
Lecture Notes on
Purity Checking

15-411: Compiler Design
Frank Pfenning

Lecture 19
October 30, 2014

1 Introduction

In this lecture we discuss purity checking, which analyzes functions to determine
if they are “pure”, where purity can take slightly different meanings in different
contexts. It is a good example for a program analysis which can be relevant in the
front end to provide errors or warnings, and also in the back end for optimizations.

C0 uses purity checking in the front end to rule out contracts that change the
behavior of programs. Such programs could behave differently with and without
contracts even if there are no contract violations, which goes against their intent.

In the back end purity checking can be used to determine if function calls may
represent dead code (something we did not account for in Lecture 5), or if a func-
tion call may affect heap content (see Lecture 18, page L18.4).

Intraprocedural optimizations are those that confine themselves to analyzing
and optimizing one function at a time. Because of the locality of the analysis and
transformation, these are designed to improve loops, basic operations, register al-
locations, register moves, etc., and work well with local variables. However, func-
tions may share the heap in which larger data structures are allocated. Optimiza-
tions that try to optimize memory consumption or accesses are therefore less effec-
tive if they consider code only one function at a time. Thus the need for so-called
interprocedural analysis and optimizations. We have already seen inlining and tail-call
optimization as particular case that involve two functions and can avoid or dras-
tically reduce the overhead of function calls. Perhaps even more importantly, they
enable further optimizations. Knowing when cells in the heap may or may not be
modified is similarly important.

LECTURE NOTES OCTOBER 30, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/05-dataflow.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/18-memopt.pdf

Purity Checking L19.2

2 Purity Checking Contracts

The C0 language has a built-in function \length(e) for an expression e of type τ [].
However, this function can only be called from inside contracts in order to be con-
sistent with C where the length of arrays cannot be calculated at runtime. Clever
students in the course on Principles of Imperative Computation have devised the
following hack to get around this restriction:

bool store_int(int* p, int n) {

*p = n;

return true;

}

int get_length(int[] A) {

int* p = alloc(int);

//@assert store_int(p, \length(A));

return *p;

}

However, this is deeply flawed: while get length(A) will indeed return the length
ofA if the code is compiled with contract-checking enabled (cc0 -d), it will always
return 0 when contract-checking is disabled. In the latter case the //@assert is
ignored and the default value of type int is returned.

In order to flag such code as incorrect, the cc0 compiler checks that functions
that are called in contracts are pure. Such functions (and contracts in general) are
still allowed to raise exceptions or even have side effects such a printing, but they
may not mutate memory that has been allocated before they are called. It is permit-
ted to mutate memory allocated inside pure functions, because this will not affect
the outcome of computation if contracts are erased.

Contracts may raise an exception (which we allow—it is one purpose of con-
tracts to raise exceptions if they are not satisfied) and they could fail to terminate
(which we also allow). Otherwise, they can only affect memory through function
calls, since assignments in C0 are statements rather than expressions. So consider a
function call f(e1, . . . , en) inside a contract. It is permitted if all heap locations that
are reachable from the argument ei are not modified by f or any other functions
it might call. In other words, all memory reachable from the arguments must be
read-only. “Reachability” here refers to being able to access array elements, struct
fields, and dereferencing pointers.

LECTURE NOTES OCTOBER 30, 2014

http://www.cs.cmu.edu/~fp/courses/15122/

Purity Checking L19.3

3 Purity Checking for Memory Optimizations

Consider the following code segment in three-address form.

t ← M [a]
r ← f(s1, . . . , sn)
t′ ← M [a] (replace by t′ ← t?)

We can optimize away the memory access if we can be sure that the call to f will not
modifyM [a], the memory at address a. As we discussed in lecture, if all of the si are
booleans or integers, this is guaranteed in C0 since we have no global variables. A
refinement is to allow addresses to be passed but check f to make sure that neither
those addresses nor any other heap addresses reachable from them are modified.
A further improvement on that would be to allow memory modifications, but only
if they can be shown not to alias with M [a].

We take here the middle ground, because this coincides with the information
we obtain from purity checking as motivated in the previous section. The last re-
finement would be aided both by type-based and by allocation-based global alias
analysis which we do not detail here.

4 Purity Analysis as a Type System

When designing program analyses we first need to consider which representation
to define it on. Generally speaking, a program analysis that is designed for pro-
grammer feedback should be done earlier in the compiler, while an analysis done
to enable optimization should be done later. Because purity analysis can be used to
report errors for impure contracts, we provide it here on the abstract syntax after
elaboration. If we also want to use it for optimization we can preserve that infor-
mation and then reference it while optimizing in the middle end of the compiler.

