15-462 Computer Graphics I
 Lecture 16

Ray Tracing

> | Ray Casting |
| :--- |
| Ray-Surface Intersections |
| Barycentric Coordinates |
| Reflection and Transmission |
| [Angel, Ch 6.10.1][Handout] |

March 26, 2002
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

Local vs. Global Rendering Models

- Local rendering models (graphics pipeline)
- Object illuminations are independent
- No light scattering between objects
- No real shadows, reflection, transmission
- Global rendering models
- Ray tracing (highlights, reflection, transmission)
- Radiosity (surface interreflections)

Object Space vs. Image Space

- Graphics pipeline: for each object, render
- Efficient pipeline architecture, on-line
- Difficulty: object interactions
- Ray tracing: for each pixel, determine color
- Pixel-level parallelism, off-line
- Difficulty: efficiency, light scattering
- Radiosity: for each two surface patches, determine diffuse interreflections
- Solving integral equations, off-line
- Difficulty: efficiency, reflection

Forward Ray Tracing

- Rays as paths of photons in world space
- Forward ray tracing: follow photon from light sources to viewer
- Problem: many rays will not contribute to image!

Backward Ray Tracing

- Ray-casting: one ray from center of projection through each pixel in image plane
- Illumination

1. Phong (local as before)
2. Shadow rays
3. Specular reflection
4. Specular transmission

- (3) and (4) require recursion

Shadow Rays

- Determine if light "really" hits surface point
- Cast shadow ray from surface point to light
- If shadow ray hits opaque object,no contribution
- Improved diffuse reflection

Reflection Rays

- Calculate specular component of illumination
- Compute reflection ray (recall: backward!)
- Call ray tracer recursively to determine color
- Add contributions
- Transmission ray
- Analogue for transparent or translucent surface
- Use Snell's laws for refraction
- Later:
- Optimizations, stopping criteria

Ray Casting

- Simplest case of ray tracing
- Required as first step of recursive ray tracing
- Basic ray-casting algorithm
- For each pixel (x, y) fire a ray from COP through (x, y)
- For each ray \& object calculate closest intersection
- For closest intersection point p
- Calculate surface normal
- For each light source, calculate and add contributions
- Critical operations
- Ray-surface intersections
- Illumination calculation

Outline

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission

Ray-Surface Intersections

- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
- Spheres
- Planes
- Polygons
- Quadrics
- Do not decompose objects into triangles!
- CSG (Constructive Solid Geometry)
- Construct model from building blocks (later lecture)

Rays and Parametric Surfaces

- Ray in parametric form
- Origin $p_{0}=\left[\begin{array}{llll}x_{0} & y_{0} & z_{0} & 1\end{array}\right]^{\top}$
- Direction d = $\left[\begin{array}{llll}x_{d} & y_{d} & z_{d} & 0\end{array}\right]^{t}$
- Assume d normalized $\left(x_{d}{ }^{2}+y_{d}{ }^{2}+z_{d}{ }^{2}=1\right)$
- Ray $p(t)=p_{0}+d t$ for $t>0$
- Surface in parametric form
- Point $\mathbf{q}=\mathrm{g}(\mathrm{u}, \mathrm{v})$, possible bounds on u, v
- Solve p + d t = g(u, v)
- Three equations in three unknowns ($\mathrm{t}, \mathrm{u}, \mathrm{v}$)

Rays and Implicit Surfaces

- Ray in parametric form
- Origin $p_{0}=\left[\begin{array}{llll}x_{0} & y_{0} & z_{0} & 1\end{array}\right]^{\top}$
- Direction d = $\left[\begin{array}{llll}x_{d} & y_{d} & z_{d} & 0\end{array}\right]^{t}$
- Assume d normalized $\left(\mathrm{x}_{\mathrm{d}}{ }^{2}+\mathrm{y}_{\mathrm{d}}{ }^{2}+\mathrm{z}_{\mathrm{d}}{ }^{2}=1\right)$
- Ray $p(t)=p_{0}+d t$ for $t>0$
- Implicit surface
- Given by f(q) = 0
- Consists of all points q such that $f(q)=0$
- Substitute ray equation for $\mathbf{q}: f\left(p_{0}+d t\right)=0$
- Solve for t (univariate root finding)
- Closed form (if possible) or numerical approximation

