15-411 Compiler Design, Fall 2013
Lab 4

Instructor: Frank Pfenning
TAs: Flavio Cruz, Tae Gyun Kim, Rokhini Prabhu, Max Serrano

Test Programs Due: 11:59pm, Tuesday, October 21, 2014
Compilers Due: 11:59pm, Tuesday, October 28, 2014

1 Introduction

The goal of the lab is to implement a complete compiler for the language L4. This language extends
L3 with pointers, arrays, and structs. With the ability to store global state, you should be able to
write a wide variety of interesting programs. As always, correctness is paramount, but you should
take care to make sure your compiler runs in reasonable time.

2 L4 Syntax

)

The lexical specification of L4 is changed by adding ’[’, ’1’, ’.’, and '->’ as lexical tokens; see
Figure 1. Whitespace, token delimiting, and comments are unchanged from languages L1, L2, and
L3.

The syntax of L4 is defined by the (no longer context-free!) grammar in Figure 2. Ambiguities
in this grammar are resolved according to the operator precedence table in Figure 3 and the rule
that an else provides the alternative for the most recent eligible if.

Again, note that this grammer is not context free. Just trying to parse this language with a
parser generator in a naive way will not result in correct behavior. Some hints on how to parse
this language are provided in the next section.

3 L4 Elaboration

We will not provide explicit elaboration rules for everything in L4. Please note you will need to
preserve at least some size information during elaboration to generate correct code.
Detail: L4 syntax is not context-free

As noted above, the grammar presented for L4 is no longer context free. Consider, for example,
the statement

foo * bar;

ident = [A-Za-z_] [A-Za-z0-9_]*

num = (decnum) | (hexnum)
(decnum) x= 0 | [1-9]1[0-9]*
(hexnum) m= 0[xX] [0-9a-fA-F]+

(special characters) =

A -
v
Vv
]
A
I

= 1= & - | && ||
+= -= x= /= Y= <K= >>= §&= |= =
-> — + C | > [0 1,; 7
(reserved keywords) = struct typedef if else while for continue break

return assert true false NULL alloc alloc_array
int bool void char string

Terminals referenced in the grammar are in bold. Other classifiers not referenced within the
grammar are in (angle brackets and in italics). ident, (decnum), and (hexnum) are described
using regular expressions.

Figure 1: Lexical Tokens

If foo is a type name, then this is a declaration of a foo pointer named bar. If, however, foo is
not a type name, then this is a multiplication expression used as a statement.

For those of you using parser combinator libraries, you will be able to backtrack from a parse
decision based on whether an identifier is a type name, so this case should not be a problem.
However, backtracking raises the specter of a performance bug, so you will need to closely consider
performance.

However, those of you using parser generators will have a harder time—the decision whether
to shift or reduce could might be made well ahead of when an identifier is determined to be a
typename or not. Solving this ambiguity is a bit tricky; below, we describe two approaches.

One way to handle this is to perform an ambiguous parse: use one rule to parse both the
declaration form and the expression form. Then undo an incorrect decision during elaboration. This
approach will almost certainly involve some other adjustment to various pieces of your grammar
and lexer. Looking over grammars and parsers from past years, we cannot honestly recommend
this technique—results seem to be largely contorted with low confidence in correctness.

Another option is to prevent incorrect decisions from being made. New type identifiers are
introduced at the top level (as a (gdecl)); you may wish to parse one global declaration at a time,
with suitable changes to the start-of-parse and end-of-parse symbols). With this approach, the
lexer can produce different tokens for type and non-type identifiers. This was the solution intended
by the designers of C, if one considers the relevant footnote in their book.

This solves the parsing problem, but raises another. The lexer performs a lookahead in order
to find the longest match. This affects the lexing of a token which is used immediately after it is
introduced—consider:

typedef int foo;
foo func();

(program) e | (gdecl) (program)
(gdecl) = (fdecl) | (fdef) | (typedef) | (sdecl) | (sdef)
(fdecl) m= (type) ident (param-list) ;
(fdef) m= (type) ident (param-list) (block)
(param) = (type) ident
(param-list-follow) == ¢ | , (param) (param-list-follow)
(param-list) z= () | ((param) (param-list-follow))
(typedef) m= typedef (type) ident ;
(sdecl) = struct ident ;
(sdef) = struct ident { (field-list) } ;
(field) = (type) ident ;
(field-list) m= ¢ | (field) (field-list)
(type) x= int | bool | ident | void | (type) * | (type)[] | struct ident
(block) n= { (stmts) }
(decl) m= (type) ident | (type) ident = (exp)
(stmts) n= e | (stmt) (stmts)
(stmt) n=(simp) ; | {(control) | (block)
(simp) m=(lvalue) (asop) (exp) | (lvalue) (postop) | (decl) | (exp)
(simpopt) n= e | (simp)
(lvalue) w= ident | (lvalue) . (ident) | (Ivalue) -> (ident)
| * (lvalue) | (lvalue) [(exp)] | ((lvalue))
(elseopt) n= ¢ | else (stmt)
(control) m=if ((exp)) (stmt) (elseopt) | while ((exp)) (stmt)

| for ((simpopt) ; (exp) ; (simpopt)) (stmt)
| return (exp) ; | return ;

| assert ((exp)) ;

