15-462 Computer Graphics I Lecture 14

Clipping and Scan Conversion

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
Scan Conversion (Rasterization)
[Angel 7.3-7.6, 7.8-7.9]

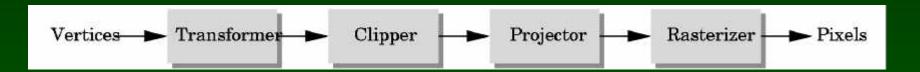
March 19, 2002

Frank Pfenning

Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

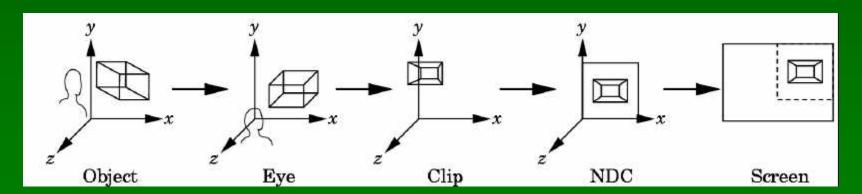
The Graphics Pipeline, Revisited



- Must eliminate objects outside viewing frustum
- Tied in with projections
 - Clipping: object space (eye coordinates)
 - Scissoring: image space (pixels in frame buffer)
- Introduce clipping in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: scissoring

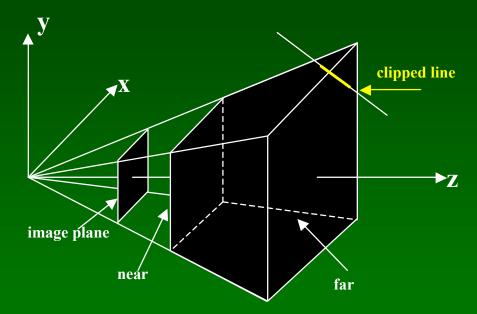
Transformations and Projections

- Sequence applied in many implementations
 - 1. Object coordinates to
 - 2. Eye coordinates to
 - 3. Clip coordinates to
 - 4. Normalized device coordinates to
 - 5. Screen coordinates



Clipping Against a Frustum

General case of frustum (truncated pyramid)

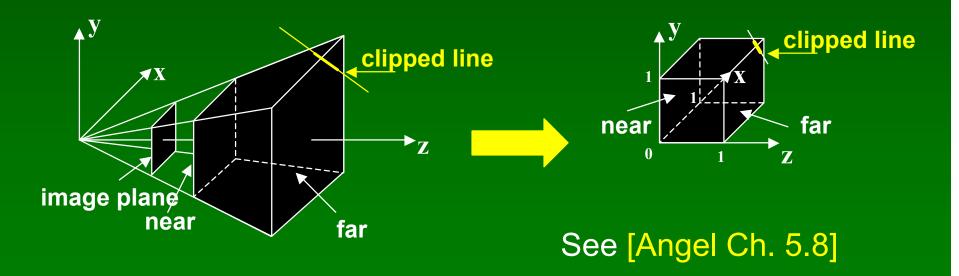


Clipping is tricky because of frustum shape

Perspective Normalization

Solution:

- Implement perspective projection by perspective normalization and orthographic projection
- Perspective normalization is a homogeneous tfm.



The Normalized Frustum

- OpenGL uses $-1 \le x,y,z \le 1$ (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device

The Viewport Transformation

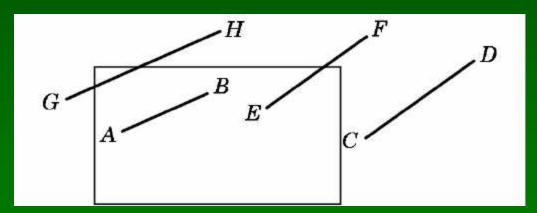
- Transformation sequence again:
 - 1. Camera: From object coordinates to eye coords
 - 2. Perspective normalization: to clip coordinates
 - 3. Clipping
 - 4. Perspective division: to normalized device coords.
 - 5. Orthographic projection (setting $z_p = 0$)
 - 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
- Often in OpenGL: resize callback

Line-Segment Clipping

- General: 3D object against cube
- Simpler case:
 - In 2D: line against square or rectangle
 - Before scan conversion (rasterization)
 - Later: polygon clipping
- Several practical algorithms
 - Avoid expensive line-rectangle intersections
 - Cohen-Sutherland Clipping
 - Liang-Barsky Clipping
 - Many more [see Foley et al.]

