15-462 Computer Graphics I

Lecture 5

Viewing and Projection

January 31, 2002
Frank Pfenning
Carnegie Mellon University

Transformation Matrices in OpenGL

- Transformation matrices in OpenGl are vectors of 16 values (column-major matrices)
- In glLoadMatrixf(GLfloat *m);

$$
m=\left\{m_{1}, m_{2}, \ldots, m_{16}\right\} \text { represents }
$$

$\mathbf{M}=\left[\begin{array}{cccc}m_{1} & m_{5} & m_{9} & m_{13} \\ m_{2} & m_{6} & m_{10} & m_{14} \\ m_{3} & m_{7} & m_{11} & m_{15} \\ m_{4} & m_{8} & m_{12} & m_{16}\end{array}\right]$

- Some books transpose all matrices!

Pondering Transformations

- Derive transformation given some parameters
- Choose parameters carefully
- Consider geometric intuition, basic trigonometry
- Compose transformation from others
- Use translations to and from origin
- Test if matrix describes some transformation
- Determine action on basis vectors
- Meaning of dot product and cross product

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed

Specification via Angle

- $\cot (\theta)=\left(x^{\prime}-x\right) / y$
- $x^{\prime}=x+y \cot (\theta)$
- $y^{\prime}=y$
- $z^{\prime}=\mathrm{z}$

Specification via Ratios

- Shear in both x and z direction
- Leave y fixed
- Slope α for x-shear, γ for z-shear
- Solve

- Yields

$$
\mathbf{H}_{x z}(\alpha, \gamma)=\left[\begin{array}{llll}
1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \gamma & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Composing Transformations

- Every affine transformation is a composition of rotations, scalings, and translations
- How do we compose these to form an x-shear?
- Exercise!

Thinking in Frames

- Action on frame determines affine transfn.
- Frame given by basis vectors and origin
- xz-shear: preserve basis vectors u_{x} and u_{z}
$M\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right] \quad \mathbf{M}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
- Move $u_{y}=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]^{\top}$ to $u_{v}{ }^{\prime}=\left[\begin{array}{lll}\alpha & 1 & \gamma\end{array}\right]^{\top}$
$\mathbf{M}\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}\alpha \\ 1 \\ \gamma \\ 0\end{array}\right]$

Preservation of Origin

- Preserve origin P_{0}

- Results comprise columns of the transfn. matrix

$$
\mathbf{H}_{x z}(\alpha, \gamma)=\left[\begin{array}{llll}
1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \gamma & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Camera in Modeling Coordinates

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, pointing in negative z-direction
- Initially, camera at origin

Moving Camera and World Frame

- Move world frame relative to camera frame
- glTranslatef(0.0, 0.0, -d); moves world frame

Order of Viewing Transformations

- Think of moving the world frame
- Viewing transfn. is inverse of object transfn.
- Order opposite to object transformations gIMatrixMode(GL_MODELVIEW); gILoadldentity(); gITranslatef(0.0, 0.0, -d); $\quad /{ }^{*} \mathrm{~T}^{* /}$ gIRotatef(-90.0, 0.0, 1.0, 0.0); / / R $R^{* /}$

The Look-At Function

- Convenient way to position camera
- gluLookAt($\left.e_{x}, e_{y}, e_{z}, a_{x}, a_{y}, a_{z}, p_{x}, p_{y}, p_{z}\right)$;
- e = eye point
- a = at point
- $p=$ up vector

Implementing the Look-At Function

- (1) Transform world frame to camera frame
- Compose a rotation R with translation T
- W = T R
- (2) Invert W to obtain viewing transformation V
- $\mathrm{V}=\mathrm{W}^{-1}=(\mathrm{T} R)^{-1}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$
- Derive R, then T, then $R^{-1} T^{-1}$

World Frame to Camera Frame I

- Camera points in negative z direction
- $n=(a-e) /|a-e|$ is unit normal to view plane
- R maps $\left[\begin{array}{llll}0 & 0 & -1 & 0\end{array}\right]^{\top}$ to $\left[\begin{array}{llll}n_{x} & n_{y} & n_{z}\end{array}\right]^{\top}$

World Frame to Camera Frame II

- R maps y to projection of p onto view plane
- $\alpha=(p \cdot n) /|n|=p \cdot n$
- $\mathrm{v}_{0}=p-\alpha n$
- $v=v_{0} /\left|v_{0}\right|$

World Frame to Camera Frame III

- x is orthogonal to n and v in view plane
- $u=n \times v$
- (u, v, -n) is right-handed