(arg-list-follow) n= € | , (exp) (arg-list-follow)
(arg-list) x= () | ((exp) (arg-list-follow))
(exp) w= ((exp)) | num | true | false | ident | NULL | (unop) {(exp)

| (exp) (binop) (exp) | (exp) ? (exp) : {exp) | ident (arg-list)
| (exp) . ident | (exp) -> ident | alloc ((type)) | * (exp)
| alloc.array ((type) , (exp)) | (exp) [(exp)]

(asop) n= o= | 4= | = k= | /= | %= | &= | "= | I= | <<= | >>=
(binop) w= o+ | = x| /% <<= > >=] =] 1=
| & | I & -] <] >
(unop) p= 0|7 -
(postop) = o4+ | -

The precedence of unary and binary operators is given in Figure 3. Non-terminals are in (angle
brackets). Terminals are in bold. The absence of tokens is denoted by e.

Figure 2: Grammar of L4

Operator Associates Meaning

O 0 n/a explicit parentheses, array subscript,
field dereference, field select

1™ = % 44 —— right logical not, bitwise not, unary minus,
pointer dereference, increment, decrement

* /% left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== I= left overloaded equality, disequality

& left bitwise and

- left bitwise exclusive or

| left bitwise or

&& left logical and

Il left logical or

? right conditional expression

= 4= *= /= Y=

|= <<= >>= right

assignment operators

Figure 3: Precedence of operators, from highest to lowest

In this case, if the parser parses typedef int foo; the lexer may already have lexed the foo
at the beginning of the next line, so be careful! Despite this potential issue, we recommend this
approach because the grammar will continue to look natural and follow the actual understanding
of the language syntax.

4 L4 Static Semantics

Top level declarations

New in the grammar are struct declarations and definitions. See Lecture 15 for some static semantics
rules. Not explicitly stated there are the following:

e Struct definitions obey scoping rules of the other global declarations, that is, they are available
only after their point of definition. However, structs may be declared implicitly; see Section
2 of the notes.

e Like type definitions, struct declarations and definitions can appear in external files.

Typechecking

The type checking and static semantics rules for L4 are covered in the notes for Lecture 14 on
Mutable Store (for pointers and arrays) and Lecture 15 on Structs. In addition:

e Postfix operators can be applied to destinations. However, there is an additional restriction
that statements of the form xd++ and xd-- are disallowed even though they would fit the
grammar. This is to avoid confusion with the different semantics such a statement would
have in C.

5 L4 Dynamic Semantics

The dynamic semantics of L4 is covered in the notes for Lecture 14 on Mutable Store (for pointers
and arrays) and Lecture 15 on Structs. Increment and decrement statements d++; and d--; can
be elaborated to d += 1; and d -= 1;, respectively.

For this lab, you should follow the data representations described in the lecture notes. Specifi-
cally, booleans should be represent as 4-byte values that are either 0 or 1. This should guarantee
interoperability with the standard library.

For this lab, you do not need to lay out structs in a way that is compatible with C, but you
are encouraged to do so. You should respect the machine’s alignment requirements so that integers
and booleans are aligned at least 0 modulo 4 and addresses at least 0 modulo 8. At this point we
do not know if we will test this provision.

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L4
that produces correct target programs written in Intel x86-64 assembly language.

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/15-structs.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/14-mutable.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/15-structs.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/14-mutable.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/15-structs.pdf

We also require that you document your code. Documentation includes both inline documenta-
tion and a README document which explains the design decisions underlying the implementation
along with the general layout of the sources. If you use publicly available libraries, you are required
to indicate their use and source in the README file. If you are unsure whether it is appropriate
to use external code, please discuss it with course staff.

When we grade your work, we will use the gcc compiler to assemble and link the code you
generate into executables using the provided runtime environment on the lab machines.

Your compiler and test programs must be formatted and handed in via Autolab as specified
below. For this project, you must also write and hand in at least 20 test programs, at least two of
which must fail to compile, at least two of which must generate a runtime error, and at least two
of which must execute correctly and return a value.

Test Files

Test programs should have extension .14 and start with one of the following lines
//test return i program must execute correctly and return ¢
//test exception n program must compile but raise runtime exception n
//test exception program must compile but raise some runtime exception
//test error program must fail to compile due to an L4 source error

followed by the program text. In L4, the exceptions defined are SIGABRT (6) (assertion failure),
SIGFPE (8) (arithmetic exception), SIGSEGV (11) (memory-related exception) and SIGALARM (14)
(timeout).

Since the language now supports function calls, the runtime environment contains external
functions providing output capabilities (see the runtime section for details). However, we do not
check that the output is correct, merely that correct values are eventually returned from library
calls.

