterns, such as weather cycles. Another open problem is to

apply statistical and machine-learning techniques to tune the knobs of the described

algorithms.

 68

REFERENCES

[Aggarwal, 2000] C. C. Aggarwal and P. S. Yu. The IGrid Index: Reversing the
Dimensionality Curse for Similarity Indexing in High Dimensional Space. In
Proceedings of the Association for Computing Machinery Sixth International Conference
on Knowledge Discovery and Data Mining, pages 119–129, 2000.

[Agrawal, 1996] R. Agrawal, M. Mehta, J. Shafer, and R. Srikant. The Quest Data
Mining System. In Proceedings of the Association for Computing Machinery Second
International Conference on Knowledge Discovery and Data Mining, pages 244–249,
1996.

[Beckmann, 1990] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. R-Tree, an Efficient and Robust Access Method for Points and Rectangles.
Association of Computing Machinery Special Interest Group on Management of Data
Record, 19(2), pages 322–331, 1990.

[Berchtold, 1998] Stefan Berchtold, Christian Bohm, and Hans-Peter Kriegel. The
Pyramid-Tree: Breaking the Curse of Dimensionality. In Proceedings of the Association
for Computing Machinery International Conference on Management of Data, pages 142–
153, 1998.

[Bollobas, 1997] B. Bollobas, Gautam Das, Dimitrios Gunopulos, and H. Mannila.
Time-Series Similarity Problems and Well-Separated Geometric Sets. In Proceedings of
the Association for Computing Machinery Thirteenth Annual Symposium on
Computational Geometry, pages 454–476, 1997.

[Bozkaya, 1997] Tolga Bozkaya, Nasser Yazdani, and Meral Ozsoyoglu. Matching and
Indexing Sequences of Different Lengths. In Proceedings of the Association for
Computing Machinery Sixth International Conference on Information and Knowledge
Management, pages 128–135, 1997.

[Bozkaya, 1999] Tolga Bozkaya and Meral Ozsoyoglu. Indexing Large Metric Spaces for
Similarity Search Queries. Association for Computing Machinery Transactions on
Database System, pages 1–34, 1999.

[Brockwell, 1996] P. J. Brockwell and R. A. Davis. Introduction to Time Series and
Forecasting. Springer-Verlag, New York, NY, 1996.

[Caraca-Valente, 2000] J. P. Caraca-Valente and I. Lopez-Chavarrias. Discovering
Similar Patterns in Time Series. In Proceedings of the Association for Computing
Machinery Sixth International Conference on Knowledge Discovery and Data Mining,
pages 497–505, 2000.

 69

[Chi, 1995] E. H.-H. Chi, P. Barry, E. Shoop, J. V. Carlis, E. Retzel, and J. Riedl.
Visualization of Biological Sequence Similarity Search Results. In Proceedings of the
IEEE Conference on Visualization, pages 44–51, 1995.

[Cormen, 1998] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge, MA, 1998.

[Cortes, 2000] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: A Language
for Extracting Signatures from Data Streams. In Proceedings of the Association for
Computing Machinery Sixth International Conference on Knowledge Discovery and Data
Mining, pages 9–17, 2000.

[Das, 1997] Gautam Das, Dimitrios Gunopulos, and Heikki Mannila. Finding Similar
Time Series. In Proceedings of the First Conference on Principles of Knowledge
Discovery and Data Mining, pages 88–100, 1997.

[Das, 1998] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and
Padhraic Smyth. Rule Discovery from Time-Series. In Proceedings of the Fourth
International Conference on Knowledge Discovery and Data Mining, pages 16–22, 1998.

[Deng, 1998] K. Deng. OMEGA: On-Line Memory Based General Purpose System
Classifier. Technical Report CMU-RI-TR-98-33, Robotics Institute, Carnegie Mellon
University, 1998.

[Domingos, 2000] P. Domingos and G. Hulten. Mining High-Speed Data Streams. In
Proceedings of the Association for Computing Machinery Sixth International Conference
on Knowledge Discovery and Data Mining, pages 71–80, 2000.

[Duffy, 1994] F. H. Duffy, J. R. Hughes, F. Miranda, P. Bernad, and P. Cook. Status of
Quantified EEG (qEEG) in Clinical Practice. Clinical Electroencephalography, 25,
pages 6–22, 1994.

