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1 Introduction

When studying logic in an introductory course we are used to thinking of truth as
a mathematical concept, something that is objective and unalterable like the laws
of physics. Truth is something we may be able to uncover and understand, but not
something we can create. In this course I will try to convince you otherwise.

First, truth is ephemeral. At this point in lecture I held a piece of chalk. Direct
evidence confirmed: “Frank holds a piece of chalk.” After I put it down on the table in
front of me this proposition was no longer true. Hence, evidently, truth is ephemeral.
Substructural logics capture and analyze this phenomenon, which is of fundamen-
tal importance in computer science. For example, while executing a program in an
imperative language a variable  may hold the value 5. That’s an ephemeral truth,
because after assigning « the value 7 it is no longer true—instead, the value of z is
then 7.

Second, certain truths are persistent. For example, given the plethora of proofs,
it is difficult to deny the Pythagorean Theorem. Or, by the very nature of implica-
tion, A always implies A for any proposition A. Substructural logics account for
ephemeral as well as persistent truths and therefore generalize rather than replace
“traditional” logics that study persistent truth. In the context of this course we
call such logics structural. The origin of the terms structural and substructural will
become clear in the course of this lecture.

Logic is the study of the laws of valid inference, so we start the course in the
same way. In today’s lecture we avoid logical connectives entirely, just using rules
of inference. It turns out that we can use inference rules to describe some algo-
rithms that can be seen as performing logical inferences, which is one of the many
connections between logic and computer science.
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2 Structural Inference

Consider a relation edge(x,y) between vertices  and y in a directed graph. We
would like to define when there is a path from z to y. Mathematically, we might
say that the path relation is the transitive closure of the edge relation. We define
this with two rules of inference:

edge(,y) path(z,y) path(y, 2)
—— Edge Trans
path(z, y) path(z, 2)

Some terminology: the propositions above the line in a rule of inference are called
premises, the propositions below conclusions. The variables in a rule (here z, y, and
z) are called schematic variables.

The process of inference starts from a given state of knowledge and deduces
additional propositions that must be true, according to the rules of inference. We
say we apply a rule of inference, given a particular instantiation of the schematic
variables.

Here is a small example: our initial state of knowledge is edge(a, b), edge(b, c),
edge(b, d) for some vertices a, b, ¢, and d. We apply all possible inferences at each
stage, but if a conclusion is already in our database of facts we don’t write it down
again. The justifications are just the inference rules applied to the labels of all the
premises.

(1) edge(a,b) given

(2) edge(b,c) given

(3) edge(b,d) given

(4) path(a,b) Edge(1)
(5) path(b,c) Edge(2)
(6) path(b,d) Edge(3)
(7) path(a,c) Trans(4,5)
(8) path(a,d) Trans(4,6)

At the last stage we have reached saturation: any way we can apply inference rules
will result in conclusions we already know. Because we think of the rules as defining
the propositions involved (specifically path(z, y) in this example) we stop inference
at this point. If we want to know if there is a path we can just look it up on this
final, saturated state. For example, there is a path from a to d, but there is no path
from b to a.

A few remarks about the process of inference. In general, it will not be the case
that given some initial facts we reach saturation. For example, rule that allows us
to conclude that nat(s(x)) if nat(z) would lead to an infinite set of facts if 0 is also
known to be a natural number. In our example, the size of the database is bounded
by 2n? where n is the number of vertices.
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Secondly, the justification gives us a proof of each derived fact. For example,
the proof of path(a,d) would be

edge(a, b) edge(b, d)

—— Edge

path(a, b) path(b, d)
path(a, d)

Such a proof can also be expressed as a term, thinking of the inference rule as a
term constructor. In this example, this might be written as

Trans(Edge(1), Edge(3))

substituting the proof terms for (4) and (6).

In general, a proposition may have multiple different proofs, including infinitely
many. For example, if we add an edge from b to a, then we can cycle from a to a
as many times as we wish. It is therefore important that we do not take the proofs
into account when we decide saturation: we want a finite number of facts (each
with at least one proof) but not necessarily a finite number of proofs.

We also observe that the order in which we perform inferences is nondetermin-
istic but entirely irrelevant: the saturated state will always be the same. This is an
example of so-called don’t-care nondeterminism. If we tracked proofs, though, they
could be different based on the order in which we performed the inferences.

