15-462 Computer Graphics I
Lecture 14

Clipping and Scan Conversion

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
Scan Conversion (Rasterization)
March 19, 2002
[Angel 7.3-7.6, 7.8-7.9]
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

The Graphics Pipeline, Revisited

- Must eliminate objects outside viewing frustum
- Tied in with projections
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
- Introduce clipping in stages
- 2D (for simplicity)
- 3D (as in OpenGL)
- In a later lecture: scissoring

Transformations and Projections

- Sequence applied in many implementations

1. Object coordinates to
2. Eye coordinates to
3. Clip coordinates to
4. Normalized device coordinates to
5. Screen coordinates

Clipping Against a Frustum

- General case of frustum (truncated pyramid)

- Clipping is tricky because of frustum shape

Perspective Normalization

- Solution:
- Implement perspective projection by perspective normalization and orthographic projection
- Perspective normalization is a homogeneous tfm.

See [Angel Ch. 5.8]

The Normalized Frustum

- OpenGL uses $-1 \leq x, y, z \leq 1$ (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device

The Viewport Transformation

- Transformation sequence again:

1. Camera: From object coordinates to eye coords
2. Perspective normalization: to clip coordinates
3. Clipping
4. Perspective division: to normalized device coords.
5. Orthographic projection (setting $\mathrm{z}_{\mathrm{p}}=0$)
6. Viewport transformation: to screen coordinates

- Viewport transformation can distort
- Often in OpenGL: resize callback

Line-Segment Clipping

- General: 3D object against cube
- Simpler case:
- In 2D: line against square or rectangle
- Before scan conversion (rasterization)
- Later: polygon clipping
- Several practical algorithms
- Avoid expensive line-rectangle intersections
- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- Many more [see Foley et al.]

Clipping Against Rectangle

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)

Cohen-Sutherland Clipping

- Clipping rectangle as intersection of 4 halfplanes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

- $\mathrm{o}_{1}=$ outcode $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{o}_{2}=\operatorname{outcode}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

Cases for Outcodes

- Outcomes: accept, reject, subdivide

$$
\begin{aligned}
& \mathrm{o}_{1}=\mathrm{o}_{2}=0000: \text { accept } \\
& \mathrm{o}_{1} \& \mathrm{o}_{2} \neq 0000: \text { reject } \\
& \mathrm{o}_{1}=0000, \mathrm{o}_{2} \neq 0000: \text { subdiv } \\
& \mathrm{o}_{1} \neq 0000, \mathrm{o}_{2}=0000: \text { subdiv } \\
& \mathrm{o}_{1} \& \mathrm{o}_{2}=0000: \text { subdiv }
\end{aligned}
$$

Cohen-Sutherland Subdivision

- Pick outside endpoint $(0 \neq 0000)$
- Pick a crossed edge ($o=b_{0} b_{1} b_{2} b_{3}$ and $b_{k} \neq 0$)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
- Outcodes of second point are unchanged
- Must converge (roundoff errors?)

Liang-Barsky Clipping

- Starting point is parametric form

$$
\begin{aligned}
\mathbf{p}(\alpha) & =(1-\alpha) \mathbf{p}_{1}+\alpha \mathbf{p}_{2}, \quad 0 \leq \alpha \leq 1 \\
x(\alpha) & =(1-\alpha) x_{1}+\alpha x_{2} \\
y(\alpha) & =(1-\alpha) y_{1}+\alpha y_{2}
\end{aligned}
$$

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided

Ordering of intersection points

- Order the intersection points
- Figure (a): $1>\alpha_{4}>\alpha_{3}>\alpha_{2}>\alpha_{1}>0$
- Figure (b): $1>\alpha_{4}>\alpha_{2}>\alpha_{3}>\alpha_{1}>0$

Liang-Barsky Efficiency Improvements

- Efficiency improvement 1 :
- Compute intersections one by one
- Often can reject before all four are computed
- Efficiency improvement 2:
- Equations for α_{3}, α_{2}

$$
\begin{aligned}
& y_{\max }=\left(1-\alpha_{3}\right) y_{1}+\alpha_{3} y_{2} \\
& x_{\min }=\left(1-\alpha_{2}\right) x_{1}+\alpha_{2} x_{2} \\
& \alpha_{3}=\frac{y_{\max }-y_{1}}{y_{2}-y_{1}} . \quad \alpha_{2}=\frac{x_{\min }-x_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

- Compare α_{3}, α_{2} without floating-point division

Line-Segment Clipping Assessment

- Cohen-Sutherland
- Works well if many lines can be rejected early
- Recursive structure (multiple subdiv) a drawback
- Liang-Barsky
- Avoids recursive calls (multiple subdiv)
- Many cases to consider (tedious, but not expensive)
- Used more often in practice (?)

