15-462 Computer Graphics I

Lecture 9

Curves and Surfaces

February 19, 2002
Parametric Representations
Cubic Polynomial Forms
Hermite Curves
Bezier Curves and Surfaces
[Angel 10.1-10.6]
Frank Pfenning
Carnegie Mellon University

Goals

- How do we draw surfaces?
- Approximate with polygons
- Draw polygons
- How do we specify a surface?
- Explicit, implicit, parametric
- How do we approximate a surface?
- Interpolation (use only points)
- Hermite (use points and tangents)
- Bezier (use points, and more points for tangents)
- Next lecture: splines, realization in OpenGL

Explicit Representation

- Curve in 2D: $y=f(x)$
- Curve in 3D: $y=f(x), z=g(x)$
- Surface in 3D: $z=f(x, y)$
- Problems:
- How about a vertical line $x=c$ as $y=f(x)$?
- Circle $y= \pm\left(r^{2}-x^{2}\right)^{1 / 2}$ two or zero values for x
- Too dependent on coordinate system
- Rarely used in computer graphics

Implicit Representation

- Curve in 2D: $f(x, y)=0$
- Line: $a x+b y+c=0$
- Circle: $x^{2}+y^{2}-r^{2}=0$
- Surface in $3 \mathrm{~d}: \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$
- Plane: $a x+b y+c z+d=0$
- Sphere: $x^{2}+y^{2}+z^{2}-r^{2}=0$
- $f(x, y, z)$ can describe 3D object:
- Inside: $f(x, y, z)<0$
- Surface: $f(x, y, z)=0$
- Outside: $f(x, y, z)>0$

Algebraic Surfaces

- Special case of implicit representation
- $f(x, y, z)$ is polynomial in x, y, z
- Quadrics: degree of polynomial ≤ 2
- Render more efficiently than arbitrary surfaces
- Implicit form often used in computer graphics
- How do we represent curves implicitly?

Parametric Form for Curves

- Curves: single parameter u (e.g. time)
- $x=x(u), y=y(u), z=z(u)$
- Circle: $x=\cos (u), y=\sin (u), z=0$
- Tangent described by derivative

$$
\mathbf{p}(u)=\left[\begin{array}{c}
x(u) \\
y(u) \\
z(u)
\end{array}\right] \quad \frac{d \mathbf{p}(u)}{d u}=\left[\begin{array}{c}
\frac{d x(u)}{d u} \\
\frac{d y(u)}{d u} \\
\frac{d z(u)}{d u}
\end{array}\right]
$$

- Magnitude is "velocity"

Parametric Form for Surfaces

- Use parameters u and v
- $x=x(u, v), y=y(u, v), z=z(u, v)$
- Describes surface as both u and v vary
- Partial derivatives describe tangent plane at each point $p(u, v)=[x(u, v) y(u, v) z(u, v)]^{\top}$
$\frac{\partial \mathbf{p}(u, v)}{\partial u}=$
$\left[\begin{array}{l}\frac{\partial x(u, v)}{\partial u} \\ \frac{\partial y(u, v)}{\partial u} \\ \frac{\partial z(u, v)}{\partial u}\end{array}\right]$

$$
\frac{\partial \mathbf{p}(u, v)}{\partial v}=\left[\begin{array}{l}
\frac{\partial x(u, v)}{\partial u} \\
\frac{\partial y(u, v)}{\partial u} \\
\frac{\partial z(u, v)}{\partial u}
\end{array}\right]
$$

Assessment of Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
- Tangent and normal
- Curves segments (for example, $0 \leq \mathrm{u} \leq 1$)
- Surface patches (for example, $0 \leq \mathrm{u}, \mathrm{v} \leq 1$)

Parametric Polynomial Curves

- Restrict $x(u), y(u), z(u)$ to be polynomial in u
- Fix degree n

$$
\mathbf{p}(u)=\sum_{k=0}^{n} \mathbf{c}_{k} u^{k}
$$

- Each c_{k} is a column vector

$$
\mathbf{c}_{k}=\left[\begin{array}{l}
c_{x k} \\
c_{y k} \\
c_{z k}
\end{array}\right]
$$

