15-462 Computer Graphics I Lecture 15

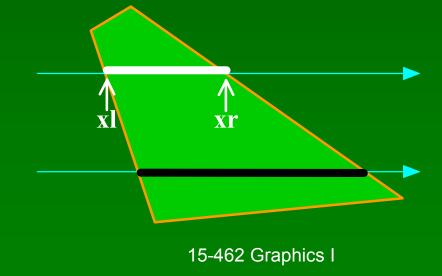
Rasterization

Scan Conversion of Polygons Antialiasing Compositing [Angel, Ch. 7.10-7.11, 9.7-9.8]

March 21, 2002 Frank Pfenning Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Review


- Rasterization: from screen coordinates (floats) to frame buffer (ints)
- Scan conversion of lines
 - DDA algorithm
 - Bresenham's incremental algorithm

Scan Conversion of Polygons

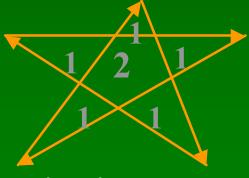
- Multiple tasks for scan conversion
 - Filling polygon (inside/outside)
 - Pixel shading (color interpolation)
 - Blending (accumulation, not just writing)
 - Depth values (z-buffer hidden-surface removal)
 - Texture coordinate interpolation (texture mapping)
- Hardware efficiency critical
- Many algorithms for filling (inside/outside)
- Much fewer that handle all tasks well

Filling Convex Polygons

- Find top and bottom vertices
- List edges along left and right sides
- For each scan line from top to bottom
 - Find left and right endpoints of span, xI and xr
 - Fill pixels between xl and xr
 - Can use Bresenham's alg. to update xI and xr

Other Operations

- Pixel shading (Gouraud)
 - Bilinear interpolation of vertex colors
- Depth values (z-Buffer)
 - Bilinear interpolation of vertex depth
 - Read, and write only if visible
 - Preserve depth (final orthographic projection)
- Texture coordinates u and v
 - Rational linear interpolation to avoid distortion
 - u(x,y) = (Ax+By+C)/(Dx+Ey+F) similarly for v(x,y)
 - Two divisions per pixel for texture mapping
 - Due to perspective transformation


Concave Polygons: Odd-Even Test

- Approach 1: odd-even test
- For each scan line
 - Find all scan line/polygon intersections
 - Sort them left to right
 - Fill the interior spans between intersections
- Parity rule: inside after an odd number of crossings

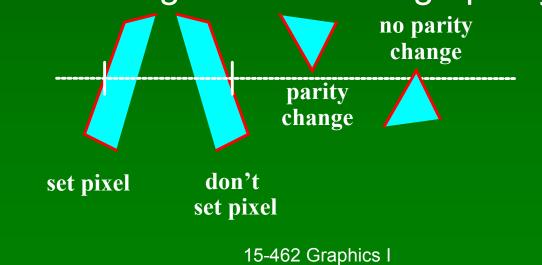
Concave Polygons: Winding Rule

- Approach 2: winding rule
- Orient the lines in polygon
- For each scan line
 - Winding number = right-hdd left-hdd crossings
 - Interior if winding number non-zero
- Different only for self-intersecting polygons

Winding rule

03/21/2002

15-462 Graphics I


Concave Polygons: Tessellation

- Approach 3: divide non-convex, non-flat, or non-simple polygons into triangles
- OpenGL specification
 - Need accept only simple, flat, convex polygons
 - Tessellate explicitly with tessellator objects
 - Implicitly if you are lucky
- GeForce3 scan converts only triangles

Boundary Cases

03/21/2002

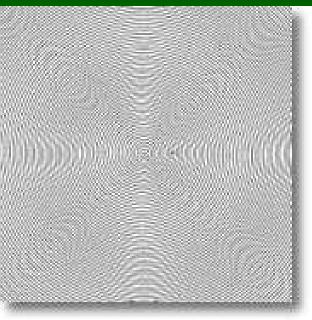
- Boundaries and special cases require care
 - Cracks between polygons
 - Parity bugs: fill to infinity
- Intersections on pixel: set at beginning, not end
- Shared vertices: count y_{min} for parity, not y_{max}
- Horizontal edges: don't change parity

Edge/Scan Line Intersections

- Brute force: calculate intersections explicitly
- Incremental method (Bresenham's algorithm)
- Caching intersection information
 - Edge table with edges sorted by y_{min}
 - Active edges, sorted by x-intersection, left to right
- Process image from smallest y_{min} up

Flood Fill

- Draw outline of polygon
- Color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering


