15-213
 "The Class That Gives CMU Its Zip!" Bits and Bytes January 13, 2005

Topics
■ Why bits?

- Representing information as bits
- Binary / Hexadecimal
- Byte representations
" Numbers
" Characters and strings
" Instructions
- Bit-level manipulations
- Boolean algebra
- Expressing in C

Why Don't Computers Use Base 10?

Base 10 Number Representation

■ That's why fingers are known as "digits"

- Natural representation for financial transactions
- Floating point number cannot exactly represent \$1.20

■ Even carries through in scientific notation

- 15.213 X $10^{3} \quad$ (1.5213e4)

Implementing Electronically

- Hard to store
- ENIAC (First electronic computer) used 10 vacuum tubes / digit
- IBM 650 used 5+2 bits (1958, successor to IBM's Personal Automatic Computer, PAC from 1956)
- Hard to transmit
- Need high precision to encode 10 signal levels on single wire

■ Messy to implement digital logic functions

- Addition, multiplication, etc.

Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as $11101101101101 ~_{2}$
- Represent 1.20_{10} as $1.0011001100110011[0011] \ldots{ }_{2}$
- Represent 1.5213×10^{4} as $1.1101101101101_{2} \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

■ Conceptually very large array of bytes

- Actually implemented with hierarchy of different memory types
- SRAM, DRAM, disk
- Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular "process"
- Program being executed
- Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored

■ Multiple mechanisms: static, stack, and heap

- In any case, all allocation within single virtual address space

Encoding Byte Values

Byte $=8$ bits

- Binary $\mathbf{0 0 0 0 0 0 0 0}_{2}$ to $\mathbf{1 1 1 1 1 1 1 1 ~}_{2}$
- Decimal: $\quad \mathbf{0}_{10}$ to $\mathbf{2 5 5}_{10}$
- First digit must not be 0 in C
- Octal:
000_{8} to
0377 ${ }_{8}$
- Use leading 0 in \mathbf{C}
- Hexadecimal $\mathbf{0 0}_{16}$ to FF_{16}
- Base 16 number representation
- Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '
- Write FA1D37B ${ }_{16}$ in C as $0 \times$ FA1D37B
" Or 0xfa1d37b

$4^{e^{t}} p^{e^{i^{n}}} \sin ^{n^{2}}$		
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Literary Hex

Common 8-byte hex filler:

■ Oxdeadbeef
■ Can you think of other 8-byte fillers?

Machine Words

Machine Has "Word Size"

■ Nominal size of integer-valued data

- Including addresses

■ Most current machines use 32 bits (4 bytes) words

- Limits addresses to 4GB
- Becoming too small for memory-intensive applications

■ High-end systems use 64 bits (8 bytes) words

- Potential address space $\approx 1.8 \times 10^{19}$ bytes
- Machines support multiple data formats
- Fractions or multiples of word size
- Always integral number of bytes

Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Data Representations

Sizes of C Objects (in Bytes)

- Data Type	Alpha (RIP)	Typical 32-bit	Intel IA32
- unsigned	4	4	4
- int	4	4	4
- long int	8	4	4
- char	1	1	1
- short	2	2	2
- float	4	4	4
- double	8	8	8
- long double	$8 / 16 \dagger$	8	$10 / 12$
- char *	8	4	4
\quad " Or any other pointer			

(${ }^{\text {ः }}$ Depends on compiler\&OS, 128bit FP is done in software)

Byte Ordering

How should bytes within multi-byte word be ordered in memory?
Conventions
■ Suns, Macs (PPC) are "Big Endian" machines

- Least significant byte has highest address

■ Alphas, PC's are "Little Endian" machines

- Least significant byte has lowest address

Byte Ordering Example

Big Endian

■ Least significant byte has highest address
Little Endian
■ Least significant byte has lowest address

Example

■ Variable x has 4-byte representation 0x01234567

- Address given by $\& x$ is 0×100

Big Endian
$0 \times 100 \quad 0 \times 101 \quad 0 \times 102 \quad 0 \times 103$

		01	23	45	67		

Little Endian

$$
0 \times 100 \quad 0 \times 101 \quad 0 \times 102 \quad 0 \times 103
$$

		67	45	23	01		

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Examining Data Representations

Code to Print Byte Representation of Data

■ Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;
void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n",
        start+i, start[i]);
    printf("\n");
}
```

Printf directives:
\%p: Print pointer
$\% x$: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```


Result (x86 Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```


Representing Integers