[Fountain, 2000] T. Fountain, T. Dietterich, and B. Sudyka. Mining IC Test Data to
Optimize VLSI Testing. In Proceedings of the Association for Computing Machinery
Sixth International Conference on Knowledge Discovery and Data Mining, pages 19–29,
2000.

[Franses, 1998] P. H. Franses. Time Series Models for Business and Economic
Forecasting. University of Cambridge Press, Cambridge, United Kingdom, 1998.

[Galka , 2000] Andreas Galka. Topics in Nonlinear Time Series Analysis with
Implications for EEG Analysis. World Scientific, Singapore, 2000.

 70

[Gavrilov, 2000] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining the Stock
Market: Which Measure is Best? In Proceedings of the Association for Computing
Machinery Sixth International Conference on Knowledge Discovery and Data Mining,
pages 487–496, 2000.

[Ge, 2000] X. Ge and P. Smyth. Deformable Markov Model Templates for Pattern
Matching. In Proceedings of the Association for Computing Machinery Sixth
International Conference on Knowledge Discovery and Data Mining, pages 81–90, 2000.

[Geva, 1999] Amir B. Geva. Hierarchical-Fuzzy Clustering of Temporal-Patterns and its
Application for Time-Series Prediction. Pattern Recognition Letters, 20, pages 1519–
1532, 1999.

[Goldin, 1995] D. Q. Goldin and P. C. Kanellakis. On Similarity Queries for Time-Series
Data: Constraint Specification and Implementation. In Proceedings of the First
International Conference on Principles and Practice of Constraint Programming, pages
137–153, 1995.

[Grenander, 1996] U. Grenander. Elements of Pattern Theory. Johns Hopkins University
Press, Baltimore, MD, 1996.

[Gunopulos, 2000] Dimitrios Gunopulos and Gautam Das. Time Series Similarity
Measures. In Tutorial Notes of the Association for Computing Machinery Sixth
International Conference on Knowledge Discovery and Data Mining, pages 243–307,
2000.

[Guralnik, 1998] V. Guralnik, D. Wijesekera, and J. Srivastava. Pattern Directed Mining
of Sequence Data. In Proceedings of the Fourth International Conference on Knowledge
Discovery in Databases, pages 51–57, 1998.

[Han, 2000] J. Han, J. Pei, B. Mortazavi-Asi, Q. Chen, U. Dayal, and M.-C. Hsu.
FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. In Proceedings of the
Association for Computing Machinery Sixth International Conference on Knowledge
Discovery and Data Mining, pages 355–359, 2000.

[Han, 1998] J. Han, W. Gong, and Y. Yin. Mining Segment-Wise Periodic Patterns in
Time-Related Databases. In Proceedings of the Association for Computing Machinery
Fourth International Conference on Knowledge Discovery and Data Mining, pages 214–
218, 1998.

[Haslett, 1989] J. Haslett and A. E. Raftery. Space-Time Modeling with Long-Memory
Dependence: Assessing Ireland's Wind Power Resource. Applied Statistics, 38, pages 1–
50, 1989.

 71

[Ikeda , 1999] K. Ikeda, B. Vaughn, and S. Quint. Wavelet Decomposition of Heart
Period Data. In Proceedings of the IEEE First Joint BMES/EMBS Conference, pages 3–
11, 1999.

[Kamel, 1993] Ibrahim Kamel and Christos Faloutsos. Hilbert R-Tree: An Improved R-
Tree Using Fractals. Technical Research Report, Institute for Systems Research,
University of Maryland, College Park, MD, 1993.

[Kantz, 1997] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge
University Press, Cambridge, United Kingdom, 1997.

[Keogh, 1997] Eamonn Keogh. Fast Similarity Search in the Presence of Longitudinal
Scaling in Time Series Databases. In Proceedings of the IEEE Ninth International
Conference on Tools with Artificial Intelligence, pages 578–584, 1997.

[Keogh, 1998] Eamonn Keogh and Michael J. Pazzani. An Enhanced Representation of
Time Series which Allows Fast and Accurate Classification, Clustering and Relevance
Feedback. In Proceedings of the Association for Computing Machinery Fourth
International Conference on Knowledge Discovery and Data Mining, pages 239–243,
1998.

[Keogh, 2000] Eamonn J. Keogh and Michael J. Pazzani. Scaling up Dynamic Time
Warping for Data Mining Applications. In Proceedings of the Association for Computing
Machinery Sixth International Conference on Knowledge Discovery and Data Mining,
pages 285–289, 2000.

