
March 19, 2002
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
Scan Conversion (Rasterization)

[Angel 7.3-7.6, 7.8-7.9]

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
Scan Conversion (Rasterization)

[Angel 7.3-7.6, 7.8-7.9]

Clipping and Scan ConversionClipping and Scan Conversion

15-462 Computer Graphics I
Lecture 14

03/19/2002 15-462 Graphics I 2

The Graphics Pipeline, RevisitedThe Graphics Pipeline, Revisited

• Must eliminate objects outside viewing frustum
• Tied in with projections

– Clipping: object space (eye coordinates)
– Scissoring: image space (pixels in frame buffer)

• Introduce clipping in stages
– 2D (for simplicity)
– 3D (as in OpenGL)

• In a later lecture: scissoring

03/19/2002 15-462 Graphics I 3

Transformations and ProjectionsTransformations and Projections

• Sequence applied in many implementations
1. Object coordinates to
2. Eye coordinates to
3. Clip coordinates to
4. Normalized device coordinates to
5. Screen coordinates

03/19/2002 15-462 Graphics I 4

Clipping Against a FrustumClipping Against a Frustum

• General case of frustum (truncated pyramid)

• Clipping is tricky because of frustum shape

x

y

z

image plane

near
far

clipped line

03/19/2002 15-462 Graphics I 5

Perspective NormalizationPerspective Normalization

• Solution:
– Implement perspective projection by perspective

normalization and orthographic projection
– Perspective normalization is a homogeneous tfm.

x

y

z
near far

clipped line

1

1
1

0

x

y

z

image plane
near far

clipped line

See [Angel Ch. 5.8]

03/19/2002 15-462 Graphics I 6

The Normalized FrustumThe Normalized Frustum

• OpenGL uses -1 · x,y,z · 1 (others possible)
• Clip against resulting cube
• Clipping against programmer-specified planes

is different and more expensive
• Often a useful programming device

03/19/2002 15-462 Graphics I 7

The Viewport TransformationThe Viewport Transformation

• Transformation sequence again:
1. Camera: From object coordinates to eye coords
2. Perspective normalization: to clip coordinates
3. Clipping
4. Perspective division: to normalized device coords.
5. Orthographic projection (setting zp = 0)
6. Viewport transformation: to screen coordinates

• Viewport transformation can distort
• Often in OpenGL: resize callback

03/19/2002 15-462 Graphics I 8

Line-Segment ClippingLine-Segment Clipping

• General: 3D object against cube
• Simpler case:

– In 2D: line against square or rectangle
– Before scan conversion (rasterization)
– Later: polygon clipping

• Several practical algorithms
– Avoid expensive line-rectangle intersections
– Cohen-Sutherland Clipping
– Liang-Barsky Clipping
– Many more [see Foley et al.]

03/19/2002 15-462 Graphics I 9

Clipping Against RectangleClipping Against Rectangle

• Line-segment clipping: modify endpoints of
lines to lie within clipping rectangle

• Could calculate intersections of line (segments)
with clipping rectangle (expensive)

03/19/2002 15-462 Graphics I 10

Cohen-Sutherland ClippingCohen-Sutherland Clipping

• Clipping rectangle as intersection of 4 half-
planes

• Encode results of four half-plane tests
• Generalizes to 3 dimensions (6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= ∩interior

xmin xmax

ymin

ymax

03/19/2002 15-462 Graphics I 11

OutcodesOutcodes

• Divide space into 9 regions
• 4-bit outcode determined by comparisons

• o1 = outcode(x1,y1) and o2 = outcode(x2,y2)

1000

0000

0100

1001

0001

0101 0110

0010

1010

ymax

ymin

xmaxxmin

bo: y > ymax
b1: y < ymin
b2: x > xmax
b3: x < xmin

03/19/2002 15-462 Graphics I 12

Cases for OutcodesCases for Outcodes

• Outcomes: accept, reject, subdivide

1000

0000

0100

1001

0001

0101 0110

0010

1010

ymax

ymin

xmaxxmin

o1 = o2 = 0000: accept
o1 & o2 ≠ 0000: reject
o1 = 0000, o2 ≠ 0000: subdiv
o1 ≠ 0000, o2 = 0000: subdiv
o1 & o2 = 0000: subdiv

03/19/2002 15-462 Graphics I 13

Cohen-Sutherland SubdivisionCohen-Sutherland Subdivision

• Pick outside endpoint (o ≠ 0000)
• Pick a crossed edge (o = b0b1b2b3 and bk ≠ 0)
• Compute intersection of this line and this edge
• Replace endpoint with intersection point
• Restart with new line segment

– Outcodes of second point are unchanged

• Must converge (roundoff errors?)