Outline

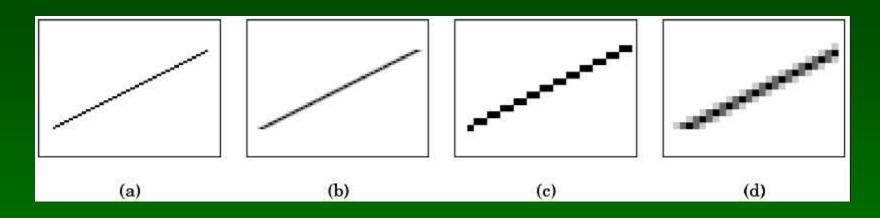
- Scan Conversion for Polygons
- Antialiasing
- Compositing

Aliasing

- Artefacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
 - Jagged edges
 - Moire patterns

Moire pattern from sandlotscience.com

03/21/2002


15-462 Graphics I

More Aliasing

Antialiasing for Line Segments

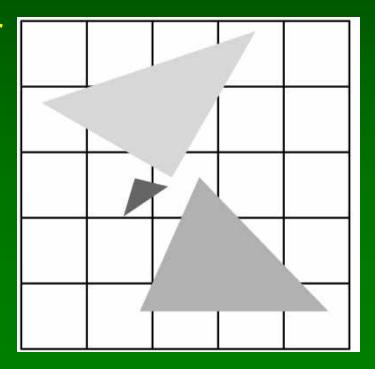
• Use area averaging at boundary

- (c) is aliased, magnified
- (d) is antialiased, magnified
- Warning: these images are sampled on screen!

Antialiasing by Supersampling

- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3x3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
 - Stop if colors are similar
 - Subdivide at discontinuities

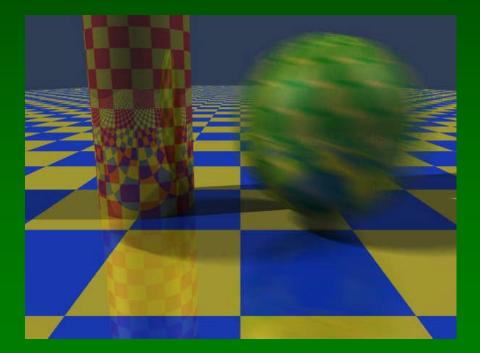
Supersampling Example



- Other improvements
 - Stochastic sampling (avoiding repetition)
 - Jittering (perturb a regular grid)

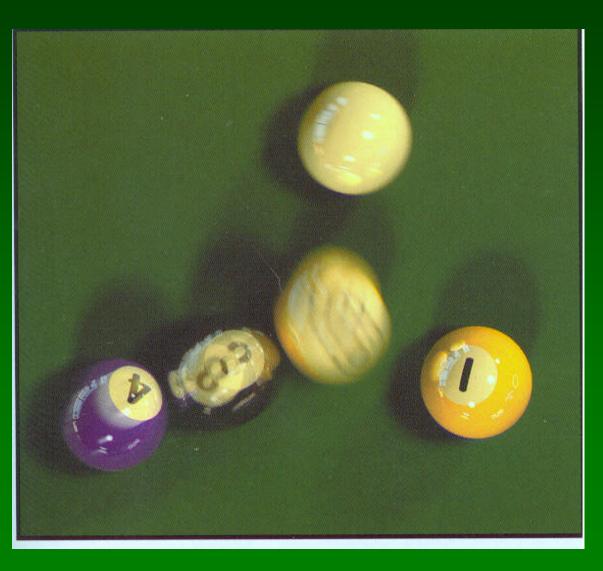
Pixel-Sharing Polygons

- Another aliasing error
- Assign color based on area-weighted average
- Interaction with depth information
- Use accumulation buffer or α-blending



Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movie
- Possible to supersample and average
- Fast-moving objects are blurred
- Happens automatically in video and movies
 - Exposure time (shutter speed)
 - Memory persistence (video camera)
 - Effect is motion blur


Motion Blur

- Achieve by stochastic sampling in time
- Still-frame motion blur, but smooth animation