Parametric Polynomial Surfaces

- Restrict $x(u, v), y(u, v), z(u, v)$ to be polynomial of fixed degree n

$$
\mathbf{p}(u, v)=\left[\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right]=\sum_{i=0}^{n} \sum_{k=0}^{n} \mathbf{c}_{i k} u^{i} v^{k}
$$

- Each c_{ik} is a 3-element column vector
- Restrict to simple case where $0 \leq u, v \leq 1$

Approximating Surfaces

- Use parametric polynomial surfaces
- Important concepts:
- Join points for segments and patches
- Control points to interpolate
- Tangents and smoothness
- Blending functions to describe interpolation
- First curves, then surfaces

Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:

$$
\mathbf{p}(u)=\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} u^{2}+\mathbf{c}_{3} u^{3}=\sum_{k=0}^{3} \mathbf{c}_{k} u^{k}
$$

- Each c_{k} is a column vector $\left[c_{k x} c_{k y} c_{k z}\right]^{\top}$
- From control information (points, tangents) derive 12 values $c_{k x}, c_{k y}, c_{k z}$ for $0 \leq k \leq 3$
- These determine cubic polynomial form
- Later: how to render

Interpolation by Cubic Polynomials

- Simplest case, although rarely used
- Curves:
- Given 4 control points $p_{0}, p_{1}, p_{2}, p_{3}$
- All should lie on curve: 12 conditions, 12 unknowns
- Space $0 \leq \mathrm{u} \leq 1$ evenly

$$
p_{0}=p(0), p_{1}=p(1 / 3), p_{2}=p(2 / 3), p_{3}=p(1)
$$

Equations to Determine C_{k}

- Plug in values for $u=0,1 / 3,2 / 3,1$

$$
\begin{aligned}
& \mathrm{p}_{0}=\mathrm{p}(0)=\mathrm{c}_{0} \\
& \mathrm{p}_{1}=\mathrm{p}\left(\frac{1}{3}\right)=\mathrm{c}_{0}+\frac{1}{3} \mathrm{c}_{1}+\left(\frac{1}{3}\right)^{2} \mathrm{c}_{2}+\left(\frac{1}{3}\right)^{3} \mathrm{c}_{3} \\
& \mathrm{p}_{2}=\mathrm{p}\left(\frac{2}{3}\right)=\mathrm{c}_{0}+\frac{2}{3} \mathrm{c}_{1}+\left(\frac{2}{3}\right)^{2} \mathrm{c}_{2}+\left(\frac{2}{3}\right)^{3} \mathrm{c}_{3} \\
& \mathrm{p}_{3}=\mathrm{p}(1)=\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^{2} & \left(\frac{1}{3}\right)^{3} \\
1 & \frac{2}{3} & \left(\frac{2}{3}\right)^{2} & \left(\frac{2}{3}\right)^{3} \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{c}_{0} \\
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right] \begin{aligned}
& \text { Note: } \\
& p_{k} \text { and } c_{k} \\
& \text { are vectors! }
\end{aligned}
$$

Interpolating Geometry Matrix

- Invert A to obtain interpolating geometry matrix

$$
\mathrm{A}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-5.5 & 9 & -4.5 & 1 \\
9 & -22.5 & 18 & 4.5 \\
-4.5 & 13.5 & -13.5 & 4.5
\end{array}\right] \quad \mathrm{c}=A^{-1} \mathrm{p}
$$

Joining Interpolating Segments

- Do not solve degree n for n points
- Divide into overlap sequences of 4 points
- $p_{0}, p_{1}, p_{2}, p_{3}$ then $p_{3}, p_{4}, p_{5}, p_{6}$, etc.

- At join points
- Will be continuous (C^{0} continuity)
- Derivatives will usually not match (no C¹ continuity)

Blending Functions

- Make explicit, how control points contribute
- Simplest example: straight line with control points p_{0} and p_{3}
- $p(u)=(1-u) p_{0}+u p_{3}$
- $\mathrm{b}_{0}(\mathrm{u})=1-\mathrm{u}, \mathrm{b}_{3}(\mathrm{u})=\mathrm{u}$

Blending Polynomials for Interpolation

- Each blending polynomial is a cubic
- Solve (see [Angel, p. 427]):
$\mathrm{p}(u)=b_{0}(u) \mathbf{p}_{0}+b_{1}(u) \mathbf{p}_{1}+b_{2}(u) \mathbf{p}_{2}+b_{3}(u) \mathbf{p}_{3}$