```
int A = 15213;
int B = -15213;
long int C = 15213;
```

x86/Alpha A
x86/Alpha B Sun B

93	FF	
C 4		
FF		
FF		

Decimal: 15213
Binary: 0011101101101101
Hex: 3 B 6
x86 C Alpha C Sun C
OD

Two's complement representation (Covered next lecture)

Representing Pointers

```
int B = -15213;
int *P = &B;
```

| Alpha Address | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex: | 1 | F | F | F | F | F | C | A | 0 |
| Binary: | 0001 | 1111 | 1111 | 1111 | 1111 | 1111 | 1100 | 1010 | 0000 |

Sun P

Sun P
EF
FF
FB
$2 C$

```
Sun Address
Binary: 1110 1111 1111 1111 1111 1011 0010 1100
```

Sun Address								
Hex:	E	F	F	F	F	B	2	C
Binary:	1110	1111	1111	1111	1111	1011	0010	1100

| x86 Linux Address | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex: | B | F | F | F | F | 8 | D | 4 |
| Binary: | 1011 | 1111 | 1111 | 1111 | 1111 | 1000 | 1101 | 0100 |

AO
FC
FF
FF
01
00
00
00

Linux P

D 4
F 8
FF
BF

Different compilers \& machines assign different locations to objects

Representing Floats