The second question is how to define the analysis. Generally, this can be broken
down into (a) a specification, and (b) an implementation. For analyses on abstract
assembly, the specification so far has been mostly via inference rules, while the
implementation simply runs them to saturation. We illustrate here a different tech-
nique, whereby the specification of the property in question is as a type system,
and the implementation is a form of type inference. This is particularly common
for analyses applied near the front end of a compiler, usually on the abstract syntax.

For simplicity, we omit structs from the formal development and focus on point-
ers and arrays. We will make some remarks on extensions with structs in Section 6.
So we have:

Types τ ::= int | bool | τ∗ | τ []

We now want to generalize this type language to track whether memory is read-
only or may be mutated. Since τ∗ and τ [] reference memory, only these types are

LECTURE NOTES OCTOBER 30, 2014

Purity Checking L19.4

annotated as such. We write τ r∗ for the type of a cell that is read-only, and simi-
larly τ r[] for an array whose elements are read-only. We write m indicate mutable
memory.

Permissions p ::= m | r
Permission Types τ ::= int | bool | τp∗ | τp[]

Our next task will be to rewrite the typing rules to take permissions into account.
One important property will be that if all types are mutable, then all programs that
check with regular types should also check with purity types. In other words, read-
only permissions impose a restriction on programs, in accordance with our goal to
restrict functions called from contracts to be pure.

We begin with the typing of expressions. Recall that the typing judgment has
the form

Γ ` e : τ

where Γ is a context assigning types to variables, written as xi:τi. Expressions only
read the content of memory, except possibly through a function call, so the rules
are for the most part straightforward.

Γ(x) = τ

Γ ` x : τ Γ ` n : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ⊕ e2 : int

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 == e2 : bool

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` (e1 ? e2 : e3) : τ

The last two rules, for equalities and conditionals, raise a question: what if the
types of two expressions have the same regular type, but their permissions vary?
Let’s consider an example:

bool cond = ...;

int[] A = ...;

int[] B = ...;

int[] C = cond ? A : B;

Which combinations of permissions for A, B, and C make sense? If A and B have
the same permission p, then C should clearly have the same permission. If one
of them (say, A) is read-only (r) and the other mutable (m), should the expression
type-check, and would should be the permission of C? Since we do not statically
predict the condition cond, it is possible for C to alias A. This means if we were
permitted to write to elements of C, then we might actually write to elements of A.
But A is read-only, so we must prohibit this. In other words, if A is read-only and
B is mutable, then C must be read-only.

LECTURE NOTES OCTOBER 30, 2014

Purity Checking L19.5

We can leave the rules for conditionals and equality tests as they are, if we add
general rules that allow us to treat mutable memory as if it were read-only.

Γ ` e : τm∗
Γ ` e : τ r∗

Γ ` e : τm[]

Γ ` e : τ r[]

We refer to these rules as coercions. Of course, we do not want to use them ran-
domly, but only in certain places where we need the flexibility like conditionals
or equality tests. In our example above, we would apply the rule to B : τm[] so
both branches of the conditional have the same type, and C becomes read-only as
expected. We abbreviate

Γ0 = cond:bool, A : intr[], B : intm[]

and deduce

Γ0 ` cond : bool Γ0 ` A : intr[]

Γ0 ` B : intm[]

Γ0 ` B : intr[]

Γ0 ` (cond ? A : B) : intr[]

One might think function calls is an interesting case, but using the coercions it turns
out to be entirely straightforward: we can require the argument types to match the
parameter types exactly. If an argument ei is the address of a mutable location, but
the parameter requires it to be read-only, we can apply a coercion. Of course, the
other way around is unsound because read-only memory might then be modified
by the function f .

τf(τ1, . . . , τn) Γ ` ei : τi (1 ≤ i ≤ n)

Γ ` f(e1, . . . , en) : τ

Also, allocation returns a location that is mutable. In fact, since we likely need to
initialize that location, it better be mutable.

Γ ` alloc(τ) : τm∗
Γ ` e : int

Γ ` alloc array(τ, e) : τm[]

The key, then, is the treatment of assignment, where memory is actually mu-
tated. An assignment has the form assign(d, e) (written d = e; in concrete syntax),
where d is an l-value (we call it destination here).

Destination d ::= x | ∗d | d[e]

As before, we are ignoring structs. We have a new judgment

Γ ` d :p τ

LECTURE NOTES OCTOBER 30, 2014

Purity Checking L19.6

which we read as “d denotes a memory location of type t with permission p”. We will
use this as follows:

Γ ` d :m τ Γ ` e : τ

Γ ` assign(d, e) : [σ]

Recall that statements s are typed as [σ] which means that executing s might return
a value of type σ. If we ignore the permission, this is exactly the ordinary rule for
assignment. The permission m indicates that this location must be mutable since
we write to it.