Cubic Interpolation Patch

- Bicubic surface patch with 4×4 control points $\mathrm{p}(u)=b_{0}(u) \mathbf{p}_{0}+b_{1}(u) \mathbf{p}_{1}+b_{2}(u) \mathbf{p}_{2}+b_{3}(u) \mathbf{p}_{3}$

Note: each $c_{i k}$ is 3 column vector (48 unknowns)
[Angel, Ch. 10.4.2]

Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents

[diagram correction p9 = p’]

Deriving the Hermite Form

- As before

$$
\begin{aligned}
& \mathrm{p}(0)=\mathrm{p}_{0}=\mathrm{c}_{0} \\
& \mathrm{p}(1)=\mathrm{p}_{3}=\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}
\end{aligned}
$$

- Calculate derivative

$$
\mathbf{p}^{\prime}(u)=\left[\begin{array}{l}
\frac{d x}{d u} \\
\frac{d y}{d u} \\
\frac{d z}{d u}
\end{array}\right]=\mathbf{c}_{1}+2 u \mathbf{c}_{2}+3 u^{2} \mathbf{c}_{3}
$$

- Yields

$$
\begin{aligned}
& \mathbf{p}_{0}^{\prime}=\mathrm{p}^{\prime}(0)=\mathbf{c}_{1} \\
& \mathrm{p}_{3}^{\prime}=\mathrm{p}^{\prime}(1)=\mathbf{c}_{1}+2 \mathbf{c}_{2}+3 \mathbf{c}_{3}
\end{aligned}
$$

Summary of Hermite Equations

- Write in matrix form
- Remember p_{k} and p_{k}^{\prime} and c_{k} are vectors!

$$
\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{3} \\
\mathbf{p}_{0}^{\prime} \\
\mathbf{p}_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{c}_{0} \\
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right]
$$

- Let $q=\left[\begin{array}{llll}p_{0} & p_{3} & p_{0}^{\prime} & p_{3}^{\prime}\end{array}\right]^{\top}$ and invert to find Hermite geometry matrix M_{H} satisfying

$$
\mathbf{c}=\mathrm{M}_{H} \mathbf{q}
$$

Blending Functions

- Explicit Hermite geometry matrix

$$
\mathbf{M}_{H}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1
\end{array}\right]
$$

- Blending functions for $u=\left[\begin{array}{llll}1 & u & u^{2} & u^{3}\end{array}\right]^{\top}$

$$
\mathbf{b}(u)=\mathbf{M}_{H}^{T} \mathbf{u}=\left[\begin{array}{c}
2 u^{3}-3 u^{2}+1 \\
-2 u^{3}+3 u^{2} \\
u^{3}-2 u^{2}+u \\
u^{3}-u^{2}
\end{array}\right]
$$

Join Points for Hermite Curves

- Match points and tangents (derivates)

Diagram correction

$$
[\mathrm{p} 9 \text { = p', q9 = q'] }
$$

- Much smoother than point interpolation
- How to obtain the tangents?
- Skip Hermite surface patch
- More widely used: Bezier curves and surfaces

Parametric Continuity

- Matching endpoints (C^{0} parametric continuity)

$$
\mathbf{p}(1)=\left[\begin{array}{l}
p_{x}(1) \\
p_{y}(1) \\
p_{z}(1)
\end{array}\right]=\left[\begin{array}{l}
q_{x}(0) \\
q_{y}(0) \\
q_{z}(0)
\end{array}\right]=\mathbf{q}(0)
$$

- Matching derivatives (C^{1} parametric continuity)

$$
\mathbf{p}^{\prime}(1)=\left[\begin{array}{l}
p_{x}^{\prime}(1) \\
p_{y}^{\prime}(1) \\
p_{z}^{\prime}(1)
\end{array}\right]=\left[\begin{array}{l}
q_{x}^{\prime}(0) \\
q_{y}^{\prime}(0) \\
q_{z}^{\prime}(0)
\end{array}\right]=\mathrm{q}^{\prime}(0)
$$

