15-462 Computer Graphics I

Lecture 11

Midterm Review

> Assignment 3 Movie Midterm Review Midterm Preview

February 26, 2002
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

Announcements

- Assignment 4 due Thursday before lecture
- Lecture by John Ketchpaw
- Midterm next Tuesday
- In class
- Closed book
- One double-sided sheet of notes permitted
- Everything covered in lecture so far
- Assignment 3 movies
- Some flaws may be problems in production software
- Enjoy!

1. Course Overview Revisited

- Modeling: how to represent objects
- Animation: how to control and represent motion
- Rendering: how to create images
- OpenGL graphics library

2. Basic Graphics Programming

- The graphics pipeline

- Pipelines and parallelism
- Latency vs throughput
- Efficiently implementable in hardware
- Not so efficiently implementable in software
- Course approach: walk the pipeline left-to-right

Graphics Functions

- Primitive functions (points, lines, polygons)
- Attribute functions (color, lighting, material)
- Transformation functions (homogeneous coord)
- Viewing functions (projections)
- Input functions (callbacks)
- Control functions (GLUT library calls)

3. Interaction

- Client/Server Model
- Callbacks
- Double Buffering
- Hidden Surface Removal

Client/Server Model

- Graphics hardware and caching

- Important for efficiency
- Need to be aware where data are stored
- Examples: vertex arrays, display lists

Hidden Surface Removal

- Classic problem of computer graphics
- What is visible after clipping and projection?
- Object-space vs image-space approaches
- Object space: depth sort (Painter's algorithm)
- Image space: ray cast (z-buffer algorithm)
- Related: back-face culling

4. Transformations

- Vector Spaces
- Affine and Euclidean Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices
- OpenGL Transformation Matrices

Geometric Interpretations

- Lines and line segments
- Convexity
- Dot product and projections
- Cross product and normal vectors
- Planes

Lines and Line Segments

- Parametric form of line: $P(\alpha)=P_{0}+\alpha d$

- Line segment between Q and R :

$$
P(\alpha)=(1-\alpha) Q+\alpha R \text { for } 0 \leq \alpha \leq 1
$$

Convex Hull

- Convex hull defined by

$$
P=\alpha_{1} P_{1}+\cdots+\alpha_{n} P_{n}
$$

$$
\text { for } a_{1}+\cdots+a_{n}=1
$$

$$
\text { and } 0 \leq a_{i} \leq 1, i=1, \ldots, n
$$

Projection

- Dot product projects one vector onto other

$$
u \cdot v=|u||v| \cos (\theta)
$$

[diagram correction: $\mathrm{x}=\mathrm{u}$]

Normal Vector

- Cross product defines normal vector

$$
\begin{aligned}
& \mathrm{u} \times \mathrm{v}=\mathrm{n} \\
& |\mathrm{u} \times \mathrm{v}|=|\mathrm{u}||\mathrm{v}||\sin (\theta)|
\end{aligned}
$$

- Right-hand rule

Plane

- Plane defined by point P_{0} and vectors u and v
- u and v cannot be parallel
- Parametric form: $T(\alpha, \beta)=P_{0}+\alpha u+\beta v$
- Let $\mathrm{n}=\mathrm{u} \times \mathrm{v}$ be the normal
- Then $n \cdot\left(P-P_{0}\right)=0$ iff P lies in plane

Homogeneous Coordinates

- In affine space, $\mathrm{P}=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\alpha_{3} \mathrm{v}_{3}+\mathrm{P}_{0}$
- Define $0 \cdot P=0,1 \cdot P=P$
- Points $\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \alpha_{3} & 1\end{array}\right]^{\top}$
- Vectors $\left[\begin{array}{llll}\delta_{1} & \delta_{2} & \delta_{3} & 0\end{array}\right]^{\top}$
- Change of frame
$\mathbf{M}=\left[\begin{array}{llll}\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1\end{array}\right]$

Affine Transformations

- Compose
- Rotations, translations, scalings
- Express in homogeneous coods (4×4 matrices)
- Apply from right to left!
$-\mathbf{R} p=\left(\mathbf{R}_{\mathrm{z}} \mathbf{R}_{\mathrm{y}} \mathbf{R}_{\mathrm{x}}\right) \mathrm{p}=\mathbf{R}_{\mathrm{z}}\left(\mathbf{R}_{\mathrm{y}}\left(\mathbf{R}_{\mathrm{x}} \mathrm{p}\right)\right)$
- Postmultiplication in OpenGL
- Think in terms of composition
- Translation to and from origin
- Remember geometric intuition

