Lecture Notes on
 Loop Optimizations

15-411: Compiler Design
Frank Pfenning

Lecture 17
October 21, 2014

1 Introduction

Optimizing loops is particularly important in compilation, since loops (and in particular the inner loops) account for much of the executions times of many programs. Since tail-recursive functions are usually also turned into loops, the importance of loop optimizations is further magnified. In this lecture we will discuss two main ones: hoisting loop-invariant computation out of a loop, and optimizations based on induction variables.

2 What Is a Loop?

Before we discuss loop optimizations, we should discuss what we identify as a loop. In our source language, this is rather straightforward, since loops are formed with while or for, where it is convenient to just elaborate a for loop into its corresponding while form.

The key to a loop is a back edge in the control-flow graph from a node l to a node h that dominates l. We call h the header node of the loop. The loop itself then consists of the nodes on a path from h to l. It is convenient to organize the code so that a loop can be identified with its header node. We then write loop (h, l) if line l is in the loop with header h.

When loops are nested, we generally optimize the inner loops before the outer loops. For one, inner loops are likely to be executed more often. For another, it could move computation to an outer loop from which it is hoisted further when the outer loop is optimized and so on.

3 Hoisting Loop-Invariant Computation

A (pure) expression is loop invariant if its value does not change throughout the loop. We can then define the predicate $\operatorname{inv}(h, p)$, where p is a pure expression, as follows:

$$
\frac{c \text { constant }}{\operatorname{inv}(h, c)} \quad \frac{\operatorname{def}(l, x) \neg \operatorname{loop}(h, l)}{\operatorname{inv}(h, x)} \quad \frac{\operatorname{inv}\left(h, s_{1}\right) \operatorname{inv}\left(h, s_{2}\right)}{\operatorname{inv}\left(h, s_{1} \oplus s_{2}\right)}
$$

Since we are concerned only with programs in SSA form, it is easy to see that variables are loop invariant if they are not parameters of the header label. However, the definition above does not quite capture this for definitions $t \leftarrow p$ where p is loopinvariant but t is not part of the label parameters. So we add a second propagation rule.

$$
\frac{l: t \leftarrow p \quad \operatorname{inv}(h, p) \quad \operatorname{loop}(h, l)}{\operatorname{inv}(h, t)}
$$

Note that we do not consider memory references or function calls to be loop invariant, although under some additional conditions they may be hoisted as well.

In order to hoist loop invariant computations out of a loop we should have a loop preheader in the control-flow graph, which immediately dominates the loop header. When then move all the loop invariant computations to the preheader, in order.

Some care must be taken with this optimization. For example, when the loop body is never executed the code could become significantly slower. Another problem if we have conditionals in the body of the loop: values computed only on one branch or the other will be loop invariant, but depending on the boolean condition one or the other may never be executed.

In some cases, when the loop guard is inexpensive and effect-free but the loopinvariant code is expensive, we might consider duplicating the test so that instead of

$$
\operatorname{seq}(p r e, \text { while }(e, s))
$$

we generate code for

$$
\operatorname{seq}(\operatorname{if}(e, \operatorname{seq}(p r e, \text { while }(e, s)), \text { nop }))
$$

where pre is the hoisted computation in the loop pre-header.
A typical example of hoisting loop invariant computation would be a loop to initialize all elements of a two-dimensional array:

```
for (int i = 0; i < width * height; i++)
    A[i] = 1;
```

We show the relevant part of the abstract assembly on the left. In the right is the result of hoisting the multiplication, enabled because both width and height are loop invariant and therefore their product is.

```
    io}\leftarrow
    goto loop(in)
loop(i, ):
    t\leftarrow width * height
    if (i, \geqt) goto exit
    i
    goto loop(i2)
exit :
```

```
    \(i_{0} \leftarrow 0\)
```

 \(i_{0} \leftarrow 0\)
 \(t \leftarrow\) width \(*\) height
 \(t \leftarrow\) width \(*\) height
 goto loop \(\left(i_{0}\right)\)
 goto loop \(\left(i_{0}\right)\)
 $\operatorname{loop}\left(i_{1}\right)$:
$\operatorname{loop}\left(i_{1}\right)$:
if $\left(i_{1} \geq t\right)$ goto exit
if $\left(i_{1} \geq t\right)$ goto exit
$i_{2} \leftarrow i_{1}+1$
$i_{2} \leftarrow i_{1}+1$
goto loop $\left(i_{2}\right)$
goto loop $\left(i_{2}\right)$
exit :

```
exit :
```


4 Induction Variables

Hoisting loop invariant computation is significant; optimizing computation which changes by a constant amount each time around the loop is probably even more important. We call such variables basic induction variables. The opportunity for optimization arises from derived induction variables, that is, variables that are computed from basic induction variables.

