15-462 Computer Graphics I

Lecture 20

Image Processing

Display Color Models
Filters
Dithering
Image Compression

April 18, 2002
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu//fp/courses/graphics/

Displays and Framebuffers

- Image stored in memory as 2D pixel array, called framebuffer
- Value of each pixel controls color
- Video hardware scans the framebuffer at 60 Hz
- Depth of framebuffer is information per pixel
- 1 bit: black and white display (cf. Smithsonian)
-8 bit: 256 colors at any given time via colormap
-16 bit: $5,6,5$ bits (R,G,B), $2^{16}=65,536$ colors
-24 bit: $8,8,8$ bits (R,G,B), $2^{24}=16,777,216$ colors

Fewer Bits: Colormaps

- Colormaps typical for 8 bit framebuffer depth
- With screen 1024 * $768=786432=0.75 \mathrm{MB}$
- Each pixel value is index into colormap
- Colormap is array of RGB values, 8 bits each
- All 2^{24} colors can be represented
- Only $2^{8}=256$ at a time
- Poor approximation of full color
- Who owns the colormap?
- Colormap hacks: affect image w/o changing framebuffer (only colormap)

More Bits: Graphics Hardware

- 24 bits: RGB
- +8 bits: A (α-channel for opacity)
- + 16 bits: Z (for hidden-surface removal)
- * 2: double buffering for smooth animation
- = 96 bits
- For 1024 * 768 screen: 9 MB

Image Processing

- 2D generalization of signal processing
- Image as a two-dimensional signal
- Point processing: modify pixels independently
- Filtering: modify based on neighborhood
- Compositing: combine several images
- Image compression: space-efficient formats
- Other topics (not in this course)
- Image enhancement and restoration
- Special effects (cf. Tuesday's lecture)
- Computer vision

Outline

- Display Color Models
- Filters
- Dithering
- Image Compression

Point Processing

- Input: $a(x, y)$; Output: $b(x, y)=f(a(x, y))$
- Useful for contrast adjustment, false colors
- Examples for grayscale, $0 \leq \mathrm{v} \leq 1_{f(v)}$
$-f(v)=v$ (identity)
$-f(v)=1-v$ (negate image)
$-f(v)=v^{p}, p<1$ (brighten)
$-f(v)=v^{p}, p>1$ (darken)
- Gamma correction compensates monitor brightness loss

Gamma Correction Example

$\Gamma=1.0 ; f(v)=v$

Signals and Filtering

- Audio recording is 1D signal: amplitude(t)
- Image is a 2D signal: color(x, y)
- Signals can be continuous or discrete
- Raster images are discrete
- In space: sampled in x, y
- In color: quantized in value
- Filtering: a mapping from signal to signal

Linear and Shift-Invariant Filters

- Linear with respect to input signal
- Shift-invariant with respect to parameter
- Convolution in 1D
$-a(t)$ is input signal
$-b(s)$ is output signal

$$
b(s)=\sum_{t=-\infty}^{+\infty} a(t) h(s-t)
$$

$-h(u)$ is filter

- Shorthand: $\mathrm{b}=\mathrm{a}$
$h(=h \quad a$, as an aside $)$
- Convolution in 2D

$$
b(x, y)=\sum_{u=-\infty}^{+\infty} \sum_{v=-\infty}^{+\infty} a(u, v) h(x-u, y-v)
$$

Filters with Finite Support

- Filter $h(u, v)$ is 0 except in given region
- Represent h in form of a matrix
- Example: 3×3 blurring filter

$$
\begin{array}{rlll}
b(x, y)=\frac{1}{9} \begin{array}{lll}
(a(x-1, y-1) & +a(x, y-1) & +a(x+1, y-1) \\
& +a(x-1, y) & +a(x, y) \\
& +a(x+1, y) \\
& +a(x-1, y+1) & +a(x, y+1)
\end{array} & +a(x+1, y+1))
\end{array}
$$