```
Float F = 15213.0;
```

x86/Alpha F Sun F

| IEEE Single Precision Floating Point Representation | | | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex: | 4 | 6 | 6 | D | B | 4 | 0 | 0 |
| Binary: | 0100 | 0110 | 0110 | 1101 | 1011 | 0100 | 0000 | 0000 |
| 15213: | | | 1110 | 1101 | 1011 | 01 | | |

Not same as integer representation, but consistent across machines
Can see some relation to integer representation, but not obvious

Representing Strings

Strings in C

$$
\text { char } S[6]=\text { "15213"; }
$$

- Represented by array of characters

■ Each character encoded in ASCII format

- Standard 7-bit encoding of character set
- Character " 0 " has code 0×30
" Digit i has code $0 \times 30+i$
■ String should be null-terminated
- Final character = 0

Compatibility

x86/Alpha S Sun S

31	31
35	35
32	32
31	31
33	33
00	00

■ Byte ordering not an issue

- Text files generally platform independent
- Except for different conventions of line termination character(s)!
" Unix and modern MacOS (' $\backslash \mathrm{n}^{\prime}=0 \times 0 a=\wedge \mathrm{J}$)
" Older MacOS (' $\backslash r^{\prime}=0 x 0 d=\wedge \mathrm{M}$)
" DOS and HTTP ($\backslash r \backslash n^{\prime}=0 x 0 d 0 a={ }^{\wedge} M^{\wedge} J$)

Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
- Arithmetic operation
- Read or write memory
- Conditional branch

■ Instructions encoded as bytes

- Alphas, Suns, PPC use 4 byte instructions
" Reduced Instruction Set Computer (RISC)
- PC's use variable length instructions
" Complex Instruction Set Computer (CISC)
■ Different instruction types and encodings for different machines
- Most code is not binary compatible

Programs are Byte Sequences Too!

Representing Instructions

int sum(int x , int y$)$
\{
return $x+y$;
\}
■ For this example, Alpha \& Sun use two 4-byte instructions

- Use differing numbers of instructions in other cases

■ x86 uses 7 instructions with lengths 1, 2, and 3 bytes

- Same for NT and for Linux
- NT / Linux not fully binary compatible

Alpha sum	Sun sum	x86 sum
00	81	55
00	C3	89
30	E0	E5
42	08	8B
01	90	45
80	02	0C
FA	00	03
6B	09	45
		08
		89
		EC
		5D
		C3

Different machines use totally different instructions and encodings

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
- Encode "True" as 1 and "False" as 0

And Or

- $A \& B=1$ when both $A=1$ and
$B=1$

$\&$	0	1
0	0	0
1	0	1

Not

- ~A = 1 when $A=0$

\sim	
0	1
1	0

- $A \mid B=1$ when either $A=1$ or

$\mathrm{B=1} \quad |$| I | 0 | 1 |
| :--- | :--- | :--- |
| | 0 | 0 |
| 1 | | |
| 1 | 1 | 1 |

Exclusive-Or (Xor)

- $A^{\wedge} B=1$ when either $A=1$ or $B=1$, but not both

\wedge	0	1
0	0	1
1	1	0

Integer Algebra

Integer Arithmetic

- $\left\langle Z,+,{ }^{*},-, 0,1\right\rangle$ forms a "ring"
- Addition is "sum" operation
- Multiplication is "product" operation
- - is additive inverse
- 0 is identity for sum
- 1 is identity for product

Boolean Algebra

Boolean Algebra

■ $\langle\{0,1\}, \mathrm{I}, \&, \sim, 0,1\rangle$ forms a "Boolean algebra"

- Or is "sum" operation
- And is "product" operation

■ ~ is "complement" operation (not additive inverse)

- 0 is identity for sum
- 1 is identity for product

Boolean Algebra \approx Integer Ring

- Commutativity

$$
\begin{aligned}
& A I B=B I A \\
& A \& B=B \& A
\end{aligned}
$$

$A+B=B+A$
$A * B=B * A$

- Associativity

$$
\begin{array}{ll}
(A \mid B) I C=A I(B \mid C) & (A+B)+C=A+(B+C) \\
(A \& B) \& C=A \&(B \& C) & (A * B)^{*} C=A *(B * C)
\end{array}
$$

- Product distributes over sum

$$
A \&(B \mid C)=(A \& B) I(A \& C) \quad A *(B+C)=A * B+B * C
$$

- Sum and product identities

$$
\begin{array}{ll}
A 10=A & A+0=A \\
A \& 1=A & A * 1=A
\end{array}
$$

$$
A * 0=0
$$

- Cancellation of negation

$$
\sim(\sim A)=A \quad-(-A)=A
$$

Boolean Algebra \neq Integer Ring

- Boolean: Sum distributes over product

$$
A \mid(B \& C)=(A \mid B) \&(A \mid C) \quad A+(B * C) \neq(A+B)^{*}(A+C)
$$

- Boolean: Idempotency

$$
A \mid A=A \quad A+A \neq A
$$

- "A is true" or " A is true" = " A is true"

$$
A \& A=A \quad A * A \neq A
$$

- Boolean: Absorption

$$
A I(A \& B)=A \quad A+\left(A^{*} B\right) \neq A
$$

- "A is true" or " A is true and B is true" $=$ " A is true"

$$
A \&(A \mid B)=A \quad A *(A+B) \neq A
$$

- Boolean: Laws of Complements

$$
A \mid \sim A=1 \quad A+-A \neq 1
$$

- "A is true" or "A is false"
- Ring: Every element has additive inverse

$$
A \mid \sim A \neq 0 \quad A+-A=0
$$

Boolean Ring

- $\langle\{0,1\}, ~ \wedge, ~ \&, I, \mathbf{0}, 1\rangle$

Properties of \& and ^

- Identical to integers mod 2
- I is identity operation: $I(\mathrm{~A})=\mathrm{A}$

$$
A^{\wedge} A=0
$$

Property

- Commutative sum
- Commutative product
- Associative sum
- Associative product
- Prod. over sum
- 0 is sum identity
- 1 is prod. identity
- 0 is product annihilator
- Additive inverse

Boolean Ring
$A^{\wedge} B=B^{\wedge} A$
$A \& B=B \& A$
$\left(A^{\wedge} B\right)^{\wedge} C=A^{\wedge}\left(B^{\wedge} C\right)$
$(A \& B) \& C=A \&(B \& C)$
$A \&\left(B^{\wedge} C\right)=(A \& B)^{\wedge}(A \& C)$
$A^{\wedge} 0=A$
$A \& 1=A$
$A \& 0=0$
$A^{\wedge} A=0$

Relations Between Operations

DeMorgan's Laws

■ Express \& in terms of I, and vice-versa

- $A \& B=\sim(\sim A \mid \sim B)$
" A and B are true if and only if neither A nor B is false
- $A \mid B=\sim(\sim A \& \sim B)$
» A or B are true if and only if A and B are not both false
Exclusive-Or using Inclusive Or
- $A^{\wedge} B=(\sim A \& B) I(A \& \sim B)$
" Exactly one of A and B is true
- $A^{\wedge} B=(A \mid B) \& \sim(A \& B)$
" Either \mathbf{A} is true, or B is true, but not both

General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

01101001	01101001	01101001	
\& 01010101	01010101	ヘ 01010101	~ 01010101
01000001	01111101	00111100	10101010

All of the Properties of Boolean Algebra Apply

Representing \& Manipulating Sets

Representation

- Width w bit vector represents subsets of $\{0, \ldots, w-1\}$
- $\mathrm{a}_{j}=1$ if $j \in A$

01101001
76543210
01010101
$\{0,2,4,6\}$
76543210
Operations
■ \& Intersection $01000001\{0,6\}$

- I Union $01111101\{0,2,3,4,5,6\}$
- ^ Symmetric difference $00111100\{2,3,4,5\}$

■ ~ Complement $10101010\{1,3,5,7\}$

Bit-Level Operations in C

Operations \&, I, ~, ^ Available in C

- Apply to any "integral" data type
- long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)
■ ~0x41 --> 0xBE
$\sim 01000001_{2} \quad-->10111110_{2}$

- ~0x00 --> 0xFF
$\sim 00000000_{2} \quad-->11111111_{2}$
■ 0x69 \& $0 \times 55 \quad-->\quad 0 \times 41$
$01101001_{2} \& 01010101_{2}-->01000001_{2}$
■ 0x69 | $0 \times 55-->\quad 0 \times 7 D$
$01101001_{2} \mid{01010101_{2}}^{-->} 01111101_{2}$

Contrast: Logic Operations in C

Contrast to Logical Operators

$\square \& \&, \mid I,!$

- View 0 as "False"
- Anything nonzero as "True"
- Always return 0 or 1
- Early termination

Examples (char data type)
■! 0×41--> 0×00
-! 0×00--> 0×01
■!!0x41 --> 0x01

- 0×69 \&\& $0 \times 55 \quad-->\quad 0 \times 01$

■ 0x69 || 0x55 --> 0x01

- $\mathrm{p} \& \& \mathrm{*}_{\mathrm{p}}$ (avoids null pointer access)

Shift Operations

Left Shift: \quad x $\ll y$

- Shift bit-vector x left y positions
- Throw away extra bits on left
- Fill with 0's on right

Right Shift: x >> y
■ Shift bit-vector x right y positions

- Throw away extra bits on right

■ Logical shift

- Fill with 0's on left
- Arithmetic shift
- Replicate most significant bit on

Argument x	01100010
$\ll 3$	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
$\ll 3$	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

- Useful with two's complement integer representation

Cool Stuff with Xor

■ Bitwise Xor is form of addition
■ With extra property that every value is its own additive inverse

$$
A^{\wedge} A=0
$$