5. Viewing and Projection

- Camera Positioning
- Parallel Projections
- Perspective Projections

Camera in Modeling Coordinates

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Those views are inverses!
- Each transformation
- Order of transformation
- gluLookAt utility

Orthographic Projections

- Projectors perpendicular to projectoin plane
- Simple, but not realistic

Perspective Viewing

- Characterized by foreshortening
- More distant objects appear smaller

- $y / z=y_{p} / d$ so $y_{p}=y /(z / d)$
- Note this is non-linear!
- Need homogeneous coordinates

Perspective Projection Matrix

- Represent multiple of point

$$
(z / d)\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]
$$

- Solve
$\mathbf{M}\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}x \\ y \\ z \\ z / d\end{array}\right]$ with $\mathbf{M}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 / d & 0\end{array}\right]$

6. Hierarchical Models

- Matrix and attribute stacks
- Save and restore state
- Exploit natural hierarchical structure for
- Efficient rendering
- Example: bounding boxes (later in course)
- Concise specification of model parameters
- Example: joint angles
- Physical realism

Hierarchical Objects and Animation

- Drawing functions are time-invariant
- Can be easily stored in display list
- Change parameters of model with time
- Redraw when idle callback is invoked

Complex Objects

- Tree rather than linear structure
- Interleave along each branch
- Use push and pop to save state

Unified View of Computer Animation

- Models with parameters
- Polygon positions, control points, joint angles, ...
- n parameters define n-dimensional state space
- Animation defined by path through state space
- Define initial state, repeat:
- Render the image
- Move to next point (following motion curves)
- Animation = specifying state space trajectory

Animation vs Modeling

- Modeling: what are the parameters?
- Animation: how do we vary the parameters?
- Sometimes boundary not clear
- Build models that are easy to control
- Hierarchical models often easy to control

Basic Animation Techniques

- Traditional (frame by frame)
- Keyframing
- Procedural techniques
- Behavioral techniques
- Performance-based (motion capture)
- Physically-based (dynamics)

7. Lighting and Shading

- Approximate physical reality
- Ray tracing:
- Follow light rays through a scene
- Accurate, but expensive (off-line)
- Radiosity:
- Calculate surface inter-reflection approximately
- Accurate, especially interiors, but expensive (off-line)
- Phong Illumination model:
- Approximate only interaction light, surface, viewer
- Relatively fast (on-line), supported in OpenGL

Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties
- Viewer position
- Ray tracing: from viewer into scene
- Radiosity: between surface patches
- Phong Model: at material, from light to viewer

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in center)
- Light source described by a luminance
- Each color is described separately
$-I=\left[\begin{array}{lll}I_{r} & I_{g} & I_{b}\end{array}\right]^{\top} \quad$ (I for intensity)
- Sometimes calculate generically (applies to r, g, b)

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

I = vector to light source
$\mathrm{n}=$ surface normal
$\mathrm{v}=$ vector to viewer
$r=$ reflection of I at p (determined by I and n)

Summary of Phong Model

- Light components for each color:
- Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
- Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

$$
I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(\mathbf{l} \cdot \mathbf{n})+k_{s} L_{s}(\mathbf{r} \cdot \mathbf{v})^{\alpha}\right)+k_{a} L_{a}
$$

$\mid=$ vector from light $\quad r=\mid$ reflected about n
$\mathrm{n}=$ surface normal $\quad \mathrm{v}=$ vector to viewer

Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately
- From geometry (e.g., differential calculus)
- From approximating surface (e.g., Bezier patch)
- Pitfalls
- Unit length (some OpenGL support)
- Surface boundary

8. Shading in OpenGL

- Polygonal shading
- Material properties
- Approximating a sphere [example]

Polygonal Shading

- Curved surfaces are approximated by polygons
- How do we shade?
- Flat shading
- Interpolative shading
- Gouraud shading
- Phong shading (different from Phong illumination)
- Two questions:
- How do we determine normals at vertices?
- How do we calculate shading at interior points?