Geometric Continuity

- For matching tangents, less is required
$\mathbf{p}^{\prime}(1)=\left[\begin{array}{l}p_{x}^{\prime}(1) \\ p_{y}^{\prime}(1) \\ p_{z}^{\prime}(1)\end{array}\right]=k\left[\begin{array}{l}q_{x}^{\prime}(0) \\ q_{y}^{\prime}(0) \\ q_{z}^{\prime}(0)\end{array}\right]=k \mathbf{q}^{\prime}(0)$
- G11 geometric continuity
- Extends to higher derivatives

Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Bezier Curves

- Widely used in computer graphics
- Approximate tangents by using control points

$$
\begin{aligned}
& \mathrm{p}^{\prime}(0)=3\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \\
& \mathrm{p}^{\prime}(1)=3\left(\mathrm{p}_{3}-\mathrm{p}_{2}\right)
\end{aligned}
$$

Equations for Bezier Curves

- Set up equations for cubic parametric curve
- Recall:

$$
\begin{aligned}
& \mathbf{p}(u)=\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} u^{2}+\mathbf{c}_{3} u^{3} \\
& \mathbf{p}^{\prime}(u)=\mathbf{c}_{1}+2 \mathbf{c}_{2} u+3 \mathbf{c}_{3} u^{2}
\end{aligned}
$$

- Solve for c_{k}

$$
\begin{aligned}
& \mathrm{p}_{0}=\mathrm{p}(0)=\mathrm{c}_{0} \\
& \mathrm{p}_{3}=\mathrm{p}(1)=\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3} \\
& \mathrm{p}^{\prime}(0)=3 \mathrm{p}_{1}-3 \mathrm{p}_{0}=\mathrm{c}_{1} \\
& \mathrm{p}^{\prime}(1)=3 \mathrm{p}_{3}-3 \mathrm{p}_{2}=\mathrm{c}_{1}+2 \mathrm{c}_{2}+3 \mathrm{c}_{3}
\end{aligned}
$$

Bezier Geometry Matrix

- Calculate Bezier geometry matrix M_{B}
$\left[\begin{array}{l}\mathbf{c}_{0} \\ \mathbf{c}_{1} \\ \mathbf{c}_{2} \\ \mathbf{c}_{3}\end{array}\right]=\mathbf{M}_{B}\left[\begin{array}{l}\mathbf{p}_{0} \\ \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3}\end{array}\right]$ so $\mathbf{M}_{B}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1\end{array}\right]$
- Have C^{0} continuity, not C^{1} continuity
- Have C^{1} continuity with additional condition

Blending Polynomials

- Determine contribution of each control point

$$
\mathbf{b}(u)=\mathbf{M}_{B}^{T} \mathbf{u}=\left[\begin{array}{c}
(1-u)^{3} \\
3 u(1-u)^{2} \\
3 u^{2}(1-u) \\
u^{3}
\end{array}\right]
$$

Smooth blending polynomials

Convex Hull Property

- Bezier curve contained entirely in convex hull of control points
- Determined choice of tangent coefficient (?)

Bezier Surface Patches

- Specify Bezier patch with 4×4 control points

- Bezier curves along the boundary

$$
\begin{aligned}
& \mathrm{p}(0,0)=\mathrm{p}_{00} \\
& \frac{\partial \mathrm{p}}{\partial u}(0,0)=3\left(\mathbf{p}_{10}-\mathrm{p}_{00}\right) \\
& \frac{\partial \mathrm{p}}{\partial v}(0,0)=3\left(\mathbf{p}_{01}-\mathrm{p}_{00}\right)
\end{aligned}
$$

Twist

- Inner points determine twist at corner

$$
\frac{\partial^{2} \mathbf{p}}{\partial u \partial v}(0,0)=9\left(\mathbf{p}_{00}-\mathbf{p}_{01}+p_{10}-p_{11}\right)
$$

- Flat means $p_{00}, p_{10}, p_{01}, p_{11}$ in one plane
- $\left(\partial^{2} p / \partial u \partial v\right)(0,0)=0$

Summary

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Preview

- B-Splines: more continuity (C²)
- Non-uniform B-splines ("heavier" points)
- Non-uniform rational B-splines (NURBS)
- Rational functions instead of polynomials
- Based on homogeneous coordinates
- Rendering and recursive subdivision
- Curves and surfaces in OpenGL

Announcements

- Still have some graded homeworks (Asst. 2)
- Model solution coming soon
- Assignment 3 due Thursday before midnight
- Assignment 4 on curves and surfaces out Thursday

