15-462 Computer Graphics I

Midterm Examination

Sample Solution

March 5, 2002

1. Linear Transformations (40 pts)

Consider the following skewing transformation.

1. (20 pts) Show the 2-dimensional skewing transformation matrix for a given angle θ in homogeneous coordinates. This should be a 3×3 matrix. Explain your reasoning.

We look at the action of the transformation on the basis vectors and the origin to determine the transformation matrix \mathbf{S}.

- The basis vector $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$ remains unchanged:

$$
\mathbf{S}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- The basis vector $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}$ is rotated:

$$
\mathbf{S}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\sin (\theta) \\
\cos (\theta) \\
0
\end{array}\right]
$$

- The origin remains unchanged:

$$
\mathbf{S}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Therefore

$$
\mathbf{S}=\left[\begin{array}{ccc}
1 & \sin (\theta) & 0 \\
0 & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2. (20 pts) Show how the skewing transformation can be represented as the composition of a scaling and a shearing transformation. Write out the auxiliary transformations explicitly as matrices and verify that the composition yields the skewing matrix from part 1.

First we scale along the y-direction with a factor of $\cos (\theta)$:

$$
\mathbf{M}_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then we shear along the x-direction. The shear factor is $\tan (\theta)=\cot (90-\theta)$.

$$
\mathbf{M}_{2}=\left[\begin{array}{ccc}
1 & \tan (\theta) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then we verify

$$
\mathbf{M}_{2} \mathbf{M}_{1}=\left[\begin{array}{ccc}
1 & \tan (\theta) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \sin (\theta) & 0 \\
0 & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{S}
$$

since $\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}$.

2. Projections (30 pts)

In the textbook, the perspective projection matrix is given for the center of projection at the origin and the projection plane at $z=-d$ for a given distance d. In this problem we will develop a different perspective projection matrix the clarifies the relation between orthogonal and perspective projections. Your answers should be 4×4 matrices in homogeneous coordinates.

1. $(20 \mathrm{pts})$ Give the perspective projection matrix with the center of projection at $x=$ $0, y=0, z=d$ and the projection plane $z=0$. Draw a picture to aid your reasoning.

We draw the figure only for x (y is analogous).

d

From the picture we see that

$$
\frac{x_{p}}{d}=\frac{x}{z+d}, \quad \frac{y_{p}}{d}=\frac{y}{z+d}, \quad z_{p}=0 .
$$

This means

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{(z / d)+1} \\
\frac{y}{(z / d)+1} \\
0 \\
1
\end{array}\right]=\frac{1}{(z / d)+1}\left[\begin{array}{c}
x \\
y \\
0 \\
(z / d)+1
\end{array}\right]
$$

Hence we obtain the projection matrix below and verify

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / d & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
0 \\
(z / d)+1
\end{array}\right]=w\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]
$$

for $w=(z / d)+1$.
2. (10 pts) Give the orthogonal projection matrix onto the plane $z=0$ and verify that we obtain the orthogonal projection matrix as the limit of the perspective projection matrix as d goes to infinity.

The orthogonal projection satisfies $x_{p}=x, y_{p}=y$ and $z_{p}=0$ and therefore has the form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This is indeed the limit of the projection matrix from part (1) as d goes to infinity since $1 / d$ goes to 0 .

3. Splines (30 points)

In this problem with explore Catmull-Rom splines. In two dimension, they are guaranteed to interpolate the interior m points, given $m+2$ control points. Besides interpolation, we require that the tangent vector at each interior control point \mathbf{p}_{k} is the average of the vectors from \mathbf{p}_{k-1} to \mathbf{p}_{k} and from \mathbf{p}_{k} to \mathbf{p}_{k+1}.

1. (20 pts) Set up 4 equations that determine the Catmull-Rom geometry matrix, assuming we are trying to draw the segment from \mathbf{p}_{i-1} to \mathbf{p}_{i}. For each, briefly note the geometric origin of the equation. You do not have to solve your equations.

Recall that

$$
\begin{aligned}
\mathbf{p}(u) & =\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} u^{2}+\mathbf{c}_{3} u^{3}, \\
\mathbf{p}^{\prime}(u) & =\mathbf{c}_{1}+2 \mathbf{c}_{2} u+3 \mathbf{c}_{3} u^{2}
\end{aligned}
$$

So we obtain

$$
\begin{array}{rlll}
\mathbf{p}(0) & =\mathbf{p}_{i-1} & =\mathbf{c}_{0} & \text { left end-point } \\
\mathbf{p}(1) & =\mathbf{p}_{i} & =\mathbf{c}_{0}+\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{c}_{3} & \text { right end-point } \\
\mathbf{p}^{\prime}(0) & =\frac{\mathbf{p}_{i}-\mathbf{p}_{i-2}}{2} & =\mathbf{c}_{1} & \\
\mathbf{p}^{\prime}(1) & =\frac{\mathbf{p}_{i+1}-\mathbf{p}_{i-1}}{2} & =\mathbf{c}_{1}+2 \mathbf{c}_{2}+3 \mathbf{c}_{3} & \\
\text { tangent at left end-point } \\
\text { tangent at right end-point }
\end{array}
$$

2. (5 pts) Explain to what extent Catmull-Rom splines allow local control.

Moving a point will affect the tangent at the two adjacent points, and therefore the curve in two adjacent segments in both directions, but not beyond.
3. (5 pts) Do Catmull-Rom splines have the convex hull property?

No. Even the given example violates the convex hull property at \mathbf{p}_{i}.