As an example we will use a function check if a given array is sorted in ascending order.

```
bool is_sorted(int[] A, int n)
//@requires 0 <= n && n <= \length(A);
{
    for (int i = 0; i < n-1; i++)
        //@loop_invariant 0 <= i;
        if (A[i] > A[i+1]) return false;
    return true;
}
```

Below is a possible compiled SSA version of this code, assuming that we do not
perform array bounds checks (or have eliminated them).

```
is_sorted \((A, n)\) :
    \(i_{0} \leftarrow 0\)
    goto loop \(\left(i_{0}\right)\)
\(\operatorname{loop}\left(i_{1}\right):\)
    \(t_{0} \leftarrow n-1\)
    if \(\left(i_{1} \geq t_{0}\right)\) goto rtrue
    \(t_{1} \leftarrow 4 * i_{1}\)
    \(t_{2} \leftarrow A+t_{1}\)
    \(t_{3} \leftarrow M\left[t_{2}\right]\)
    \(t_{4} \leftarrow i_{1}+1\)
    \(t_{5} \leftarrow 4 * t_{4}\)
    \(t_{6} \leftarrow A+t_{5}\)
    \(t_{7} \leftarrow M\left[t_{6}\right]\)
    if \(\left(t_{3}>t_{7}\right)\) goto rfalse
    \(i_{2} \leftarrow i_{1}+1\)
    goto loop \(\left(i_{2}\right)\)
rtrue :
    return 1
rfalse :
    return 0
```

Here, i_{1} is the basic induction variable, and $t_{1}=4 * i_{1}$ and $t_{4}=i_{1}+1$ are the derived induction variables. In general, we consider a variable a derived induction variable if its has the form $a * i+b$, where a and b are loop invariant.

Let's consider t_{4} first. We see that common subexpression elimination applies. However, we would like to preserve the basic induction variable i_{1} and its version
i_{2}, so we apply code motion and then eliminate the second occurrence of $i_{1}+1$.

is_sorted $(A, n):$	is_sorted $(A, n):$	is_sorted $(A, n):$
$i_{0} \leftarrow 0$	$i_{0} \leftarrow 0$	$i_{0} \leftarrow 0$
goto loop $\left(i_{0}\right)$	goto loop $\left(i_{0}\right)$	goto $\operatorname{loop}\left(i_{0}\right)$
$\operatorname{loop}\left(i_{1}\right):$	$\operatorname{loop}\left(i_{1}\right):$	$\operatorname{loop}\left(i_{1}\right):$
$t_{0} \leftarrow n-1$	$t_{0} \leftarrow n-1$	$t_{0} \leftarrow n-1$
if $\left(i_{1} \geq t_{0}\right)$ goto rtrue	if $\left(i_{1} \geq t_{0}\right)$ goto rtrue	if $\left(i_{1} \geq t_{0}\right)$ goto rtrue
$t_{1} \leftarrow 4 * i_{1}$	$t_{1} \leftarrow 4 * i_{1}$	$t_{1} \leftarrow 4 * i_{1}$
$t_{2} \leftarrow A+t_{1}$	$t_{2} \leftarrow A+t_{1}$	$t_{2} \leftarrow A+t_{1}$
$t_{3} \leftarrow M\left[t_{2}\right]$	$t_{3} \leftarrow M\left[t_{2}\right]$	$t_{3} \leftarrow M\left[t_{2}\right]$
$t_{4} \leftarrow i_{1}+1$	$t_{4} \leftarrow i_{1}+1$	$i_{2} \leftarrow i_{1}+1$
$t_{5} \leftarrow 4 * t_{4}$	$t_{5} \leftarrow 4 * t_{4}$	$t_{5} \leftarrow 4 * i_{2}$
$t_{6} \leftarrow A+t_{5}$	$t_{6} \leftarrow A+t_{5}$	$t_{6} \leftarrow A+t_{5}$
$t_{7} \leftarrow M\left[t_{6}\right]$	$t_{7} \leftarrow M\left[t_{6}\right]$	$t_{7} \leftarrow M\left[t_{6}\right]$
if $\left(t_{3}>t_{7}\right)$ goto rfalse	if $\left(t_{3}>t_{7}\right)$ goto rfalse	if $\left(t_{3}>t_{7}\right)$ goto rfalse
$i_{2} \leftarrow i_{1}+1$	$i_{2} \leftarrow t_{4}$	
goto loop $\left(i_{2}\right)$	goto loop $\left(i_{2}\right)$	goto loop $\left(i_{2}\right)$

In the second step we applied copy propagation and then renamed t_{4} to i_{2} for easier reading (but not formally required).