Motion Blur Example

T. Porter, Pixar, 1984 16 samples/pixel

03/21/2002

Outline

- Scan Conversion for Polygons
- Antialiasing
- Compositing

Accumulation Buffer

- OpenGL mechanism for supersampling or jitter
- Accumulation buffer parallel to frame buffer
- Superimpose images from frame buffer
- Copy back into frame buffer for display

```
 \begin{split} & \gamma \lambda \lambda \epsilon \alpha \rho (\Gamma \Lambda \_ AXXYM \_ BY \Phi \Phi EP\_BIT); \\ & \phi o \rho (\iota = 0; \iota < \upsilon \mu\_ \iota \mu \alpha \gamma \epsilon \sigma; \iota + +) \{ \\ & \gamma \lambda X \lambda \epsilon \alpha \rho (\Gamma \Lambda \_ XO \Lambda OP\_BY \Phi \Phi EP\_BIT, \Gamma \Lambda \_ \Delta E\Pi TH\_BY \Phi \Phi EP\_BIT); \\ & \delta \iota \sigma \pi \lambda \alpha \psi\_ \iota \mu \alpha \gamma \epsilon (\iota); \\ & \gamma \lambda A \chi \chi \upsilon \mu (\Gamma \Lambda \_ AXXYM, 1.0/(\phi \lambda o \alpha \tau) \upsilon \upsilon \mu\_ \iota \mu \alpha \gamma \epsilon \sigma); \\ \} \\ & \gamma \lambda A \chi \chi \upsilon \mu (\Gamma \Lambda\_PETYPN, 1.0); \end{split}
```

Filtering and Convolution

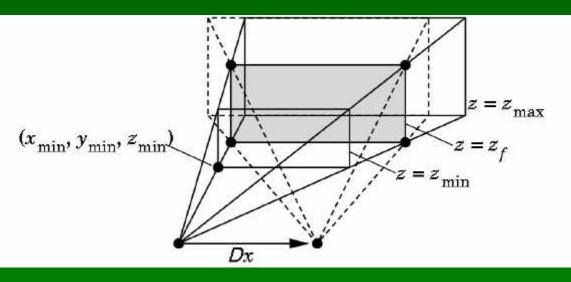
- Image transformation at pixel level
- Represent N × M image as matrix A = [a_{ik}]
- Process each color component separately
- Linear filter produces matrix B = [b_{ik}] with

$$b_{ik} = \sum_{j=-m}^{m} \sum_{l=-n}^{n} a_{jl} h_{i-j,k-l}$$

- B is the result of convolving A with filter H
- Represent H by n × m convolution matrix

Filters for Antialiasing

Averaging pixels with neighbors


$$\mathbf{H} = \frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• For antialiasing: weigh center more heavily

$$\mathbf{H} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Filter for Depth-of-Field

- Simulate camera depth-of-field
 - Keep plane $z = z_f$ in focus
 - Keep near and far planes unchanged
- Move viewer by Δx
- Compute x'_{min}, x'_{max}, y'_{min}, y'_{max} for new frustum

15-462 Graphics I

Depth-of-Field Jitter

• Compute

$$x'_{min} = x_{min} + \frac{\Delta x}{z_f}(z_f - z_{min})$$

Blend the two images in accumulation buffer

Blending

- Frame buffer
 - Simple color model: R, G, B; 8 bits each
 - $-\alpha$ -channel A, another 8 bits
- Alpha determines opacity, pixel-by-pixel
 - $\alpha = 1$: opaque
 - $\alpha = 0$: transparent
- Blend translucent objects during rendering
- Achieve other effects (e.g., shadows)

Image Compositing

- Compositing operation
 - Source: $\mathbf{s} = [\mathbf{s}_r \ \mathbf{s}_g \ \mathbf{s}_b \ \mathbf{s}_a]$
 - Destination: $\mathbf{d} = [\mathbf{d}_r \ \mathbf{d}_g \ \mathbf{d}_b \ \mathbf{d}_a]$
 - $\mathbf{b} = [b_r \ b_g \ b_b \ b_a]$ source blending factors
 - $\mathbf{c} = [c_r \ c_g \ c_b \ c_a]$ destination blending factors
 - $\mathbf{d'} = [\mathbf{b}_r \mathbf{s}_r + \mathbf{c}_r \mathbf{d}_r \ \mathbf{b}_g \mathbf{s}_g + \mathbf{c}_g \mathbf{d}_g \ \mathbf{b}_b \mathbf{s}_b + \mathbf{c}_b \mathbf{d}_b \ \mathbf{b}_a \mathbf{s}_a + \mathbf{c}_a \mathbf{d}_a]$
- Overlay n images with equal weight
 - Set α -value for each pixel in each image to 1/n
 - Source blending factor is " α "
 - Destination blending factor is "1"

Blending in OpenGL

- Enable blending
 - $γλΕναβλε(ΓΛ_BΛΕΝΔ);$
- Set up source and destination factors