Ray-Sphere Intersection I

- Common and easy case
- Define sphere by
- Center $\mathbf{c}=\left[\begin{array}{llll}x_{c} & y_{c} & z_{c} & 1\end{array}\right]^{\top}$
- Radius r
- Surface $f(q)=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}-r^{2}=0$
- Plug in ray equations for x, y, z :

$$
\begin{aligned}
& x=x_{0}+x_{d} t \\
& y=y_{0}+y_{d} t \\
& z=z_{0}+z_{d} t
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{0}+x_{d} t-x_{c}\right)^{2} \\
+ & \left(y_{0}+y_{d} t-y_{c}\right)^{2} \\
+\quad & \left(z_{0}+z_{d} t-z_{c}\right)^{2}=r^{2}
\end{aligned}
$$

Ray-Sphere Intersection II

- Simplify to

$$
a t^{2}+b t+c=0
$$

where

$$
\begin{aligned}
& a=x_{d}^{2}+y_{d}^{2}+z_{d}^{2}=1 \quad \text { since }|\mathbf{d}|=1 \\
& b=2\left(x_{d}\left(x_{0}-x_{c}\right)+y_{d}\left(y_{0}-y_{c}\right)+z_{d}\left(z_{0}-z_{c}\right)\right) \\
& c=\left(x_{0}-x_{c}\right)^{2}+\left(y_{0}-y_{c}\right)^{2}+\left(z_{0}-z_{c}\right)^{2}-r^{2}
\end{aligned}
$$

- Solve to obtain t_{0} and t_{1}

$$
t_{0,1}=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

Check if $\mathrm{t}_{0}, \mathrm{t}_{1}>0$ (ray)
Return $\min \left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)$

Ray-Sphere Intersection III

- For lighting, calculate unit normal

$$
\mathbf{n}=\frac{1}{r}\left[\left(x_{i}-x_{c}\right)\left(y_{i}-y_{c}\right)\left(z_{i}-z_{c}\right) 0\right]^{T}
$$

- Negate if ray originates inside the sphere!
- Note possible problems with roundoff errors

Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
- Calculate b² - 4c, abort if negative
- Compute normal only for closest intersection
- Other similar optimizations [Handout]

Inverse Mapping for Texture Coords.

- How do we determine texture coordinates?
- Inverse mapping problem
- No unique solution
- Reconsider in each case
- For different basic surfaces
- For surface meshes
- Still an area of research

Ray-Polygon Intersection I

- Assume planar polygon

1. Intersect ray with plane containing polygon
2. Check if intersection point is inside polygon

- Plane
- Implicit form: $a x+b y+c z+d=0$
- Unit normal: $\boldsymbol{n}=\left[\begin{array}{lll}a & b & c\end{array} 0^{\top}\right.$ with $a^{2}+b^{2}+c^{2}=1$
- Substitute:

$$
a\left(x_{0}+x_{d} t\right)+b\left(y_{0}+y_{d} t\right)+c\left(z_{0}+z_{d} t\right)+d=0
$$

- Solve:

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a x_{d}+b y_{d}+c z_{d}}
$$

Ray-Polygon Intersection II

- Substitute t to obtain intersection point in plane
- Test if point inside polygon [Lecture 15]
- For example, use even-odd rule or winding rule
- Easier in 2D (project) and for triangles (tesselate)

Ray-Polygon Intersection III

- Rewrite using dot product

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a x_{d}+b y_{d}+c z_{d}}=\frac{-\left(\mathbf{n} \cdot \mathbf{p}_{0}+d\right)}{\mathbf{n} \cdot \mathbf{d}}
$$