```
void funny(int *x, int *y)
{
    *x = *x ^ *y; /* #1 */
    *y = *x ^ *y; /* #2 */
    *x = *x ^ *y; /* #3 */
}
```

	${ }^{\star} \mathbf{x}$	${ }^{*} \mathbf{y}$
Begin	A	B
1	$\mathrm{~A}^{\wedge} \mathrm{B}$	B
2	$\mathrm{~A}^{\wedge} \mathrm{B}$	$\left(\mathrm{A}^{\wedge} \mathrm{B}\right)^{\wedge} \mathrm{B}=\mathrm{A}$
3	$\left(\mathrm{~A}^{\wedge} \mathrm{B}\right)^{\wedge} \mathrm{A}=\mathrm{B}$	A
End	B	A

More Bitvector Magic

Count the number of 1's in a word MIT Hackmem 169:

```
int bitcount(unsigned int n)
{
    unsigned int tmp;
    tmp = n - ((n >> 1) & 033333333333)
    - ((n >> 2) & 011111111111);
    return ((tmp + (tmp >> 3)) & 030707070707)%63;
}
```


Some Other Uses for Bitvectors

Representation of small sets

Representation of polynomials:
■ Important for error correcting codes

- Arithmetic over finite fields, say GF($2^{\wedge} n$)

■ Example 0x15213: $\mathbf{x}^{16}+\mathrm{x}^{14}+\mathrm{x}^{12}+\mathrm{x}^{9}+\mathrm{x}^{4}+\mathrm{x}+1$
Representation of graphs

- A '1' represents the presence of an edge

Representation of bitmap images, icons, cursors, ...

- Exclusive-or cursor patent

Representation of Boolean expressions and logic circuits

Summary of the Main Points

It's All About Bits \& Bytes

- Numbers
- Programs
- Text

Different Machines Follow Different Conventions for

- Word size
- Byte ordering
- Representations

Boolean Algebra is the Mathematical Basis

- Basic form encodes "false" as 0, "true" as 1
- General form like bit-level operations in C
- Good for representing \& manipulating sets