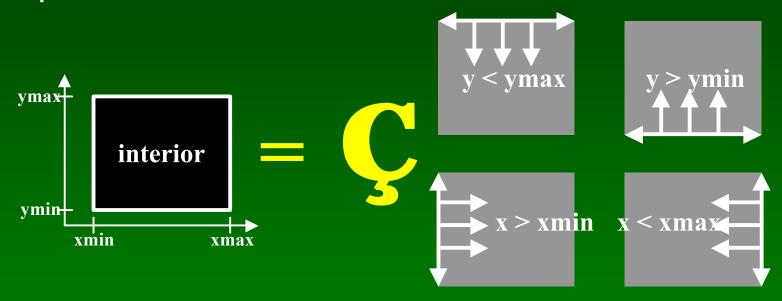
Clipping Against Rectangle

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)



Cohen-Sutherland Clipping

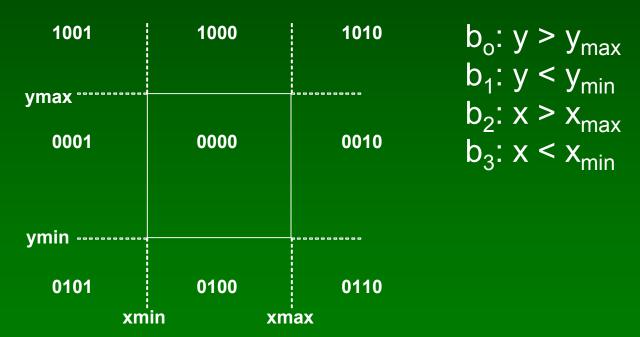
 Clipping rectangle as intersection of 4 halfplanes



- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes

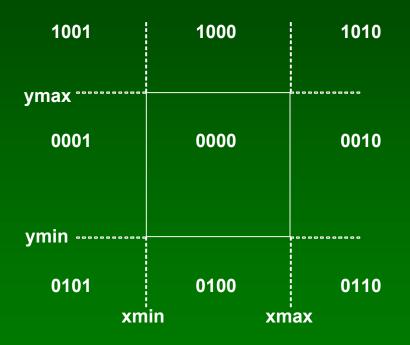
- Divide space into 9 regions
- 4-bit outcode determined by comparisons



• $o_1 = outcode(x_1, y_1)$ and $o_2 = outcode(x_2, y_2)$

Cases for Outcodes

Outcomes: accept, reject, subdivide



$$o_1 = o_2 = 0000$$
: accept

$$o_1 \& o_2 \neq 0000$$
: reject

$$o_1 = 0000$$
, $o_2 \neq 0000$: subdiv

$$o_1 \neq 0000$$
, $o_2 = 0000$: subdiv

$$o_1 \& o_2 = 0000$$
: subdiv

Cohen-Sutherland Subdivision

- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = b₀b₁b₂b₃ and b_k ≠ 0)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- Must converge (roundoff errors?)

Liang-Barsky Clipping

Starting point is parametric form

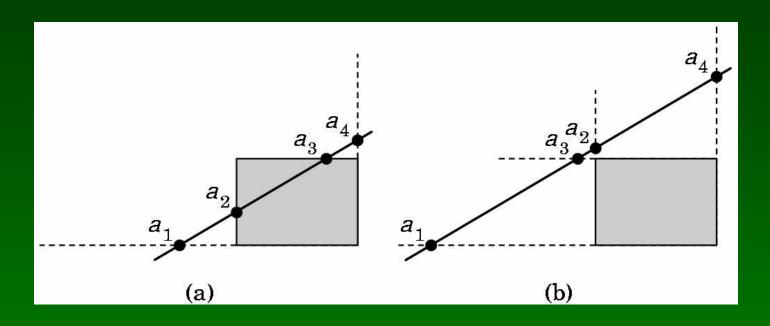
$$\mathbf{p}(\alpha) = (1 - \alpha)\mathbf{p}_1 + \alpha\mathbf{p}_2, \quad 0 \le \alpha \le 1$$

$$x(\alpha) = (1 - \alpha)x_1 + \alpha x_2$$

$$y(\alpha) = (1 - \alpha)y_1 + \alpha y_2$$

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided

Ordering of intersection points



- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$

Liang-Barsky Efficiency Improvements

- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for α_3 , α_2

$$y_{max} = (1 - \alpha_3)y_1 + \alpha_3 y_2$$

$$x_{min} = (1 - \alpha_2)x_1 + \alpha_2 x_2$$

$$\alpha_3 = \frac{y_{max} - y_1}{y_2 - y_1}. \quad \alpha_2 = \frac{x_{min} - x_1}{x_2 - x_1}$$