- As function

$$
h(u, v)= \begin{cases}\frac{1}{9} & \text { if }-1 \leq u, v \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- In matrix form

$$
\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Blurring Filters

- Average values of surrounding pixels
- Can be used for anti-aliasing
- Size of blurring filter should be odd
- What do we do at the edges and corners?
- For noise reduction, use median, not average
- Eliminates intensity spikes
- Non-linear filter

Examples of Blurring Filter

Example Noise Reduction

Edge Filters

- Discover edges in image
- Characterized by large gradient

$$
\nabla a=\left[\frac{\partial a}{\partial x} \frac{\partial a}{\partial y}\right], \quad|\nabla a|=\sqrt{\left(\frac{\partial a}{\partial x}\right)^{2}+\left(\frac{\partial a}{\partial y}\right)^{2}}
$$

- Approximate square root

$$
|\nabla a| \approx\left|\frac{\partial a}{\partial x}\right|+\left|\frac{\partial a}{\partial y}\right|
$$

- Approximate partial derivatives, e.g.

$$
\frac{\partial a}{\partial x} \approx a(x+1)-a(x-1)
$$

Sobel Filter

- Edge detection filter, with some smoothing
- Approximate

$$
\frac{\partial}{\partial x} \approx\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right], \quad \frac{\partial}{\partial y} \approx\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right]
$$

- Sobel filter is non-linear
- Square and square root (more exact computation)
- Absolute value (faster computation)

Sample Filter Computation

- Part of Sobel filter, detects vertical edges

			0		2512	2525	525	525		-			25	25				
	0		0	0	252	2525		525		0	0	0	25	25	0	0	0	0
	0		0	0	252	2525		525		0	0			25	0	0	0	0
	0	0	0	0	252	2525		2525		0	0		25	25		0	0	0
-1 0 1 -2	0		0	0	252	2525		525		0	0		25	25	0	0	0	0
-2 0 2	0		0	0	252	2525	525	525	0	0	0	0	25	25	0	0	0	0
-1 -1 011	0		0 0	0	252	2525		525	0	0	0		25	25	0	0	0	0
h	0		0 0	0	252	2525		525		0	0		25	25	0	0	00	0
	0		0		252	2525		525		0	0	0	25	25	0	0	0	0
			0	0	252	2525		125		0	0	0	25	25		0		
														b				

Example of Edge Filter

Image Compositing

- Use α-channel (RGBA)
- Already discussed in this course
- Used for retouching and special effects
- Other image compositing techniques
- Morphing
- See Steve Sullivan's talk

Outline

- Display Color Models
- Filters
- Dithering
- Image Compression

Dithering

- Compensates for lack of color resolution
- Give up spatial resolution for color resolution
- Eye does spatial averaging
- Black/white dithering to achieve gray scale
- Each pixel is black or white
- From far away, color determined by fraction of white
- For 3×3 block, 10 levels of gray scale

Halftone Screens

- Regular patterns create some artefacts
- Avoid stripes
- Avoid isolated pixels (e.g. on laser printer)
- Monotonicity: keep pixels on at higher intensities
- Example of good 3×3 dithering matrix
- For intensity n , turn on pixels $0 . . \mathrm{n}-1$
$\left[\begin{array}{lll}6 & 8 & 4 \\ 1 & 0 & 3 \\ 5 & 2 & 7\end{array}\right]$

Floyd-Steinberg Error Diffusion

- Approximation without fixed resolution loss
- Scan in raster order
- At each pixel, draw least error output value
- Divide error into 4 different fractions
- Add the error fractions into adjacent, unwritten pixels

Floyd-Steinberg Example

Gray Scale Ramp
-Some worms
-Some checkerboards
-Enhance edges

Color Dithering

- Example: 8 bit framebuffer
- Set color map by dividing 8 bits into 3,3,2 for RGB
- Blue is deemphasized since we see it less well
- Dither RGB separately
- Works well with Floyd-Steinberg
- Assemble results into 8 bit index into colormap
- Generally looks good