[Lin, 1998] L. Lin and T. Risch. Querying Continuous Time Sequences. In Proceedings
of the Twenty-Fourth Very Large Database Conference, pages 170–181, 1998.

[Lee, 2000] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung. Similarity
Search for Multidimensional Data Sequences. In Proceedings of the IEEE Sixteenth
International Conference on Data Engineering, pages 599–608, 2000.

[Lu, 1997] H. Lu, J. Han, and L. Feng. Stock Movement Prediction and N-Dimensional
Inter-Transaction Association Rules. In Proceedings of the Association for Computing
Machinery SIGMOD Workshop on Research Issues on Data Mining and Knowledge
Discovery, pages 12:1–7, 1998.

[Maurer, 1991] K. Maurer and T. Dierks. Atlas of Brain Mapping. Springer-Verlag,
Berlin, Germany, 1991.

[Murphy, 1996] J. J. Murphy. Visual Investor. Wiley, New York, NY, 1996.

[Niedermeyer,1993] E. Niedermeyer and F. L. Da Silva. Electroencephalography Basic
Principles, Clinical Applications, and Related Fields, Third Edition. Williams &
Wilkins, Baltimore, MD, 1993.

 72

[Park, 2000] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient Searches for Similar
Subsequences of Different Lengths in Sequence Databases. In Proceedings of the IEEE
Sixteenth International Conference on Data Engineering, pages 23–32, 2000.

[Perng, 2000] C.-S. Perng, H. Wang, S. R. Zhang, and D. S. Parker. Landmarks: A New
Model for Similarity-Based Pattern Querying in Time Series Databases. In Proceedings
of the IEEE Sixteenth International Conference on Data Engineering, pages 33–42, 2000.

[Plane, 1986] D. R. Plane and E. B. Opperman. Business and Economic Statistics, Third
Edition. Business Publications, Plano, TX, 1986.

[Policker, 2000] S. Policker and A. B. Geva. Nonstationary Time Series Analysis by
Temporal Clustering. IEEE Transactions on Systems, Man and Cybernetics, 30(2),
pages 339–343, 2000.

[Popivanov, 1998] D. Popivanov, A. Mineva, and J. Dushanova. Tracking EEG Signal
Dynamics During Mental Tasks. IEEE Engineering in Medicine and Biology, 17(2),
pages 89–95, 1998.

[Priestley, 1988] M. B. Priestley. Nonlinear and Nonstationary Time Series Analysis.
Academic Press, London, United Kingdom,1988.

[Sahoo, 1988] P. K. Sahoo, S. Soltani, and A. K. C. Wong. Survey of Thresholding
Techniques. Computer Vision, Graphics and Image Processing, 41, pages 233–260,
1988.

[Sheikholeslami, 1998] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A
Multi-Resolution Clustering Approach for Very Large Spatial Databases. In Proceedings
of the Twenty-Fourth Very Large Database Conference, pages 428–439, 1998.

[Singh, 1998] S. Singh and P. McAtackney. Dynamic Time-Series Forecasting Using
Local Approximation. In Proceedings of the IEEE Tenth International Conference on
Tools with Artificial Intelligence, pages 392–399, 1998.

[Sonka, 1999] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and
Machine Vision, Second Edition. PWS Publishing, Pacific Grove, CA, 1999.

[Spiegel, 1996] M. R. Spiegel. Theory and Problems of Statistics, Second Edition.
McGraw-Hill, New York, NY, 1996.

[Stoffer, 1999] D. S. Stoffer. Detecting Common Signals in Multiple Time Series Using
the Spectral Envelope. Journal of the American Statistical Association, 94(448), pages
1341–1356, 1999.

 73

[Tsai, 1999] C.-C. Tsai and S.-J. Wu. A Study for Second-Order Modeling of Fuzzy
Time Series. In Proceedings of the IEEE International Fuzzy Systems Conference, pages
719–725, 1999.

[Yaffee, 2000] R. A. Yaffee and M. McGee. Introduction to Time Series Analysis and
Forecasting. Academic Press, San Diego, CA, 2000.

[Yi, 2000] B.-K. Yi, N. D. Sidiropoulos, T. Johnson, A. Biliris, H. V. Jagadish and C.
Faloutsos. Online Data Mining for Co-Evolving Time Sequences. In Proceedings of the
IEEE Sixteenth International Conference on Data Engineering, pages 13–22, 2000.

