15-462 Computer Graphics I

Lecture 17

Spatial Data Structures

Hierarchical Bounding Volumes
Regular Grids
Octrees
BSP Trees
Constructive Solid Geometry (CSG)
[Angel 8.9]
Constructive Solid Geometry (CSG)
[Angel 8.9]
March 28, 2002
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

Ray Tracing Acceleration

- Faster intersections
- Faster ray-object intersections
- Object bounding volume
- Efficient intersectors
- Fewer ray-object intersections
- Hierarchical bounding volumes (boxes, spheres)
- Spatial data structures
- Directional techniques
- Fewer rays
- Adaptive tree-depth control
- Stochastic sampling
- Generalized rays (beams, cones)

Spatial Data Structures

- Data structures to store geometric information
- Sample applications
- Collision detection
- Location queries
- Chemical simulations
- Rendering
- Spatial data structures for ray tracing
- Object-centric data structures (bounding volumes)
- Space subdivision (grids, octrees, BSP trees)
- Speed-up of 10x, 100x, or more

Bounding Volumes

- Wrap complex objects in simple ones
- Does ray intersect bounding box?
- No: does not intersect enclosed objects
- Yes: calculate intersection with enclosed objects
- Common types
- Boxes, axis-aligned
- Boxes, oriented
- Spheres
- Finite intersections or unions of above

Selection of Bounding Volumes

- Effectiveness depends on:
- Probability that ray hits bounding volume, but not enclosed objects (tight fit is better)
- Expense to calculate intersections with bounding volume and enclosed objects
- Amortize calculation of bounding volumes
- Use heuristics

Hierarchical Bounding Volumes

- With simple bounding volumes, ray casting still has requires $O(n)$ intersection tests
- Idea use tree data structure
- Larger bounding volumes contain smaller ones etc.
- Sometimes naturally available (e.g. human figure)
- Sometimes difficult to compute
- Often reduces complexity to $\mathrm{O}(\log (\mathrm{n}))$

Ray Intersection Algorithm

- Recursively descend tree
- If ray misses bounding volume, no intersection
- If ray intersects bounding volume, recurse with enclosed volumes and objects
- Maintain near and far bounds to prune further
- Overall effectiveness depends on model and constructed hierarchy

Spatial Subdivision

- Bounding volumes enclose objects, recursively
- Alternatively, divide space
- For each segment of space keep list of intersecting surfaces or objects
- Basic techniques
- Regular grids
- Octrees (axis-aligned, non-uniform partition)
- BSP trees (recursive Binary Space Partition, planes)

Grids

- 3D array of cells (voxels) that tile space
- Each cell points to all intersecting surfaces
- Intersection alg steps from cell to cell

Caching Intersection points

- Objects can span multiple cells
- For A need to test intersection only once
- For B need to cache intersection and check next cell for closer one
- If not, C could be missed (yellow ray)

Assessment of Grids

- Poor choice when world is non-homogeneous
- Size of grid
- Too small: too many surfaces per cell
- Too large: too many empty cells to traverse
- Can use alg like Bresenham's for efficient traversal
- Non-uniform spatial subdivision more flexible
- Can adjust to objects that are present

Outline

- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees
- Constructive Solid Geometry (CSG)

Quadtrees

- Generalization of binary trees in 2D
- Node (cell) is a square
- Recursively split into 4 equal sub-squares
- Stop subdivision based on number of objects
- Ray intersection has to traverse quadtree
- More difficult to step to next cell

Octrees

- Generalization of quadtree in 3D
- Each cell may be split into 8 equal sub-cells
- Internal nodes store pointers to children
- Leaf nodes store list of surfaces
- Adapts well to non-homogeneous scenes

Assessment for Ray Tracing

- Grids
- Easy to implement
- Require a lot of memory
- Poor results for non-homogeneous scense
- Octrees
- Better on most scenes (more adaptive)
- Alternative: nested grids
- Spatial subdivision expensive for animations
- Hierarchical bounding volumes
- Natural for hierarchical objects
- Better for dynamic scenes

Other Spatial Subdivision Techniques

- Relax rules for quadtrees and octrees
- k-dimensional tree (k-d tree)
- Split at arbitrary interior point
- Split one dimension at a time