Next we look at the derived induction variable $t_{1} \leftarrow 4 * i_{1}$. The idea is to see how we can calculate t_{1} at a subsequent iteration from t_{1} at a prior iteration. In order to achieve this effect, we add a new induction variable to represent $4 * i_{1}$. We call this j and add it to our loop variables in SSA form.

$$
\begin{array}{ll}
\text { is_sorted }(A, n): & \\
& i_{0} \leftarrow 0 \\
& \\
j_{0} \leftarrow 4 * i_{0} & \text { @ensures } j_{0}=4 * i_{0} \\
\text { goto loop }\left(i_{0}, j_{0}\right) & \\
\text { loop }\left(i_{1}, j_{1}\right): & \text { @requires } j_{1}=4 * i_{1} \\
t_{0} \leftarrow n-1 & \\
\text { if }\left(i_{1} \geq t_{0}\right) \text { goto rtrue } & \\
t_{1} \leftarrow j_{1} & \text { @assert } j_{1}=4 * i_{1} \\
t_{2} \leftarrow A+t_{1} & \\
t_{3} \leftarrow M\left[t_{2}\right] & \\
i_{2} \leftarrow i_{1}+1 & \\
j_{2} \leftarrow 4 * i_{2} & \text { @ensures } j_{2}=4 * i_{2} \\
t_{4} \leftarrow i_{2} & \\
t_{5} \leftarrow 4 * t_{4} & \\
t_{6} \leftarrow A+t_{5} & \\
t_{7} \leftarrow M\left[t_{6}\right] & \\
\text { if }\left(t_{3}>t_{7}\right) \text { goto rfalse } & \\
\text { goto loop }\left(i_{2}, j_{2}\right) &
\end{array}
$$

Crucial here is the invariant that $j_{1}=4 * i_{1}$ when label loop $\left(i_{1}, j_{1}\right)$ is reached. Now we calculate

$$
j_{2}=4 * i_{2}=4 *\left(i_{1}+1\right)=4 * i_{1}+4=j_{1}+4
$$

so we can express j_{2} in terms of j_{1} without multiplication. This is an example of strength reduction since addition is faster than multiplication. Recall that all the laws we used are valid for modular arithmetic. Similarly:

$$
j_{0}=4 * i_{0}=0
$$

since $i_{0}=0$, which is an example of constant propagation followed by constant folding.

$$
\begin{array}{ll}
\text { is_sorted }(A, n): & \\
& i_{0} \leftarrow 0 \\
& \text { @ensures } j_{0}=4 * i_{0} \\
j_{0} \leftarrow 0 & \\
\text { goto loop }\left(i_{0}, j_{0}\right) & \text { @requires } j_{1}=4 * i_{1} \\
\operatorname{loop}\left(i_{1}, j_{1}\right): & \\
t_{0} \leftarrow n-1 & \\
\text { if }\left(i_{1} \geq t_{0}\right) \text { goto rtrue } & \\
t_{1} \leftarrow j_{1} & \text { @assert } j_{1}=4 * i_{1} \\
t_{2} \leftarrow A+t_{1} & \\
t_{3} \leftarrow M\left[t_{2}\right] & \\
i_{2} \leftarrow i_{1}+1 & \\
j_{2} \leftarrow j_{1}+4 & \text { @ensures } j_{2}=4 * i_{2} \\
t_{4} \leftarrow i_{2} & \\
t_{5} \leftarrow 4 * t_{4} & \\
t_{6} \leftarrow A+t_{5} & \\
t_{7} \leftarrow M\left[t_{6}\right] & \\
\text { if }\left(t_{3}>t_{7}\right) \text { goto rfalse } & \\
\text { goto loop }\left(i_{2}, j_{2}\right) &
\end{array}
$$

With some copy propagation, and noticing that $n-1$ is loop invariant, we next get:

$$
\begin{array}{ll}
\text { is_sorted }(A, n): & \\
& i_{0} \leftarrow 0 \\
j_{0} \leftarrow 0 & \text { @ensures } j_{0}=4 * i_{0} \\
t_{0} \leftarrow n-1 & \\
\text { goto loop }\left(i_{0}, j_{0}\right) & \\
\text { loop }\left(i_{1}, j_{1}\right): & \\
\text { if }\left(i_{1} \geq t_{0}\right) \text { goto rtrue } & \\
t_{2} \leftarrow A+j_{1} & \\
t_{3} \leftarrow M\left[t_{2}\right] & \\
i_{2} \leftarrow i_{1}+1 & \\
j_{2} \leftarrow j_{1}+4 & \text { @ensures } j_{2}=4 * i_{2}=4 * i_{1} \\
t_{5} \leftarrow 4 * i_{2} & \\
t_{6} \leftarrow A+t_{5} & \\
t_{7} \leftarrow M\left[t_{6}\right] & \\
\text { if }\left(t_{3}>t_{7}\right) \text { goto rfalse } & \\
\text { goto loop }\left(i_{2}, j_{2}\right) &
\end{array}
$$

