
15-411 Compiler Design, Fall 2014

Lab 6 - Create Your Own Adventure

Instructor: Frank Pfenning
TAs: Flávio Cruz, Tae Gyun Kim, Rokhini Prabhu, Max Serrano

Compilers due 11:59pm, Thursday, December 4, 2014
Papers due 11:59pm, Tuesday, December 9, 2014

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes the
process for proposing your own Lab 6.

2 Requirements

You are required to hand in three separate items:

• The working compiler and support materials (runtime, etc.) that implement your proposed
project.

• Any additional tests and framework to test your project.

• A term paper describing and critically evaluating your project.

2.1 Possibilities

This is your opportunity to be creative! Any substantial and interesting extension or modification
to your compiler that welcome. The three pre-suggested options for Lab 6 should give you an idea
of the expected scope of the project. As inspirational material, other possibilities for Lab 6 might
look like:

• Extending the L4 language in some interesting way, such as the features discussed in lec-
ture or homeworks assignments (parametric polymorphism, first-class functions, exceptions,
concurrency, parallelism, . . .).

• Retargeting your compiler to another hardware instruction set.

• Retargeting your compiler to some interesting other programming language (Verilog, dc,
Malbolge, . . .).

1



2.2 Tests and Measurement Tools

You need to demonstrate that your compiler is correct. How you do this will obviously depend
heavily on the project you propose. You may need to write new tests to exercise the Lab 6 portions
of your compiler; you may need to construct a customized testing framework. Before proposing a
project, you should give some thought to your testing approach. If there will be no way to check
whether your compiler meets the goals of your project, we will probably not be satisfied with your
project!

2.3 Term Paper

Your paper should follow this outline.

1. Introduction. This should provide an overview of the proposed project, give a sketch of your
implementation, and briefly summarize results.

2. Project. Give a specification for your project.

3. Implementation. Describe the modifications made to your compiler to meet the project goals,
including data structures and algorithms. Describe also any runtime system required for your
project.

4. Testing Methodology. Describe the design of your testing approach. Include any relevant
information such as the criteria you used as you selected or designed your tests, how you
constructed your testing system, how your testing approach verifies the functionality of your
compiler. What you put in this section will, of course, depend on your project.

5. Analysis. Critically evaluate your compiler and sketch future improvements one might make
to your current implementation.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5–10 pages of reasonably concise and interesting analysis to
present.

3 Deadlines and Deliverables

3.1 Compiler Files (due 11:59pm on Thu Dec 4)

There is no plan to automatically grade your compilers on autolab. Nevertheless, as for all labs,
the files comprising the compiler should be collected in a directory compiler/ which should con-
tain a Makefile. Important: You should also update the README file with a roadmap to your
implementation. This will be a helpful guide for the grader.

Issuing the shell command

% make l4c

should generate the appropriate files so that

% bin/l4c --<arg for your project> <args>

2



will run your modified L4 compiler.

% make clean

should remove all binaries, heaps, and other generated files.
If it is reasonable, you should modify the driver from lab 5 to test your extended compiler. If

there are any special instructions we need to follow in order to be able to run the driver on your
compiler and test it, specify these instructions in your README file.

All your material must be committed into lab6cyoa in the same way that you submitted your
compiler in previous assignments.

3.2 Tests and Measurement Tools (due 11:59pm on Thu Dec 4)

In a directory called tests/, include all the tests that you selected or wrote for the purpose of
testing your project. If they are to be used in a different way than a vanilla L4 test, you should
include a README file explaining exactly how to use your tests.

If you also do any performance testing in the same vein as lab5, include the necessary files in
bench/.

3.3 Term Paper (due 11:59pm on Tue Dec 9)

Submit your term paper in PDF form via Autolab before the stated deadline. Early submissions are
much appreciated since it lessens the grading load of the course staff near the end of the semester.
You may not use any late days on the term paper describing your implementation of
Lab 6!

4 Notes and Hints

• Discuss your ideas with the course staff to get feedback on feasibility and scope of the project
before embarking on it.

• Try to identify some intermediate goals in case your overall project turns out to be too
ambitious.

• Apply regression testing. It is very easy to get caught up in new features. Please make sure
that the L4 portion of your compiler continues to work correctly (keeping in mind that not
all changes are expected to be backward compatible)!

3


	Introduction
	Requirements
	Possibilities
	Tests and Measurement Tools
	Term Paper

	Deadlines and Deliverables
	Compiler Files (due 11:59pm on Thu Dec 5)
	Tests and Measurement Tools (due 11:59pm on Tue Dec 4)
	Term Paper (due 11:59pm on Tue Dec 10)

	Notes and Hints

