15-462 Computer Graphics I Lecture 11

Midterm Review

Assignment 3 Movie Midterm Review Midterm Preview

February 26, 2002 Frank Pfenning Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Announcements

- Assignment 4 due Thursday before lecture
- Lecture by John Ketchpaw
- Midterm next Tuesday
 - In class
 - Closed book
 - One double-sided sheet of notes permitted
 - Everything covered in lecture so far
- Assignment 3 movies
 - Some flaws may be problems in production software
 - Enjoy!

1. Course Overview Revisited

- Modeling: how to represent objects
- Animation: how to control and represent motion
- Rendering: how to create images
- OpenGL graphics library

2. Basic Graphics Programming

• The graphics pipeline

- Pipelines and parallelism
- Latency vs throughput
- Efficiently implementable in hardware
- Not so efficiently implementable in software
- Course approach: walk the pipeline left-to-right

Graphics Functions

- Primitive functions (points, lines, polygons)
- Attribute functions (color, lighting, material)
- Transformation functions (homogeneous coord)
- Viewing functions (projections)
- Input functions (callbacks)
- Control functions (GLUT library calls)

3. Interaction

- Client/Server Model
- Callbacks
- Double Buffering
- Hidden Surface Removal

Client/Server Model

Graphics hardware and caching

- Important for efficiency
- Need to be aware where data are stored
- Examples: vertex arrays, display lists

Hidden Surface Removal

- Classic problem of computer graphics
- What is visible after clipping and projection?
- Object-space vs image-space approaches
- Object space: depth sort (Painter's algorithm)
- Image space: ray cast (z-buffer algorithm)
- Related: back-face culling

4. Transformations

- Vector Spaces
- Affine and Euclidean Spaces
- Frames
- Homogeneous Coordinates
- Transformation Matrices
- OpenGL Transformation Matrices

Geometric Interpretations

- Lines and line segments
- Convexity
- Dot product and projections
- Cross product and normal vectors
- Planes

Lines and Line Segments

• Parametric form of line: $P(\alpha) = P_0 + \alpha d$

• Line segment between Q and R: $P(\alpha) = (1-\alpha) Q + \alpha R$ for $0 \le \alpha \le 1$

Convex Hull

Convex hull defined by

$$\begin{split} \mathsf{P} &= \alpha_1 \; \mathsf{P}_1 + \dots + \alpha_n \; \mathsf{P}_n \\ \text{for } a_1 + \dots + a_n &= 1 \\ \text{and } 0 \leq a_i \leq 1, \, i = 1, \, \dots, \, n \end{split}$$

Projection

Dot product projects one vector onto other

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$

Normal Vector

Cross product defines normal vector

 $u \times v = n$ $|u \times v| = |u| |v| |sin(\theta)|$

• Right-hand rule

Plane

- Plane defined by point P_0 and vectors u and v
- u and v cannot be parallel
- Parametric form: $T(\alpha, \beta) = P_0 + \alpha u + \beta v$
- Let $n = u \times v$ be the normal
- Then $n \cdot (P P_0) = 0$ iff P lies in plane

Homogeneous Coordinates

- In affine space, $P = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + P_0$
- Define $0 \cdot P = 0, 1 \cdot P = P$
- Points $[\alpha_1 \ \alpha_2 \ \alpha_3 \ 1]^T$
- Vectors $[\delta_1 \ \delta_2 \ \delta_3 \ 0]^T$
- Change of frame

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

Affine Transformations

- Compose
 - Rotations, translations, scalings
 - Express in homogeneous coods (4×4 matrices)
- Apply from right to left!
 - $-\mathbf{R} \mathbf{p} = (\mathbf{R}_{z} \mathbf{R}_{y} \mathbf{R}_{x}) \mathbf{p} = \mathbf{R}_{z} (\mathbf{R}_{y} (\mathbf{R}_{x} \mathbf{p}))$
 - Postmultiplication in OpenGL
- Think in terms of composition
 - Translation to and from origin
 - Remember geometric intuition

5. Viewing and Projection

- Camera Positioning
- Parallel Projections
- Perspective Projections

Camera in Modeling Coordinates

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Those views are inverses!
 - Each transformation
 - Order of transformation
 - gluLookAt utility