03/19/2002 15-462 Graphics I 14

Liang-Barsky ClippingLiang-Barsky Clipping

• Starting point is parametric form

• Compute four intersections with extended
clipping rectangle

• Will see that this can be avoided

03/19/2002 15-462 Graphics I 15

Ordering of intersection pointsOrdering of intersection points

• Order the intersection points
• Figure (a): 1 > α4 > α3 > α2 > α1 > 0
• Figure (b): 1 > α4 > α2 > α3 > α1 > 0

03/19/2002 15-462 Graphics I 16

Liang-Barsky Efficiency ImprovementsLiang-Barsky Efficiency Improvements

• Efficiency improvement 1:
– Compute intersections one by one
– Often can reject before all four are computed

• Efficiency improvement 2:
– Equations for α3, α2

– Compare α3, α2 without floating-point division

03/19/2002 15-462 Graphics I 17

Line-Segment Clipping AssessmentLine-Segment Clipping Assessment

• Cohen-Sutherland
– Works well if many lines can be rejected early
– Recursive structure (multiple subdiv) a drawback

• Liang-Barsky
– Avoids recursive calls (multiple subdiv)
– Many cases to consider (tedious, but not expensive)
– Used more often in practice (?)

03/19/2002 15-462 Graphics I 18

OutlineOutline

• Line-Segment Clipping
– Cohen-Sutherland
– Liang-Barsky

• Polygon Clipping
– Sutherland-Hodgeman

• Clipping in Three Dimensions
• Scan Conversion

– DDA algorithm
– Bresenham’s algorithm

03/19/2002 15-462 Graphics I 19

Polygon ClippingPolygon Clipping

• Convert a polygon into one ore more polygons
• Their union is intersection with clip window
• Alternatively, we can first tesselate concave

polygons (OpenGL supported)

03/19/2002 15-462 Graphics I 20

Concave PolygonsConcave Polygons

• Approach 1: clip and join to a single polygon

• Approach 2: tesselate and clip triangles

03/19/2002 15-462 Graphics I 21

Sutherland-Hodgeman ISutherland-Hodgeman I

• Subproblem:
– Input: polygon (vertex list) and single clip plane
– Output: new (clipped) polygon (vertex list)

• Apply once for each clip plane
– 4 in two dimensions
– 6 in three dimension
– Can arrange in pipeline

03/19/2002 15-462 Graphics I 22

Sutherland-Hodgeman IISutherland-Hodgeman II

• To clip vertex list (polygon) against half-plane:
– Test first vertex. Output if inside, otherwise skip.
– Then loop through list, testing transitions

• In-to-in: output vertex
• In-to-out: output intersection
• out-to-in: output intersection and vertex
• out-to-out: no output

– Will output clipped polygon as vertex list

• May need some cleanup in concave case
• Can combine with Liang-Barsky idea

03/19/2002 15-462 Graphics I 23

Other Cases and OptimizationsOther Cases and Optimizations

• Curves and surfaces
– Analytically if possible
– Through approximating lines and polygons otherwise

• Bounding boxes
– Easy to calculate and maintain
– Sometimes big savings

03/19/2002 15-462 Graphics I 24

OutlineOutline

• Line-Segment Clipping
– Cohen-Sutherland
– Liang-Barsky

• Polygon Clipping
– Sutherland-Hodgeman

• Clipping in Three Dimensions
• Scan Conversion

– DDA algorithm
– Bresenham’s algorithm

03/19/2002 15-462 Graphics I 25

Clipping Against CubeClipping Against Cube

• Derived from earlier algorithms
• Can allow right parallelepiped

03/19/2002 15-462 Graphics I 26

Cohen-Sutherland in 3DCohen-Sutherland in 3D

• Use 6 bits in outcode
– b4: z > zmax

– b5: z < zmin

• Other calculations
as before

03/19/2002 15-462 Graphics I 27

Liang-Barsky in 3DLiang-Barsky in 3D

• Add equation z(α) = (1- α) z1 + α z2

• Solve, for p0 in plane and normal n:

• Yields

• Optimizations as for Liang-Barsky in 2D

03/19/2002 15-462 Graphics I 28

Perspective NormalizationPerspective Normalization

• Intersection simplifies for orthographic viewing
– One division only (no multiplication)
– Other Liang-Barsky optimizations also apply