Gouraud Shading

- Special case of interpolative shading
- How do we calculate vertex normals?
- Gouraud: average all adjacent face normals

$$
\mathrm{n}=\frac{\mathbf{n}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}+\mathbf{n}_{4}}{\left|\mathbf{n}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}+\mathbf{n}_{4}\right|}
$$

- Requires knowledge about which faces share a vertex

Data Structures for Gouraud Shading

- Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
- More generally, need data structure for mesh
- Key: which polygons meet at each vertex

Drawing a Sphere

- Recursive subdivision technique quite general
- Interpolation vs flat shading effect

Recursive Subdivision

- General method for building approximations
- Research topic: construct a good mesh
- Low curvature, fewer mesh points
- High curvature, more mesh points
- Stop subdivision based on resolution
- Some advanced data structures for animation
- Interaction with textures
- Here: simplest case
- Approximate sphere by subdividing icosahedron

Subdivision Example

- Icosahedron after 3 subdivisions (fast converg.)

9. Curves and Surfaces

- Parametric Representations
- Also used: implicit representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
- Tangent and normal
- Curves segments (for example, $0 \leq \mathrm{u} \leq 1$)
- Surface patches (for example, $0 \leq \mathrm{u}, \mathrm{v} \leq 1$)

Approximating Surfaces

- Use parametric polynomial surfaces
- Important concepts:
- Join points for segments and patches
- Control points to interpolate
- Tangents and smoothness
- Blending functions to describe interpolation
- First curves, then surfaces

Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:

$$
\mathbf{p}(u)=\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} u^{2}+\mathbf{c}_{3} u^{3}=\sum_{k=0}^{3} \mathbf{c}_{k} u^{k}
$$

- Each c_{k} is a column vector $\left[c_{k x} c_{k y} c_{k z}\right]^{\top}$
- From control information (points, tangents) derive 12 values $c_{k x}, c_{k y}, c_{k z}$ for $0 \leq k \leq 3$
- These determine cubic polynomial form

Geometry Matrix

- Calculate approximating polynomial from control point with geometry matrix M

$$
\begin{aligned}
& \mathbf{p}(u)=\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} u^{2}+\mathbf{c}_{3} u^{3} \\
& {\left[\begin{array}{l}
\mathbf{c}_{0} \\
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right]=\mathrm{M}\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]}
\end{aligned}
$$

- Each form of interpolation has its own geometry matrix

Standard Methods

- Hermite curves
- Given by 2 points, 2 tangents
- C ${ }^{1}$ continuity, intersect control points
- Bezier curves
- Given by 4 control points
- Intersects 2, others approximate tangent
- Bezier surface patches
- Given by 16 control points
- Intersects 4 corners, other approximate tangents

Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents

[diagram correction p9 = p’]

Bezier Curves

- Widely used in computer graphics
- Approximate tangents by using control points

$$
\begin{aligned}
& \mathrm{p}^{\prime}(0)=3\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \\
& \mathrm{p}^{\prime}(1)=3\left(\mathrm{p}_{3}-\mathrm{p}_{2}\right)
\end{aligned}
$$

10. Splines

- Approximating more than 4 control points
- Piecing together a longer curve or surface

B-Splines

- Use 4 points, but approximate only middle two

- Draw curve with overlapping segments 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points

Cubic B-Splines

- Need $m+2$ control points for m cubic segments
- Computationally 3 times more expensive
- C^{2} continuous at each interior point
- Derive as follows:
- Consider two overlapping segments
- Enforce C^{0} and C^{1} continuity
- Employ symmetry
- C^{2} continuity follows

Rendering by Subdivision

- Divide the curve into smaller subpieces
- Stop when "flat" or at fixed depth
- How do we calculate the sub-curves?
- Bezier curves and surfaces: easy (next)
- Other curves: convert to Bezier!

Subdividing Bezier Curves

- Given Bezier curve by $p_{0}, p_{1}, p_{2}, p_{3}$
- Find $I_{0}, I_{1}, I_{2}, I_{3}$ and $r_{0}, r_{1}, r_{2}, r_{3}$
- Subcurves should stay the same!

Preview I

- Physically based models
- Particle systems
- Spring forces (cloth)
- Collisions and constraints
- Rendering
- Clipping, bounding boxes
- Line drawing
- Scan conversion
- Anti-aliasing

Preview II

- Textures and pixels
- Texture mapping
- Bump maps
- Environment maps
- Opacity and blending
- Filtering
- Image transformation
- Ray tracing
- Spatial data structures
- Bounding volumes

Preview III

- Radiosity
- Inter-surface reflections
- Ray casting
- Scientific visualization
- Height fields and contours
- Isosurfaces
- Marching cubes
- Volume rendering
- Volume textures

Announcements

- Assignment 4 due Thursday before lecture
- Lecture by John Ketchpaw
- Midterm next Tuesday
- In class
- Closed book
- One double-sided sheet of notes permitted
- Everything covered in lecture so far