Orthographic Projections

- Projectors perpendicular to projectoin plane
- Simple, but not realistic

15-462 Graphics I

Perspective Viewing

- Characterized by foreshortening
- More distant objects appear smaller

- $y/z = y_p/d$ so $y_p = y/(z/d)$
- Note this is non-linear!
- Need homogeneous coordinates

Perspective Projection Matrix

• Represent multiple of point

$$(z/d) \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

• Solve

${f M}$	$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} x \end{bmatrix}$
	y		y
	z		z
	$\lfloor 1 \rfloor$		z/d

The M =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

W

6. Hierarchical Models

- Matrix and attribute stacks
- Save and restore state
- Exploit natural hierarchical structure for
 - Efficient rendering
 - Example: bounding boxes (later in course)
 - Concise specification of model parameters
 - Example: joint angles
 - Physical realism

Hierarchical Objects and Animation

- Drawing functions are time-invariant
- Can be easily stored in display list
- Change parameters of model with time
- Redraw when idle callback is invoked

Complex Objects

- Tree rather than linear structure
- Interleave along each branch
- Use push and pop to save state

Unified View of Computer Animation

- Models with parameters
 - Polygon positions, control points, joint angles, ...
 - *n* parameters define n-dimensional state space
- Animation defined by path through state space
 - Define initial state, repeat:
 - Render the image
 - Move to next point (following motion curves)
- Animation = specifying state space trajectory

Animation vs Modeling

- Modeling: what are the parameters?
- Animation: how do we vary the parameters?
- Sometimes boundary not clear
- Build models that are easy to control
- Hierarchical models often easy to control

Basic Animation Techniques

- Traditional (frame by frame)
- Keyframing
- Procedural techniques
- Behavioral techniques
- Performance-based (motion capture)
- Physically-based (dynamics)

7. Lighting and Shading

- Approximate physical reality
- Ray tracing:
 - Follow light rays through a scene
 - Accurate, but expensive (off-line)
- Radiosity:
 - Calculate surface inter-reflection approximately
 - Accurate, especially interiors, but expensive (off-line)
- Phong Illumination model:
 - Approximate only interaction light, surface, viewer
 - Relatively fast (on-line), supported in OpenGL

Light Sources and Material Properties

- Appearance depends on
 - Light sources, their locations and properties
 - Material (surface) properties
 - Viewer position
- Ray tracing: from viewer into scene
- Radiosity: between surface patches
- Phong Model: at material, from light to viewer

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in center)
- Light source described by a luminance
 - Each color is described separately
 - $-I = [I_r \ I_g \ I_b]^T$ (I for intensity)
 - Sometimes calculate generically (applies to r, g, b)

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

I = vector to light source n = surface normal v = vector to viewer r = reflection of I at p (determined by I and n)

Summary of Phong Model

- Light components for each color:
 Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
 - Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

$$I = \frac{1}{a + bq + cq^2} (k_d L_d (\mathbf{l} \cdot \mathbf{n}) + k_s L_s (\mathbf{r} \cdot \mathbf{v})^{\alpha}) + k_a L_a$$

I = vector from light n = surface normal r = I reflected about n
v = vector to viewer

Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately
 - From geometry (e.g., differential calculus)
 - From approximating surface (e.g., Bezier patch)
- Pitfalls
 - Unit length (some OpenGL support)
 - Surface boundary

8. Shading in OpenGL

- Polygonal shading
- Material properties
- Approximating a sphere [example]

Polygonal Shading

- Curved surfaces are approximated by polygons
- How do we shade?
 - Flat shading
 - Interpolative shading
 - Gouraud shading
 - Phong shading (different from Phong illumination)
- Two questions:
 - How do we determine normals at vertices?
 - How do we calculate shading at interior points?

Gouraud Shading

- Special case of interpolative shading
- How do we calculate vertex normals?
- Gouraud: average all adjacent face normals

$$\mathbf{n} = \frac{\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4}{|\mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4|}$$

 Requires knowledge about which faces share a vertex

Data Structures for Gouraud Shading

- Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
- More generally, need data structure for mesh
- Key: which polygons meet at each vertex

Drawing a Sphere

- Recursive subdivision technique quite general
- Interpolation vs flat shading effect

Recursive Subdivision

- General method for building approximations
- Research topic: construct a good mesh
 - Low curvature, fewer mesh points
 - High curvature, more mesh points
 - Stop subdivision based on resolution
 - Some advanced data structures for animation
 - Interaction with textures
- Here: simplest case
- Approximate sphere by subdividing icosahedron

Subdivision Example

• Icosahedron after 3 subdivisions (fast converg.)