Summary of Rotation

- gluLookAt($\left.e_{x}, e_{y}, e_{z}, a_{x}, a_{y}, a_{z}, p_{x}, p_{y}, p_{z}\right)$;
- $n=(a-e) /|a-e|$
- $v=(p-(p \cdot n) n) /|p-(p \cdot n) n|$
- $u=n \times v$

$$
\mathbf{R}=\left[\begin{array}{cccc}
u_{x} & v_{x} & -n_{x} & 0 \\
u_{y} & v_{y} & -n_{y} & 0 \\
u_{z} & v_{z} & -n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

World Frame to Camera Frame IV

- Translation of origin to $e=\left[\begin{array}{llll}e_{x} & e_{y} & e_{z} & 1\end{array}\right]^{\top}$

$$
\mathbf{T}=\left[\begin{array}{lllc}
1 & 0 & 0 & e_{x} \\
0 & 1 & 0 & e_{y} \\
0 & 0 & 1 & e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Frame to World Frame

- $\mathrm{V}=\mathrm{W}^{-1}=(\mathrm{T} R)^{-1}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$
- R is rotation, so $R^{-1}=R^{\top}$

$$
\mathbf{R}^{-1}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
-n_{x} & -n_{y} & -n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- T is translation, so T^{-1} negates displacement

$$
\mathbf{T}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Putting it Together

- Calculate $\mathrm{V}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$
$\mathbf{V}=\left[\begin{array}{cccc}u_{x} & u_{y} & u_{z} & -u_{x} e_{x}-u_{y} e_{y}-u_{z} e_{z} \\ v_{x} & v_{y} & v_{z} & -v_{x} e_{x}-v_{y} e_{y}-v_{z} e_{z} \\ -n_{x} & -n_{y} & -n_{z} & n_{x} e_{x}+n_{y} e_{y}+n_{z} e_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
- This is different from book [Angel, Ch. 5.2.2]
- See errata for $2^{\text {nd }}$ and/or $3^{\text {rd }}$ printing

Other Viewing Functions

- Roll (about z), pitch (about x), yaw (about y)

- Assignment 2 poses related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

- Recall geometric pipeline

- Projection takes 3D to 2D
- Projections are not invertible
- Projections also described by matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Orthographic Projections

- Parallel projection
- Projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)

Orthographic Projection Matrix

- Project onto $z=0$
- $x_{p}=x, y_{p}=y, z_{p}=0$
- In homogenous coordinates

$\left[\begin{array}{c}x_{p} \\ y_{p} \\ z_{p} \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

Perspective Viewing

- Characterized by foreshortening
- More distant objects appear smaller

- $y / z=y_{p} / d$ so $y_{p}=y /(z / d)$
- Note this is non-linear!

Exploiting the $4^{\text {th }}$ Dimension

- Perspective projection is not affine:

$$
\mathbf{M}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right] \text { has no solution for } \mathbf{M}
$$

- Idea: represent point $\left[\begin{array}{lll}x & y & z\end{array} 1\right]^{\top}$ by line in 4D

Perspective Projection Matrix

- Represent multiple of point

$$
(z / d)\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]
$$

- Solve
$\mathbf{M}\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}x \\ y \\ z \\ z / d\end{array}\right]$ with $\mathbf{M}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 / d & 0\end{array}\right]$

Perspective Division

- Normalize $\left[x\right.$ y z w] ${ }^{\top}$ to $[(x / w)(y / w)(z / w) 1]^{\top}$
- Perform perspective division after projection

- Projection in OpenGL is more complex

Parallel Viewing in OpenGL

- glOrtho(xmin, xmax, ymin, ymax, near, far)

Perspective Viewing in OpenGL

- Two interfaces: glFrustum and gluPerspective
- gIFrustum(xmin, xmax, ymin, ymax, near, far);

$$
z_{\min }=\text { near, } z_{\max }=\text { far }
$$

Field of View Interface

- gluPerspective(fovy, aspect, near, far);
- near and far as before
- Fovy specifies field of view as height (y) angle

Matrices for Projections in OpenGL

- Next lecture:
- Use shear for predistortion
- Use projections for "fake" shadows
- Other kinds of projections

Announcements

- Assignment 1 due tonight (100 pts)
- Late policy
- Up to 1 day late, 20\% penalty
- Assignment 2 out today, due in 1 week (50 pts)
- Extra credit policy
- Up to 20\% of assignment value
- Recorded separately
- Weighed for "borderline" cases
- Remember: no collaboration on assignments!

Looking Ahead

- Lighting and shading
- Video: Red's Dream, John Lasseter, Pixar,1987