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
- DDA algorithm
- Bresenham's algorithm

Polygon Clipping

- Convert a polygon into one ore more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip and join to a single polygon

(a)

(b)

- Approach 2: tesselate and clip triangles

Sutherland-Hodgeman I

- Subproblem:
- Input: polygon (vertex list) and single clip plane
- Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
- 4 in two dimensions
- 6 in three dimension
- Can arrange in pipeline

Sutherland-Hodgeman II

- To clip vertex list (polygon) against half-plane:
- Test first vertex. Output if inside, otherwise skip.
- Then loop through list, testing transitions
- In-to-in: output vertex
- In-to-out: output intersection
- out-to-in: output intersection and vertex
- out-to-out: no output
- Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
- Analytically if possible
- Through approximating lines and polygons otherwise
- Bounding boxes
- Easy to calculate and maintain
- Sometimes big savings

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
- DDA algorithm
- Bresenham's algorithm

Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
$-b_{4}: z>z_{\text {max }}$
$-b_{5}: z<z_{\text {min }}$
- Other calculations as before

Liang-Barsky in 3D

- Add equation $z(\alpha)=(1-\alpha) z_{1}+\alpha z_{2}$
- Solve, for \mathbf{p}_{0} in plane and normal \mathbf{n} :

$$
\begin{aligned}
& y_{\max }=\left(1-\alpha_{3}\right) y_{1}+\alpha_{3} y_{2} \\
& x_{\min }=\left(1-\alpha_{2}\right) x_{1}+\alpha_{2} x_{2} \\
& \alpha_{3}=\frac{y_{\max }-y_{1}}{y_{2}-y_{1}} . \quad \alpha_{2}=\frac{x_{\min }-x_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

- Yields

$$
\alpha=\frac{\mathbf{n} \cdot\left(\mathbf{p}_{0}-\mathbf{p}_{1}\right)}{\mathbf{n} \cdot\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)}
$$

- Optimizations as for Liang-Barsky in 2D

Perspective Normalization

- Intersection simplifies for orthographic viewing
- One division only (no multiplication)
- Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
- Reduces to orthographic case
- Applies to oblique and perspective viewing

(a)

(b)

Normalization of oblique projections

Summary: Clipping

- Clipping line segments to rectangle or cube
- Avoid expensive multiplications and divisions
- Cohen-Sutherland or Liang-Barsky
- Clipping to viewing frustum
- Perspective normalization to orthographic projection
- Apply clipping to cube from above
- Client-specific clipping
- Use more general, more expensive form
- Polygon clipping
- Sutherland-Hodgeman pipeline

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
- DDA algorithm
- Bresenham's algorithm

Rasterization

- Final step in pipeline: rasterization (scan conv.)
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate z-buffer, display, shading, blending
- Concentrate on primitives:
- Lines
- Polygons (Thursday)

DDA Algorithm

- DDA ("Digital Differential Analyzer")
- Represent

$$
y=m x+h \quad \text { where } \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

- Assume $0 \leq m \leq 1$
- Exploit symmetry
- Distinguish special cases

DDA Loop

- Assume write_pixel(int x, int y, int value)

For (ix = x1; ix <= x2; ix++)
\{
$y+=m ;$
write_pixel(ix, round(y), color); \}

- Slope restriction needed
- Easy to interpolate colors

Bresenham's Algorithm I

- Eliminate floating point addition from DDA
- Assume again $0 \leq m \leq 1$
- Assume pixel centers halfway between ints

Bresenham's Algorithm II

- Decision variable $a-b$
- If $a-b>0$ choose lower pixel
- If $a-b \leq 0$ choose higher pixel
- Goal: avoid explicit computation of $a-b$
- Step 1: re-scale $d=\left(x_{2}-x_{1}\right)(a-b)=\Delta x(a-b)$
- d is always integer

Bresenham's Algorithm III

- Compute d at step $\mathrm{k}+1$ from d at step k !
- Case: j did not change $\left(\mathrm{d}_{\mathrm{k}}>0\right)$
- a decreases by m, b increases by m
$-(a-b)$ decreases by $2 m=2(\Delta y / \Delta x)$
$-\Delta x(a-b)$ decreases by $2 \Delta y$

Bresenham's Algorithm IV

- Case: j did change ($\mathrm{d}_{\mathrm{k}} \leq 0$)
- a decreases by $m-1$, b increases by $m-1$
$-(a-b)$ decreases by $2 m-2=2(\Delta y / \Delta x-1)$
$-\Delta x(a-b)$ decreases by $2(\Delta y-\Delta x)$

Bresenham's Algorithm V

- So $d_{k+1}=d_{k}-2 \Delta y$ if $d_{k}>0$
- And $d_{k+1}=d_{k}-2(\Delta y-\Delta x)$ if $d_{k} \leq 0$
- Final (efficient) implementation:

```
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;
    for (x = x1 ; x <= x2 ; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}

\section*{Bresenham's Algorithm VI}
- Need different cases to handle other m
- Highly efficient
- Easy to implement in hardware and software
- Widely used

\section*{Summary}
- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
- DDA algorithm
- Bresenham's algorithm

\section*{Preview}
- Scan conversion of polygons
- Anti-aliasing
- Other pixel-level operations
- Assignment 5 due Thursday
- Assignment 6 (written) out Thursday```