9. Curves and Surfaces

- Parametric Representations
 - Also used: implicit representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
 - Tangent and normal
 - Curves segments (for example, $0 \le u \le 1$)
 - Surface patches (for example, $0 \le u, v \le 1$)

02/26/2002

15-462 Graphics I

Approximating Surfaces

- Use parametric polynomial surfaces
- Important concepts:
 - Join points for segments and patches
 - Control points to interpolate
 - Tangents and smoothness
 - Blending functions to describe interpolation
- First curves, then surfaces

Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:

$$\mathbf{p}(u) = \mathbf{c}_0 + \mathbf{c}_1 u + \mathbf{c}_2 u^2 + \mathbf{c}_3 u^3 = \sum_{k=0}^3 \mathbf{c}_k u^k$$

- Each c_k is a column vector $[c_{kx} c_{ky} c_{kz}]^T$
- From control information (points, tangents) derive 12 values c_{kx} , c_{ky} , c_{kz} for $0 \le k \le 3$
- These determine cubic polynomial form

Geometry Matrix

 \mathbf{c}_2

 Calculate approximating polynomial from control point with geometry matrix M

$$\mathbf{p}(u) = \mathbf{c}_0 + \mathbf{c}_1 u + \mathbf{c}_2 u^2 + \mathbf{c}_3 u^3$$
$$\begin{bmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

 \mathbf{p}_2

 p_3

 Each form of interpolation has its own geometry matrix

Standard Methods

- Hermite curves
 - Given by 2 points, 2 tangents
 - C¹ continuity, intersect control points
- Bezier curves
 - Given by 4 control points
 - Intersects 2, others approximate tangent
- Bezier surface patches
 - Given by 16 control points
 - Intersects 4 corners, other approximate tangents

Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents

[diagram correction p9 = p']

Bezier Curves

- Widely used in computer graphics
- Approximate tangents by using control points

$$p'(0) = 3(p_1 - p_0)$$

 $p'(1) = 3(p_3 - p_2)$

10. Splines

- Approximating more than 4 control points
- Piecing together a longer curve or surface

B-Splines

Use 4 points, but approximate only middle two

- Draw curve with overlapping segments
 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points

Cubic B-Splines

- Need m+2 control points for m cubic segments
- Computationally 3 times more expensive
- C² continuous at each interior point
- Derive as follows:
 - Consider two overlapping segments
 - Enforce C⁰ and C¹ continuity
 - Employ symmetry
 - C² continuity follows

Rendering by Subdivision

- Divide the curve into smaller subpieces
- Stop when "flat" or at fixed depth
- How do we calculate the sub-curves?
 - Bezier curves and surfaces: easy (next)
 - Other curves: convert to Bezier!

Subdividing Bezier Curves

- Given Bezier curve by p₀, p₁, p₂, p₃
- Find I_0 , I_1 , I_2 , I_3 and r_0 , r_1 , r_2 , r_3
- Subcurves should stay the same!

Preview I

- Physically based models
 - Particle systems
 - Spring forces (cloth)
 - Collisions and constraints
- Rendering
 - Clipping, bounding boxes
 - Line drawing
 - Scan conversion
 - Anti-aliasing

Preview II

- Textures and pixels
 - Texture mapping
 - Bump maps
 - Environment maps
 - Opacity and blending
 - Filtering
 - Image transformation
- Ray tracing
 - Spatial data structures
 - Bounding volumes

Preview III

- Radiosity
 - Inter-surface reflections
 - Ray casting
- Scientific visualization
 - Height fields and contours
 - Isosurfaces
 - Marching cubes
 - Volume rendering
 - Volume textures

Announcements

- Assignment 4 due Thursday before lecture
- Lecture by John Ketchpaw
- Midterm next Tuesday
 - In class
 - Closed book
 - One double-sided sheet of notes permitted
 - Everything covered in lecture so far