Because (a) the order of the propositions in a state does not matter and (b)
knowing a fact once is just as good as “knowing it twice”, states form a set. Ex-
pressed as two laws: P,QQ = Q, P and P, P = P. Because we view this as an equal-
ity between states, it can be applied anywhere in a state. We call these properties
exchange and contraction, respectively, although the latter may be called idempotence
in algebra.

Datalog (see, for example, Maier et al. [2018] or Green et al. [2012]) is a pro-
gramming language based on structural inference with some additional features
such as stratified negation and constraints. Applications in computer science in-
clude program analysis [Whaley et al., 2005, Smaragdakis and Bravenboer, 2010] and
algorithms such as subtyping [DeYoung et al., 2023]. An interesting sidebar is that
there are some meta-complexity theorems that allows us to read off the complexity
of algorithms from the inference rules that define the algorithms [Ganzinger and
McAllester, 2001, 2002].

Because it is difficult to express many common algorithms and programming
idioms just by inference, we see structural inference primarily as a way to express
algorithms that can then be implemented as a library in a language with a more
complete set of constructs. Our small and unrealistic implementation as part of
Assignment 1 is a tiny example of such a library.
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3 Linear Inference

Technically, linear inference arises from structural inference by denying contrac-
tion while keeping exchange. This means that the state becomes a multiset (or bag)
rather than being a set. Even more importantly, when applying an inference rule
we remove the premises from a state and then add in the conclusions.

As a first example we consider coin exchange: a quarter can be exchanged for
two dimes and a nickel, and a dime can be exchanged for two nickels. We can also
do the reverse exchange.

The first and third rules exemplify something new, namely rules with multiple con-
clusions. We cannot replace them with multiple rules, each with a single conclusion
since the premises will be consumed from the state during rule application.

Linear inference represents a change of state. Below we show the whole state
and all results of possible inferences. As an example, in the first step we replace ¢
by d, d,n, applying the rule Q. The additional n is just carried over.

(1) q,n given
(2) ddn,n Q(1)
(3) d,n,n,n,n D(2)
(4) d,d,d D(2)
(5) n,n,n,n,n,n D(3)

Note that the proof notation is somewhat approximate now: it only says which rule
is applied to which line, but the premises of a rule match only a portion of the state
while carrying over the remainder.

At the end of this process the application of any rule to any state will result
only in a state already in our collection. We have saturated the set of possible
states, rather than arrived at a single saturated state. It should be clear that termi-
nation must be redefined in this manner because inference does not monotonically
increase our knowledge. Furthermore, just as for structural inference, termination
is not guaranteed in general. For example, if we added a rule that allowed us to
conclude d, d from d we could produce arbitrarily many dimes starting from any
state with at least one.

We accomplish the change of state at the technical level by denying the struc-
tural rule of contraction, but we keep the rule of exchange. Linear inference is
therefore an example of substructural inference.

At first one might think that the right way to handle the “holding-the-chalk”
example from the introduction by using a temporal logic. That is, at some time ¢ I am
holding the chalk, and at some time ¢ 4 6 I no longer hold the chalk. And, indeed,
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temporal logic has a significant role both in philosophy and computer science. For
capturing a change of state (like putting down a piece of chalk, or assigning to a
variable) it has a severe drawback: it suffers from the frame problem. When I put
down my piece of chalk in lecture, all of you remained in your seats. When we
assign to a single variable, all the other variables in the program remain unchanged.
So we would also have to say “nothing else changes”, but it is difficult to circumscribe
the meaning of “nothing else”. It depends, and is therefore inherently anti-modular.
If we add another variable to our program, for example, suddenly “nothing else”
would have to include the new variable, even if in some sense it has nothing to do
with our particular assignment.