 $γλ Bλεν δ Φυν δ (σουρχε_φαχτορ, δεστ_φαχτορ);$

- Source and destination choices
 - GL_ONE, GL_ZERO
 - GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
 - GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

Blending Errors

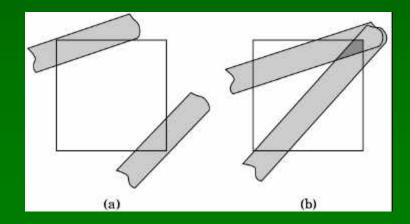
- Operations are not commutative
- Operations are not idempotent
- Interaction with hidden-surface removal
 - Polygon behind opaque one should be culled
 - Translucent in front of others should be composited
 - Solution: make z-buffer read-only for translucent
 polygons with glDepthMask(GL_FALSE);

Antialiasing Revisited

- Single-polygon case first
- Set α -value of each pixel to covered fraction
- Use destination factor of "1 α "
- Use source factor of " α "
- This will blend background with foreground
- Overlaps can lead to blending errors

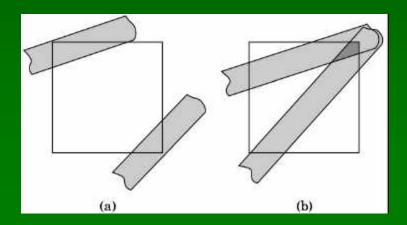
Antialiasing with Multiple Polygons

- Initially, background color C_0 , $\alpha_0 = 0$
- Render first polygon; color C₁ fraction α_1


$$-\mathbf{C}_{d} = (1 - \alpha_{1})\mathbf{C}_{0} + \alpha_{1}\mathbf{C}_{1}$$

$$- \alpha_d = \alpha_1$$

- Render second polygon; assume fraction α_2
- If no overlap (a), then


$$-\mathbf{C'}_{d} = (1 - \alpha_2)\mathbf{C}_{d} + \alpha_2\mathbf{C}_2$$

$$- \alpha'_{d} = \alpha_1 + \alpha_2$$

Antialiasing with Overlap

- Now assume overlap (b)
- Average overlap is $\alpha_1 \alpha_2$
- So $\alpha_d = \alpha_1 + \alpha_2 \alpha_1 \alpha_2$
- Make front/back decision for color as usual

Antialiasing in OpenGL

- Avoid explicit α -calculation in program
- Enable both smoothing and blending

γλΕναβλε(ΓΛ_ΠΟΙΝΤ_ΣΜΟΟΤΗ); γλΕναβλε(ΓΛ_ΛΙΝΕ_ΣΜΟΟΤΗ); γλΕναβλε(ΓΛ_ΒΛΕΝΔ); γλΒλενδΦυνχ(ΓΛ_ΣΡΧ_ΑΛΠΗΑ, ΓΛ_ΟΝΕ_ΜΙΝΥΣ_ΣΡΧ_ΑΛΠΗΑ);

Depth Cueing and Fog

- Another application of blending
- Use distance-dependent (z) blending
 - Linear dependence: depth cueing effect
 - Exponential dependence: fog effect
 - This is not a physically-based model

```
 \begin{split} & \Gamma A \phi \lambda o \alpha \tau \phi \chi o \lambda o \rho [4] = \{ ... \}; \\ & \gamma \lambda E \nu \alpha \beta \lambda \epsilon (\Gamma \Lambda \_ \Phi O \Gamma); \\ & \gamma \lambda \Phi o \gamma \phi (\Gamma \Lambda \_ \Phi O \Gamma \_ MO \Delta E; \Gamma \Lambda \_ E \Xi \Pi); \\ & \gamma \lambda \Phi o \gamma \phi (\Gamma \Lambda \_ \Phi O \Gamma \_ \Delta E N \Sigma I T \Psi, 0.5); \\ & \gamma \lambda \Phi o \gamma \phi \varpi (\Gamma \Lambda \_ \Phi O \Gamma \_ X O \Lambda O P, \phi \chi o \lambda o p); \end{split}
```

[Example: Fog Tutor]

Summary

Scan Conversion for Polygons

- Basic scan line algorithm
- Convex vs concave
- Odd-even and winding rules, tessellation
- Antialiasing (spatial and temporal)
 - Area averaging
 - Supersampling
 - Stochastic sampling
- Compositing
 - Accumulation buffer
 - Blending and α -values

Preview

- Assignment 5 extended to Friday night
- Assignment 6 out tonight, due next Thursday
- Next topics:
 - More on image processing and pixel operations
 - Ray tracing