All test files should be collected into a directory tests/ (containing no other files) and submitted
via the Autolab server.

L4 is a sophisticated and reasonably expressive language. You should be able to write some
very interesting tests, perhaps adapted from the programs and libraries you wrote in the 15-122
course on Principles of Imperative Computation that uses CO.

Please do not submit test cases which differ in only small ways in terms of the behavior exercised.
We would like some fraction of your test programs to compute “interesting” functions on specific
values; please briefly describe such examples in a comment in the file. Disallowed are programs
which compute Fibonacci numbers, factorials, greatest common divisors, and minor variants thereof.
Please use your imagination!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README will be crucial
information for this purpose.

Issuing the shell command

% make l4c

should generate the appropriate files so that
% bin/l4c <args>

will run your L4 compiler. The command
% make clean

should remove all binaries, heaps, and other generated files.

Runtime Environment

Your compiler should accept a command line argument -1 which must be given the name of a
file as an argument. For instance, we will be calling your compiler using the following command:
bin/1l4c -1 15411.h0 $test.l4. Here, 15411.10 is the header file mentioned in the elaboration
and static semantics sections.

The runtime for this lab contains functions to perform output. The output functions write to
stderr, while the result of the program is printed to stdout. 15411.h0 contains a listing and a
small amount of documentation.

The GNU compiler and linker will be used to link your assembly to the implementations of the
external functions, so you need not worry much about the details of calling to external functions.
You should ensure that the code you generate adheres to the C ABI for Linux on x86-64. In order
for the linking to work, you must adhere to the following conventions

e External functions must be called as named.

e Non-external functions with name name must be called _cO_name. This ensures that non-
external function names do not accidentally conflict with names from standard library which
could cause assembly or linking to fail.

e Non-external functions must be exported from (declared to be global in) the assembly file you
generate, so that our test harness can call them and verify your adherence to the ABI.

The runtime environment defines a function main() which calls a function _cO_main() your
assembly code should provide and export. Your compiler will be tested in the standard Linux
environment on the lab machines; the produced assembly must conform to this environment.

Using the Subversion Repository

Handin and handout of material is via the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://svn.concert.cs.cmu.edu/15411-f14/groups/<team>

where <team> is the name of your team. You will find materials for this lab in the 1ab4 subdirec-
tory. Or, if you have checked out 15411-f14/groups/<team> directory before, you can issue the
command svn update in that directory.

After adding and committing your handin directory to the repository with svn add and svn commit
you can hand in your tests or compiler through Autolab.

https://autolab.cs.cmu.edu/15411-£14

Once logged into Autolab, navigate to the appropriate assignment and select
Checkout your work for credit
from the menu. It will perform one of

% svn checkout https://svn.concert.cs.cmu.edu/15411-f14/groups/<team>/lab4/tests
% svn checkout https://svn.concert.cs.cmu.edu/15411-f14/groups/<team>/lab4/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repos-
itory before asking the Autolab server to grade them! And please do not include any compiled files
or binaries in the repository!

What to Turn In

Hand in on the Autolab server:

o At least 20 test cases, at least two of which generate an error, at least two of which raise a
runtime exception, and at least two of which return a value. The directory tests/ should
only contain your test files and be submitted via subversion as described above. The server
will test your test files and notify you if there is a discrepancy between your answer and the
outcome of the reference implementation. You may hand in as many times as you like before
the deadline without penalty. If you feel the reference implementation is in error, please
notify the instructors. The compiled binary for each test case should run in 2 seconds with
the reference compiler on the lab machines; we will use a 5 second limit for testing compilers.

Test cases are due 11:59pm on Tuesday, October 21, 2014.

e The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion. The Autolab server will build your compiler, run
it on all extant test files, link the resulting assembly files against our runtime system (if
compilation is successful), execute the binaries (each with a 5 second time limit), and finally
compare the actual with the expected results. You may hand in as many times as you like
before the deadline without penalty.

Compilers are due 11:59pm on Tuesday, October 28, 2014.

7 Notes and Hints

The rules for struct declarations and definitions are carefully engineered so that it should be possible
to compute the size and field offsets of each struct without referring to anything found later in the
file. You probably want to store the sizes and field offsets in global tables.

Data now can have different sizes, and you need to track this information throughout the various
phases of compilation. We suggest you read Section 4 of the Bryant/O’Hallaron notes on x86-64
Machine-Level Programming available from the course Resources page, especially the paragraph on
move instructions and the effects of 32 bit operators in the upper 32 of the 64 bit registers. Some
notes can also be found in Section 6 of the notes for Lecture 15.

http://www.cs.cmu.edu/~fp/courses/15411-f14/misc/asm64-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/misc/asm64-handout.pdf

	Introduction
	L4 Syntax
	L4 Elaboration
	L4 Static Semantics
	L4 Dynamic Semantics
	Project Requirements
	Notes and Hints