Outline

- Display Color Models
- Filters
- Dithering
- Image Compression

Image Compression

- Exploit redundancy
- Coding: some pixel values more common
- Interpixel: adjacent pixels often similar
- Psychovisual: some color differences imperceptible
- Distinguish lossy and lossless methods

Some Image File Formats

	Depth	File Size	Comments
JPEG	24	Small	Lossy compression
TIFF	8,24	Medium	Good general purpose
GIF	$1,4,8$	Medium	Popular, but 8 bit
PPM	24	Big	Easy to read/write
EPS	$1,2,4,8,24$	Huge	Good for printing

Image Sizes

- 1024*1024 at 24 bits uses 3 MB
- Encyclopedia Britannica at 300 pixels/inch and 1 bit/pixes requires 25 gigabytes (25 K pages)
- 90 minute movie at 640×480, 24 bits per pixels, 24 frames per second requires 120 gigabytes
- Applications: HDTV, DVD, satellite image transmission, medial image processing, fax, ...

Exploiting Coding Redundancy

- Not limited to images (text, other digital info)
- Exploit nonuniform probabilities of symbols
- Entropy as measure of information content
$-\mathrm{H}=-\Sigma_{\mathrm{i}} \operatorname{Prob}\left(\mathrm{s}_{\mathrm{i}}\right) \log _{2}\left(\operatorname{Prob}\left(\mathrm{~s}_{\mathrm{i}}\right)\right)$
- If source is independent random variable need H bits
- Idea:
- More frequent symbols get shorter code strings
- Best with high redundancy (= low entropy)
- Common algorithms
- Huffman coding
- LZW coding (gzip)

Huffman Coding

- Codebook is precomputed and static
- Use probability of each symbol to assign code
- Map symbol to code
- Store codebook and code sequence
- Precomputation is expensive
- What is "symbol" for image compression?

Lempel-Ziv-Welch (LZW) Coding

- Compute codebook on the fly
- Fast compression and decompression
- Can tune various parameters
- Both Huffman and LZW are lossless

Exploiting Interpixel Redundancy

- Neighboring pixels are correlated
- Spatial methods for low-noise image
- Run-length coding:
- Alternate values and run-length
- Good if horizontal neighbors are same
- Can be 1D or 2D (e.g. used in fax standard)
- Quadtrees:
- Recursively subdivide until cells are constant color
- Region encoding:
- Represent boundary curves of color-constant regions
- Combine methods
- Not good on natural images directly

Improving Noise Tolerance

- Predictive coding:
- Predict next pixel based on prior ones
- Output difference to actual
- Fractal image compression
- Describe image via recursive affine transformation
- Transform coding
- Exploit frequency domain
- Example: discrete cosine transform (DCT)
- Used in JPEG
- Transform coding for lossy compression

Discrete Cosine Transform

- Used for lossy compression (as in JPEG)
$F(u, v)=c(u) c(v) \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} f(x, y) \cos \frac{(2 x+1) u \pi}{2 n} \cos \frac{(2 y+1) v \pi}{2 n}$
where $c(u)=1 / \sqrt{n}$ if $u=0, c(u)=\sqrt{2 / n}$ otherwise
- JPEG (Joint Photographic Expert Group)
- Subdivide image into $n \times n$ blocks ($n=8$)
- Apply discrete cosine transform for each block
- Quantize, zig-zag order, run-length code coefficients
- Use variable length coding (e.g. Huffman)
- Many natural images can be compressed to 4 bits/pixels with little visible error

Summary

- Display Color Models
- 8 bit (colormap), 24 bit, 96 bit
- Filters
- Blur, edge detect, sharpen, despeckle
- Dithering
- Floyd-Steinberg error diffusion
- Image Compression
- Coding, interpixel, psychovisual redundancy
- Lossless vs. lossy compression

Preview

- Assignment 6 graded
- Tuesday: Scientific Visualization
- Assignment 7 due Tuesday
- Assignment 8 (written) out Tuesday