- Compare α_3 , α_2 without floating-point division

16

Line-Segment Clipping Assessment

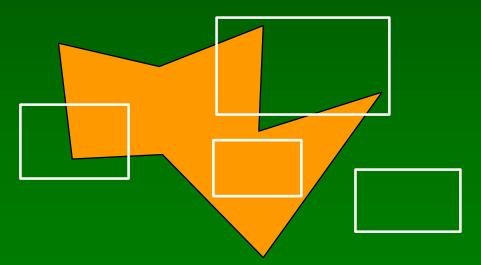
- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdiv) a drawback
- Liang-Barsky
 - Avoids recursive calls (multiple subdiv)
 - Many cases to consider (tedious, but not expensive)
 - Used more often in practice (?)

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham's algorithm

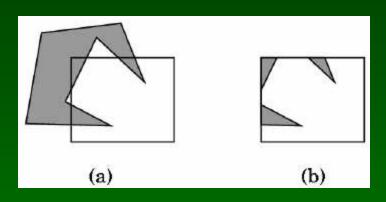
Polygon Clipping

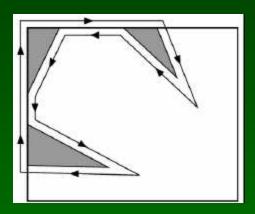
- Convert a polygon into one ore more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)



Concave Polygons

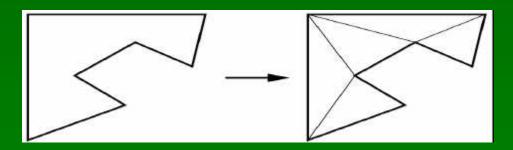
Approach 1: clip and join to a single polygon





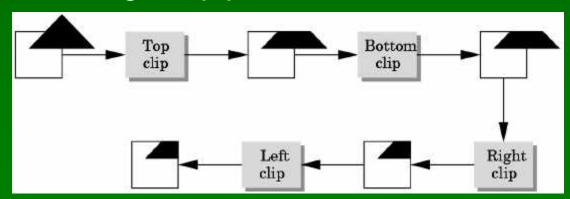
20

Approach 2: tesselate and clip triangles



Sutherland-Hodgeman I

- Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimension
 - Can arrange in pipeline

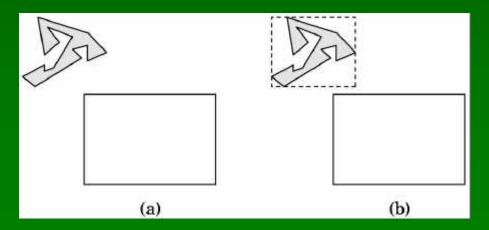


Sutherland-Hodgeman II

- To clip vertex list (polygon) against half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - out-to-in: output intersection and vertex
 - out-to-out: no output
 - Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
 - Analytically if possible
 - Through approximating lines and polygons otherwise
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