With common subexpression elimination (noting the additional assertions we are aware of), we can replace $4 * i_{2}$ by j_{2}. We combine this with copy propagation.

```
is_sorted \((A, n)\) :
    \(i_{0} \leftarrow 0\)
    \(j_{0} \leftarrow 0 \quad\) @ensures \(j_{0}=4 * i_{0}\)
    \(t_{0} \leftarrow n-1\)
    goto loop \(\left(i_{0}, j_{0}\right)\)
\(\operatorname{loop}\left(i_{1}, j_{1}\right): \quad\) @requires \(j_{1}=4 * i_{1}\)
    if \(\left(i_{1} \geq t_{0}\right)\) goto rtrue
    \(t_{2} \leftarrow A+j_{1}\)
    \(t_{3} \leftarrow M\left[t_{2}\right]\)
    \(i_{2} \leftarrow i_{1}+1\)
    \(j_{2} \leftarrow j_{1}+4 \quad\) @ensures \(j_{2}=4 * i_{2}\)
    \(t_{6} \leftarrow A+j_{2}\)
    \(t_{7} \leftarrow M\left[t_{6}\right]\)
    if \(\left(t_{3}>t_{7}\right)\) goto rfalse
    goto loop \(\left(i_{2}, j_{2}\right)\)
```

We observe another derived induction variable, namely $t_{2}=A+j_{1}$. We give this a new name ($k_{1}=A+j_{1}$) and introduce it into our function. Again we just calculate:

```
\(k_{2}=A+j_{2}=A+j_{1}+4=k_{1}+4\) and \(k_{0}=A+j_{0}=A\).
is_sorted \((A, n)\) :
    \(i_{0} \leftarrow 0\)
    \(j_{0} \leftarrow 0 \quad\) @ensures \(j_{0}=4 * i_{0}\)
    \(k_{0} \leftarrow A+j_{0} \quad\) @ensures \(k_{0}=A+j_{0}\)
    \(t_{0} \leftarrow n-1\)
    goto loop \(\left(i_{0}, j_{0}, k_{0}\right)\)
\(\operatorname{loop}\left(i_{1}, j_{1}, k_{1}\right): \quad\) @requires \(j_{1}=4 * i_{1} \wedge k_{1}=A+j_{1}\)
    if \(\left(i_{1} \geq t_{0}\right)\) goto rtrue
    \(t_{2} \leftarrow k_{1}\)
    \(t_{3} \leftarrow M\left[t_{2}\right]\)
    \(i_{2} \leftarrow i_{1}+1\)
    \(j_{2} \leftarrow j_{1}+4 \quad\) @ensures \(j_{2}=4 * i_{2}\)
    \(k_{2} \leftarrow k_{1}+4 \quad\) @ensures \(k_{2}=A+j_{2}\)
    \(t_{6} \leftarrow A+j_{2}\)
    \(t_{7} \leftarrow M\left[t_{6}\right]\)
    if \(\left(t_{3}>t_{7}\right)\) goto rfalse
    goto loop \(\left(i_{2}, j_{2}, k_{2}\right)\)
```

After more round of constant propagtion, common subexpression elimination, and dead code elimination we get:

```
is_sorted \((A, n)\) :
    \(i_{0} \leftarrow 0\)
    \(j_{0} \leftarrow 0 \quad\) @ensures \(j_{0}=4 * i_{0}\)
    \(k_{0} \leftarrow A \quad\) @ensures \(k_{0}=A+j_{0}\)
    \(t_{0} \leftarrow n-1\)
    goto loop \(\left(i_{0}, j_{0}, k_{0}\right)\)
\(\operatorname{loop}\left(i_{1}, j_{1}, k_{1}\right): \quad\) @requires \(j_{1}=4 * i_{1} \wedge k_{1}=A+j_{1}\)
    if ( \(i_{1} \geq t_{0}\) ) goto rtrue
    \(t_{3} \leftarrow M\left[k_{1}\right]\)
    \(i_{2} \leftarrow i_{1}+1\)
    \(j_{2} \leftarrow j_{1}+4 \quad\) @ensures \(j_{2}=4 * i_{2}\)
    \(k_{2} \leftarrow k_{1}+4 \quad\) @ensures \(k_{2}=A+j_{2}\)
    \(t_{7} \leftarrow M\left[k_{2}\right]\)
    if \(\left(t_{3}>t_{7}\right)\) goto rfalse
    goto loop \(\left(i_{2}, j_{2}, k_{2}\right)\)
```