- Binary space partitioning tree (BSP tree)
- In 2 dimensions, split with any line
- In k dims. split with k-1 dimensional hyperplane
- Particularly useful for painter's algorithm
- Can also be used for ray tracing [see handout]

Outline

- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees
- Constructive Solid Geometry (CSG)

BSP Trees

- Split space with any line (2D) or plane (3D)
- Applications
- Painters algorithm for hidden surface removal
- Ray casting
- Inherent spatial ordering given viewpoint
- Left subtree: in front, right subtree: behind
- Problem: finding good space partitions
- Proper ordering for
- Balance tree
- For details, see http://reality.sgi.com/bspfaq/

Building a BSP Tree

- Use hidden surface removal as intuition
- Using line 1 or line 2 as root is easy

Splitting of surfaces

- Using line 3 as root requires splitting

Building a Good Tree

- Naive partitioning of n polygons yields $\mathrm{O}\left(n^{3}\right)$ polygons (in 3D)
- Algorithms with $\mathrm{O}\left(\mathrm{n}^{2}\right)$ increase exist
- Try all, use polygon with fewest splits
- Do not need to split exactly along polygon planes
- Should balance tree
- More splits allow easier balancing
- Rebalancing?

Painter's Algorithm with BSP Trees

- Building the tree
- May need to split some polygons
- Slow, but done only once
- Traverse back-to-front or front-to-back
- Order is viewer-direction dependent
- What is front and what is back of each line changes
- Determine order on the fly

Details of Painter's Algorithm

- Each face has form $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}$
- Plug in coordinates and determine
- Positive: front side
- Zero: on plane
- Negative: back side
- Back-to-front: inorder traversal, farther child first
- Front-to-back: inorder traversal, near child first
- Do backface culling with same sign test
- Clip against visible portion of space (portals)
[Guest Lecture: John Ketchpaw]

Clipping With Spatial Data Structures

- Accelerate clipping
- Goal: accept or rejects whole sets of objects
- Can use an spatial data structures
- Scene should be mostly fixed
- Terrain fly-through
- Gaming

Hierarchical bounding volumes

Octrees

Data Structure Demos

- BSP Tree construction
http://symbolcraft.com/pil/graphics/bsp/
- KD Tree construction
http://www.rolemaker.dk/nonRoleMaker/uni/algogem/kdtree.htm

Real-Time and Interactive Ray Tracing

- Interactive ray tracing via space subdivision http://www.cs.utah.edu/~reinhard/egwr/
- Interactive ray tracing with good hardware http://www.cs.utah.edu/vissim/projects/raytracing/

Outline

- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees
- Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG)

- Generate complex shapes with simple building blocks (boxes, spheres, cylinders, cones, ...)
- Particularly applicable for machined objects
- Efficient with ray tracing

Example: A CSG Train

Brian Wyvill et al., U. of Calgary

Boolean Operations

- Intersection and union
- Subtraction
- Example: drilling a hole

CSG Trees

- Set operations yield tree-based representation

- Use these trees for ray/objects intersections
- Think about how!

Implicit Functions for Booleans

- Solid as implicit function, $F(x, y, z)$
$-F(x, y, z)<0$ interior
$-F(x, y, z)=0$ surface
$-F(x, y, z)>0$ exterior
- For CSG, use $F(x, y, z) \in\{-1,0,1\}$
- $\mathrm{F}_{\mathrm{A} \cap \mathrm{B}}(\mathbf{p})=\max \left(\mathrm{F}_{\mathrm{A}}(\mathbf{p}), \mathrm{F}_{\mathrm{B}}(\mathbf{p})\right)$
- $F_{A \cup B}(p)=\min \left(F_{A}(p), F_{B}(p)\right)$
- $\mathrm{F}_{\mathrm{A}-\mathrm{B}}(\mathbf{p})=\max \left(\mathrm{F}_{\mathrm{A}}(\mathbf{p}),-\mathrm{F}_{\mathrm{B}}(\mathbf{p})\right)$

Summary

- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees
- Constructive Solid Geometry (CSG)

Preview

- Radiosity
- Image Processing
- Assignment 6 due today
- Assignment 7 (ray tracing) out late today