- If $\mathbf{n} \cdot \mathbf{d}=0$, no intersection
- If $\mathrm{t} \leq 0$ the intersection is behind ray origin
- Point-in-triangle testing critical for polygonal models
- Project onto planes $x=0, y=0$, or $z=0$ for point-in-polygon test; can be precomputed

Ray-Quadric Intersection

- Quadric $f(p)=f(x, y, z)=0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG
[see Handout]

Outline

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission

Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates
- Yields same answer as scan conversion

Barycentric Coordinates in 1D

- Linear interpolation
$-p(t)=(1-t) p_{1}+t p_{2}, 0 \leq t \leq 1$
$-p(t)=\alpha p_{1}+\beta p_{2}$ where $\alpha+\beta=1$
$-p$ is between p_{1} and p_{2} iff $0 \leq \alpha, \beta \leq 1$
- Geometric intuition
- Weigh each vertex by ratio of distances from ends

- α, β are called barycentric coordinates

Barycentric Coordinates in 2D

- Given 3 points instead of 2

- Define 3 barycentric coordinates, α, β, γ
- $\mathbf{p}=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3}$
- p inside triangle iff $0 \leq \alpha, \beta, \gamma \leq 1$
- How do we calculate α, β, γ given p ?

Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas

Computing Triangle Area

- In 3 dimensions
- Use cross product
- Parallelogram formula

- Area(ABC) $=(1 / 2)|(B-A) \times(C-A)|$
- Optimization: project, use 2D formula
- In 2 dimensions
- Area(x-y-proj(ABC)) = $(1 / 2)\left(\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(c_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\right)$

Outline

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission

Recursive Ray Tracing

- Calculate specular component
- Reflect ray from eye on specular surface
- Transmit ray from eye through transparent surface
- Determine color of incoming ray by recursion
- Trace to fixed depth
- Cut off if contribution below threshold

Angle of Reflection

- Recall: incoming angle = outgoing angle
- $\mathbf{r}=2(\mathbf{I} \cdot \mathbf{n}) \mathbf{n}-\mathbf{I}$
- For incoming/outgoing ray negate I!
- Compute only for surfaces with actual reflection
- Use specular coefficient
- Add specular and diffuse components

Transmitted Light

- Index of refraction is relative speed of light
- Snell's law
- $\eta_{1}=$ index of refraction for upper material
- $\eta_{\mathrm{t}}=$ index of refraction for lower material
and $\cos ^{2}\left(\theta_{t}\right)=1-\frac{1}{\eta^{2}}(1-\mathbf{l} \cdot \mathbf{n})$
Note: negate I or t for transmission!

Translucency

- Diffuse component of transmission
- Scatter light on other side of surface
- Calculation as for diffuse reflection
- Reflection or transmission not perfect
- Use stochastic sampling

Ray Tracing Preliminary Assessment

- Global illumination method
- Image-based
- Pluses
- Relatively accurate shadows, reflections, refractions
- Minuses
- Slow (per pixel parallelism, not pipeline parallelism)
- Aliasing
- Inter-object diffuse reflections

Ray Tracing Acceleration

- Faster intersections
- Faster ray-object intersections
- Object bounding volume
- Efficient intersectors
- Fewer ray-object intersections
- Hierarchical bounding volumes (boxes, spheres)
- Spatial data structures
- Directional techniques
- Fewer rays
- Adaptive tree-depth control
- Stochastic sampling
- Generalized rays (beams, cones)

Raytracing Example I

www.povray.org

Raytracing Example II

www.povray.org

Raytracing Example II

Saito, Saturn Ring

Raytracing Example IV

www.povray.org

Summary

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission

Preview

- Spatial data structures
- Ray tracing optimizations
- Assignment 6 due Thursday
- Assignment 7 (ray tracing) out this week (probably)