With neededness analysis we can say that j_{0}, j_{1}, and j_{2} are no longer needed and
can be eliminated.

$$
\begin{array}{ll}
\text { is_sorted }(A, n): & \\
& i_{0} \leftarrow 0 \\
k_{0} \leftarrow A & \text { @ensures } k_{0}=A+4 * i_{0} \\
t_{0} \leftarrow n-1 & \\
\text { goto loop }\left(i_{0}, k_{0}\right) & \text { @requires } k_{1}=A+4 * i_{1} \\
\text { loop }\left(i_{1}, k_{1}\right): & \\
\text { if }\left(i_{1} \geq t_{0}\right) \text { goto rtrue } & \\
t_{3} \leftarrow M\left[k_{1}\right] & \\
i_{2} \leftarrow i_{1}+1 & \text { @ensures } k_{2}=A+4 * i_{2} \\
k_{2} \leftarrow k_{1}+4 & \\
t_{7} \leftarrow M\left[k_{2}\right] & \\
\text { if }\left(t_{3}>t_{7}\right) \text { goto rfalse } & \\
\text { goto loop }\left(i_{2}, k_{2}\right) &
\end{array}
$$

Unfortunately, i_{1} is still needed, since it governs a conditional jump. In order to eliminate that we would have to observe that

$$
i_{1} \geq t_{0} \text { iff } A+4 * i_{1} \geq A+4 * t_{0}
$$

This holds since the addition here is a on 64 bit quantities where the second operand is 32 bits, so no overflow can occur. The general case under which we can make this observation is a bit unclear. It may be one should look for induction variables that are not needed except for conditions in conditional branches (which would be the case here). Or we might make a particular effort to remove basic induction variables once derived ones have been introduced. In any case, if we exploit this we obtain:

```
is_sorted \((A, n)\) :
    \(i_{0} \leftarrow 0\)
    \(k_{0} \leftarrow A \quad\) @ensures \(k_{0}=A+4 * i_{0}\)
    \(t_{0} \leftarrow n-1\)
    goto loop \(\left(i_{0}, k_{0}\right)\)
\(\operatorname{loop}\left(i_{1}, k_{1}\right): \quad\) @requires \(k_{1}=A+4 * i_{1}\)
    if ( \(k_{1} \geq A+4 * t_{0}\) ) goto rtrue
    \(t_{3} \leftarrow M\left[k_{1}\right]\)
    \(i_{2} \leftarrow i_{1}+1\)
    \(k_{2} \leftarrow k_{1}+4 \quad\) @ensures \(k_{2}=A+4 * i_{2}\)
    \(t_{7} \leftarrow M\left[k_{2}\right]\)
    if \(\left(t_{3}>t_{7}\right)\) goto rfalse
    goto loop \(\left(i_{2}, k_{2}\right)\)
```

Now i_{0}, i_{1}, and i_{2} are no longer needed and can be eliminated. Moreover, $A+4 * t_{0}$
is loop invariant and can be hoisted.

```
is_sorted \((A, n)\) :
    \(k_{0} \leftarrow A\)
    \(t_{0} \leftarrow n-1\)
    \(t_{8} \leftarrow 4 * t_{0}\)
    \(t_{9} \leftarrow A+t_{8}\)
    goto loop \(\left(k_{0}\right)\)
\(\operatorname{loop}\left(k_{1}\right)\) :
    if \(\left(k_{1} \geq t_{9}\right)\) goto rtrue
    \(t_{3} \leftarrow M\left[k_{1}\right]\)
    \(k_{2} \leftarrow k_{1}+4\)
    \(t_{7} \leftarrow M\left[k_{2}\right]\)
    if \(\left(t_{3}>t_{7}\right)\) goto rfalse
    goto loop \(\left(k_{2}\right)\)
rtrue :
    return 1
rfalse :
    return 0
```

It was suggested that we can avoid two memory accesses per iteration by unrolling the loop once. This make sense, but this opimization is beyond the scope of this lecture.

We have carried out the optimizations here on concrete programs and values, but it is straightforward to generalize them to arbitrary induction variables x that are updated with $x_{2} \leftarrow x_{1} \pm c$ for a constant c, and derived variables that arise from constant multiplication with or addition to a basic induction variable.