• Otherwise, use perspective normalization
– Reduces to orthographic case
– Applies to oblique and perspective viewing

Normalization of oblique projections

03/19/2002 15-462 Graphics I 29

Summary: ClippingSummary: Clipping

• Clipping line segments to rectangle or cube
– Avoid expensive multiplications and divisions
– Cohen-Sutherland or Liang-Barsky

• Clipping to viewing frustum
– Perspective normalization to orthographic projection
– Apply clipping to cube from above

• Client-specific clipping
– Use more general, more expensive form

• Polygon clipping
– Sutherland-Hodgeman pipeline

03/19/2002 15-462 Graphics I 30

OutlineOutline

• Line-Segment Clipping
– Cohen-Sutherland
– Liang-Barsky

• Polygon Clipping
– Sutherland-Hodgeman

• Clipping in Three Dimensions
• Scan Conversion

– DDA algorithm
– Bresenham’s algorithm

03/19/2002 15-462 Graphics I 31

RasterizationRasterization

• Final step in pipeline: rasterization (scan conv.)
• From screen coordinates (float) to pixels (int)
• Writing pixels into frame buffer
• Separate z-buffer, display, shading, blending
• Concentrate on primitives:

– Lines
– Polygons (Thursday)

03/19/2002 15-462 Graphics I 32

DDA AlgorithmDDA Algorithm

• DDA (“Digital Differential Analyzer”)
• Represent

• Assume 0 · m · 1
• Exploit symmetry
• Distinguish special cases

03/19/2002 15-462 Graphics I 33

DDA LoopDDA Loop

• Assume write_pixel(int x, int y, int value)

• Slope restriction needed
• Easy to interpolate colors

For (ix = x1; ix <= x2; ix++)
{

y += m;
write_pixel(ix, round(y), color);

}

03/19/2002 15-462 Graphics I 34

Bresenham’s Algorithm IBresenham’s Algorithm I

• Eliminate floating point addition from DDA
• Assume again 0 · m · 1
• Assume pixel centers halfway between ints

03/19/2002 15-462 Graphics I 35

Bresenham’s Algorithm IIBresenham’s Algorithm II

• Decision variable a – b
– If a – b > 0 choose lower pixel
– If a – b · 0 choose higher pixel

• Goal: avoid explicit computation of a – b
• Step 1: re-scale d = (x2 – x1)(a – b) = ∆x(a – b)
• d is always integer

03/19/2002 15-462 Graphics I 36

Bresenham’s Algorithm IIIBresenham’s Algorithm III

• Compute d at step k +1 from d at step k!
• Case: j did not change (dk > 0)

– a decreases by m, b increases by m
– (a – b) decreases by 2m = 2(∆y/∆x)
– ∆x(a-b) decreases by 2∆y

03/19/2002 15-462 Graphics I 37

Bresenham’s Algorithm IVBresenham’s Algorithm IV

• Case: j did change (dk · 0)
– a decreases by m-1, b increases by m-1
– (a – b) decreases by 2m – 2 = 2(∆y/∆x – 1)
– ∆x(a-b) decreases by 2(∆y - ∆x)

03/19/2002 15-462 Graphics I 38

Bresenham’s Algorithm VBresenham’s Algorithm V

• So dk+1 = dk – 2∆y if dk > 0
• And dk+1 = dk – 2(∆y – ∆x) if dk · 0
• Final (efficient) implementation:

void draw_line(int x1, int y1, int x2, int y2) {
int x, y = y0;
int dx = 2*(x2-x1), dy = 2*(y2-y1);
int dydx = dy-dx, D = (dy-dx)/2;

for (x = x1 ; x <= x2 ; x++) {
write_pixel(x, y, color);
if (D > 0) D -= dy;
else {y++; D -= dydx;}

}
}

03/19/2002 15-462 Graphics I 39

Bresenham’s Algorithm VIBresenham’s Algorithm VI

• Need different cases to handle other m
• Highly efficient
• Easy to implement in hardware and software
• Widely used

03/19/2002 15-462 Graphics I 40

SummarySummary

• Line-Segment Clipping
– Cohen-Sutherland
– Liang-Barsky

• Polygon Clipping
– Sutherland-Hodgeman

• Clipping in Three Dimensions
• Scan Conversion

– DDA algorithm
– Bresenham’s algorithm

03/19/2002 15-462 Graphics I 41

PreviewPreview

• Scan conversion of polygons
• Anti-aliasing
• Other pixel-level operations
• Assignment 5 due Thursday
• Assignment 6 (written) out Thursday