The first rule is simple: variables are allocated on the stack or held in registers,
so they are always mutable.

Γ(x) = τ

Γ ` x :m τ

Otherwise, we use exactly the permission that the type of destination implies.

Γ ` d :q τp∗
Γ ` ∗d :p τ

Γ ` d :q τp[] Γ ` e : int

Γ ` d[e] :p τ

Notice that the permission q in the premise is ignored since we do not write to the
location denoted by d in the premise. For example,

p:(intm∗)r∗ ` p :m (intm∗)r∗

p:(intm∗)r∗ ` ∗p :r intm∗

p:(intm∗)r∗ ` ∗∗p :m int p:(intm∗)r∗ ` 5 : int

p:(intm∗)r∗ ` assign(∗∗p, 5) : []

should hold because we are allowed to mutate the location denoted by ∗p.

5 Inferring Permissions

In the source language, we still use ordinary types, so we need to infer the permis-
sions. When we see a function call f(e1, . . . , en) for a function τ f(τ1, . . . , τn) we
apply the function read only to all the parameter types:

read only(bool) = bool
read only(int) = int
read only(τ∗) = (read only(τ))r∗
read only(τ []) = (read only(τ))r[]

The we try to infer permissions in the definition of f so that these parameter types
are respected. This is a form of type inference and there are a number of techniques

LECTURE NOTES OCTOBER 30, 2014

Purity Checking L19.7

at our disposal. Perhaps the simplest is to introduce permission variables for every
pointer and array and collect constraints on what they might be. If the constraints
are consistent, the program is typable; if not an error is signaled. We might describe
this formally in a later lecture; for now we apply it informally.

Let’s return to our motivating example.

bool store_int(int* p, int n) {

*p = n;

return true;

}

int get_length(int[] A) {

int* p = alloc(int);

//@assert store_int(p, \length(A));

return *p;

}

We see that store_int is called inside an @assert contract. We therefore try to
check:

bool store_int(int@r* p, int n) {

*p = n;

return true;

}

where we have written int@r* for intr∗. This fails, because *p :@r int so it is not
mutable.

However, in code such as

bool is_sorted(int@r[] A, int lower, int upper)

//@requires 0 <= lower && lower <= upper && upper <= \length(A);

{

for (int i = lower; i < upper-1; i++)

//@loop_invariant lower <= i;

if (A[i] > A[i+1]) return false;

return true;

}

we do not mutate any element of A at all, so the permission types are satisfied and
is_sorted can be called from in contracts.

6 Structs

Structs are a large type, so struct s can occur only in three places: directly as a
reference struct s ∗, as an array element struct s [], or as the type of a field of a struct.

LECTURE NOTES OCTOBER 30, 2014

Purity Checking L19.8

It would be consistent with the philosophy behind C0, if a large type did not
directly have a permission. Instead, we give separate permissions to those fields
of a struct that are small, so that they actually appear on the left-hand side of an
assignment.

Another option would be to give all fields of a struct the same permission,
which is inherited from the pointer or array that references the struct. This is much
less differentiated, but it may be sufficient for purity analysis.

As an example, we consider linked lists and functions to return an empty linked
list that is read-only, as well as function that creates a new read-only list by prepend-
ing a new element x. We view here linked lists as read-only to illustrate that we
construct them safely in contracts.

struct list_node {

int elem;

struct list_node@r* next;

};

typedef struct list_node list;

list@r* nil() {

return NULL;

}

list@r* cons(int x, list@r* l) {

list@m* head = alloc(list);

head->elem = x;

head->next = l;

return head;

}

In the nil() function, the type of NULL comes up. Even though trying to write to
(or read from!) the location 0 will lead to an exception, we treat it here as it if were
mutable because we would like to allow nil() to be called in contracts (where
exceptions are allowed!).

For cons, we return a read-only list if the argument is read-only (again, for use
in a contract), but we could just as well make it mutable. It would not affect its use
in a contract, unless it were passed into a function that required treating it in a read-
only fashion. Lists in a functional language are typically immutable in this fashion.
Note that for return head; to type-check, we have to coerce list@m* head to be
of type list@r*, which is the permitted direction. We just cannot modify the list
any more from that point on in the execution of the program.

The recursive nature of structs demands some consistency of permissions, which
is enfored by the fact that in the struct definition itself a permission should be as-
signed to the pointer to the recursive instance.

LECTURE NOTES OCTOBER 30, 2014

	Introduction
	Purity Checking Contracts
	Purity Checking for Memory Optimizations
	Purity Analysis as a Type System
	Inferring Permissions
	Structs