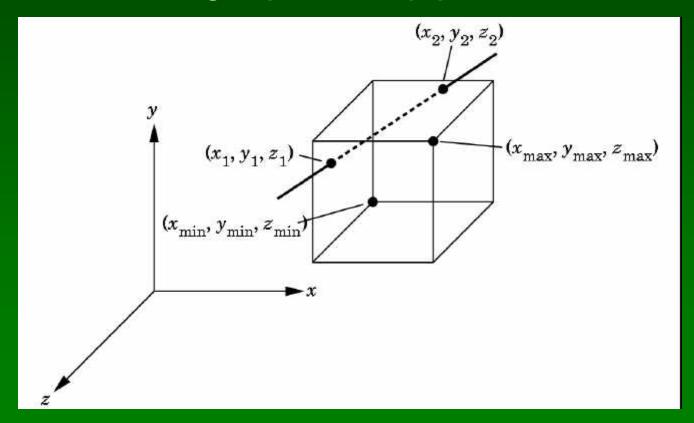


Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham's algorithm

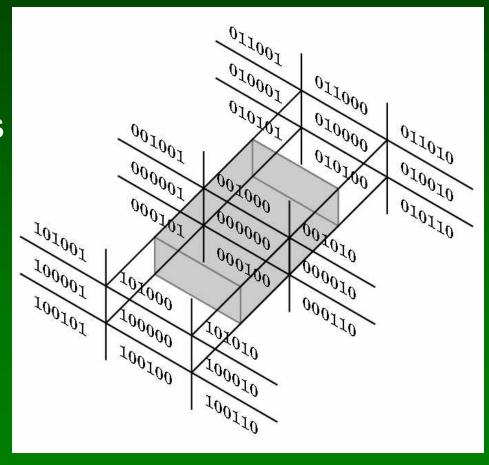
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped



Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - $-b_4$: $z > z_{max}$
 - $b_5: z < z_{min}$
- Other calculations as before



Liang-Barsky in 3D

- Add equation $z(\alpha) = (1 \alpha) z_1 + \alpha z_2$
- Solve, for p₀ in plane and normal n:

$$y_{max} = (1 - \alpha_3)y_1 + \alpha_3 y_2$$

$$x_{min} = (1 - \alpha_2)x_1 + \alpha_2 x_2$$

$$\alpha_3 = \frac{y_{max} - y_1}{y_2 - y_1}. \quad \alpha_2 = \frac{x_{min} - x_1}{x_2 - x_1}$$

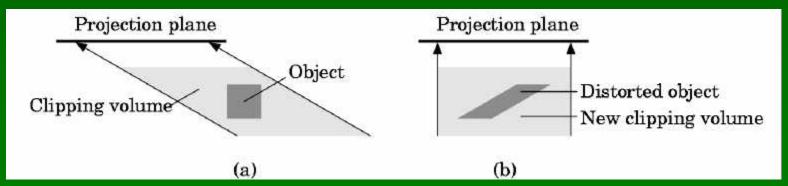
Yields

$$\alpha = \frac{\mathbf{n} \cdot (\mathbf{p}_0 - \mathbf{p}_1)}{\mathbf{n} \cdot (\mathbf{p}_2 - \mathbf{p}_1)}$$

Optimizations as for Liang-Barsky in 2D

Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
 - Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing



Normalization of oblique projections

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Clipping to viewing frustum
 - Perspective normalization to orthographic projection
 - Apply clipping to cube from above
- Client-specific clipping
 - Use more general, more expensive form
- Polygon clipping
 - Sutherland-Hodgeman pipeline

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham's algorithm

Rasterization

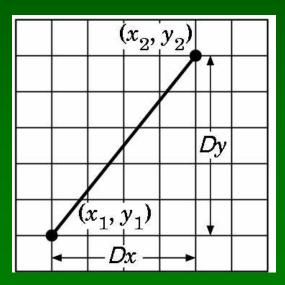
- Final step in pipeline: rasterization (scan conv.)
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate z-buffer, display, shading, blending
- Concentrate on primitives:
 - Lines
 - Polygons (Thursday)

DDA Algorithm

- DDA ("Digital Differential Analyzer")
- Represent

$$y = mx + h$$
 where $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$

- Assume 0 ≤ m ≤ 1
- Exploit symmetry
- Distinguish special cases

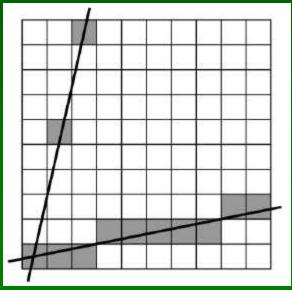


DDA Loop

Assume write_pixel(int x, int y, int value)

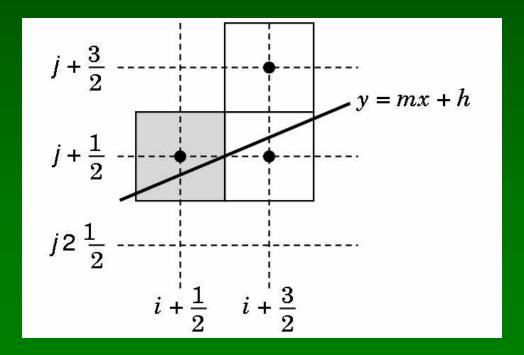
```
For (ix = x1; ix <= x2; ix++)
{
   y += m;
   write_pixel(ix, round(y), color);
}</pre>
```

- Slope restriction needed
- Easy to interpolate colors



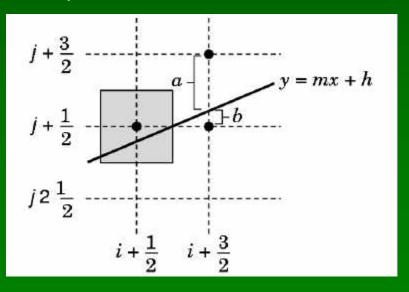
Bresenham's Algorithm I

- Eliminate floating point addition from DDA
- Assume again 0 ≤ m ≤ 1
- Assume pixel centers halfway between ints



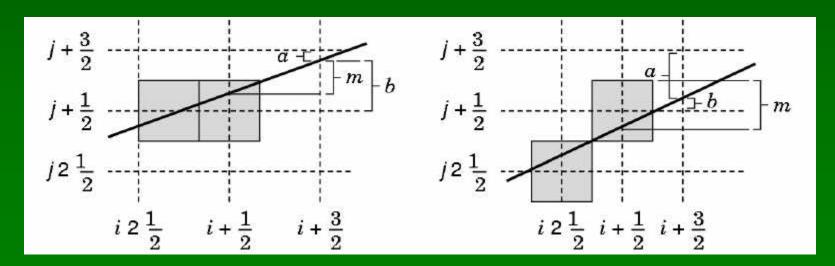
Bresenham's Algorithm II

- Decision variable a b
 - If a b > 0 choose lower pixel
 - If a b \leq 0 choose higher pixel
- Goal: avoid explicit computation of a b
- Step 1: re-scale $d = (x_2 x_1)(a b) = \Delta x(a b)$
- d is always integer



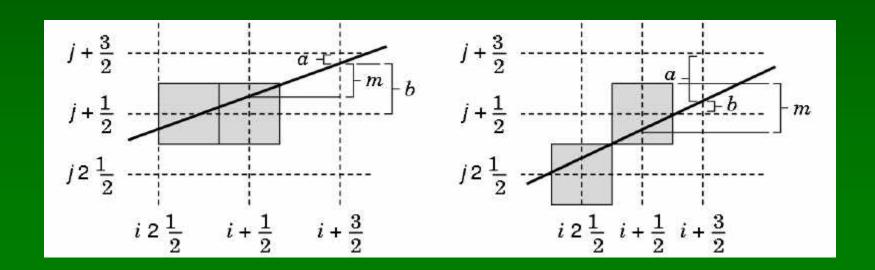
Bresenham's Algorithm III

- Compute d at step k +1 from d at step k!
- Case: j did not change (d_k > 0)
 - a decreases by m, b increases by m
 - (a b) decreases by 2m = $2(\Delta y/\Delta x)$
 - $-\Delta x(a-b)$ decreases by $2\Delta y$



Bresenham's Algorithm IV

- Case: j did change $(d_k \le 0)$
 - a decreases by m-1, b increases by m-1
 - (a b) decreases by 2m 2 = 2($\Delta y/\Delta x 1$)
 - $-\Delta x(a-b)$ decreases by $2(\Delta y \Delta x)$



Bresenham's Algorithm V

- So $d_{k+1} = d_k 2\Delta y$ if $d_k > 0$
- And $d_{k+1} = d_k 2(\Delta y \Delta x)$ if $d_k \le 0$
- Final (efficient) implementation:

```
void draw_line(int x1, int y1, int x2, int y2) {
    int x, y = y0;
    int dx = 2*(x2-x1), dy = 2*(y2-y1);
    int dydx = dy-dx, D = (dy-dx)/2;

for (x = x1; x <= x2; x++) {
        write_pixel(x, y, color);
        if (D > 0) D -= dy;
        else {y++; D -= dydx;}
    }
}
```

Bresenham's Algorithm VI

- Need different cases to handle other m
- Highly efficient
- Easy to implement in hardware and software
- Widely used

Summary

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
- Scan Conversion
 - DDA algorithm
 - Bresenham's algorithm

Preview

- Scan conversion of polygons
- Anti-aliasing
- Other pixel-level operations
- Assignment 5 due Thursday
- Assignment 6 (written) out Thursday

41