Substructural inference provides an intrinsic solution to the frame problem
since the premises of a rule are always matched against a portion of the state. Inher-
ently, no matter what else we add, only the matched portion of the state changes
and the remainder is carried over. Therefore, a priori, substructural logic is the
better choice for a controlled change of state. Temporal logic is suitable when,
intrinsically, many things happen in parallel (e.g., in a logic circuit) or when we
want to reason about temporal aspects of a computation that is described by state
change. Linear inference has its roots in linear logic [Girard, 1987], although the
state-changing aspect was formulated perhaps most explicitly in multiset rewrit-
ing [Cervesato et al., 2000, Cervesato, 2000, Cervesato and Scedrov, 2009] and ex-
tended in the Concurrent Logical Framework (CLF) [Watkins et al., 2002, Cervesato
et al., 2002, Schack-Nielsen and Schiirmann, 2008, Schack-Nielsen, 2011].

4 Ordered Inference

We can go one step further in the exploration of substructural inference by also re-
moving exchange. This means the state is now just a sequence of propositions. We
write ordered states without a comma to remind ourselves of the lack of exchange.
Algebraically, the state is a monoid, the unit element being the empty state.

The example we start with is recognizing a word consisting of matching paren-
theses. The constituents of the state are left and right parentheses. We have just
one rule of inference ()

— Cancel
This is an inference rule with zero conclusions, something that would be entirely

pointless in structural inference but makes sense for substructural inference. We
run through an example, but we don’t bother showing the inference rule that was
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applied because there is only one.

(1 ) CC) ) () given

(2) ( ) ) () from(1)

3) () ( ) () from (1)

4 () CC)) from (1)

(5) ( ) () from (2),(3) [in 3 ways], or (4)
(6) CC)) from (2) or (4)

(7) () from (5) [in 2 ways] or (6)

(8) from (7)

Despite the suggestive way we have written the states to make them easier to relate,
note that the exact state (5) (namely, () ( )) can be deduced in 5 different ways but
we only list it once.

We call the final state (8) quiescent because no inference rule can be applied to
it.

The claim is that given an ordered state consisting of left and right parentheses,
we can deduce the empty state if and only if the parentheses match in the given
order. In particular, if we start from a state where the parentheses don’t match, we
cannot reach the empty state. For example:

(1) ) () ( given
2 ) (_ from (1)

Here, we are stuck after one inference can cannot deduce anything new. In other
words, the final state (2) is quiescent but not empty.

We observe that in this example we don’t actually need to explore all reachable
states. We can arbitrarily apply cancellation (if possible) and then continue from
the resulting state until we reach a quiescent state. We call this don't-care nonde-
terminism: the rules could be applied in multiple ways, but it is correct to pick an
arbitrary one. This is sufficient to determine if the initial state represents matching
parentheses.

The rules themselves don’t contain the assumptions about the initial state, the
way the rules are to be applied (in a don’t-care nondeterministic manner until qui-
escent or generating all reachable states), or how to interpret the final state(s). So
we should always give this information explicitly.

1. We are given an initial ordered state consisting of left ‘(" and right )" paren-
theses.

2. We apply cancellation in a don’t-care nondeterministic manner until we reach
a quiescent state.

3. The quiescent state is empty if and only if the initial state had matching paren-
theses.
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We say the problem representation by (structural, linear, or ordered) inference is
adequate if we can prove, at the meta-level the third part, given the circumstances
of the first and second parts.

Here is what we might say for the coin exchange:

1. We are given an initial linear state consisting of quarters (‘¢’), dimes (‘d") and
nickels (‘n’).

2. We apply the rules in don’t-know nondeterministic manner until we have de-
duced all reachable states.

3. A state is reachable if and only if it has the same total monetary value as the
initial state and consists only of quarters, dimes, and nickels.

5 Binary Increment as Ordered Inference

We explore incrementing a binary number as a second example of ordered infer-
ence. We have propositions 0 (bit 0), 1 (bit 1), and € (end of number, not to be
confused with the empty word) to represent a natural number in binary form. For
example, the number 6 would be represented as the state ¢ 1 1 0. Furthermore, we
have the proposition inc which is meant to increment the binary number to its left.
We capture this meaning with the following rules:

0 inc 1 inc € inc

incg - incy — inc,
1 inc 0 e 1

In the inc; rule, the increment in the conclusion represents the carry. We run a small
example, incrementing the number 5 by 2 to obtain 7. Each line is inferred from the
preceding one.

(1) ¢ 1 0 1 inc inc given

(2) ¢ 1 0 inc 0 inc by incy
3) e 11 0 inc  Dbyinc
(4) e 1 1 1 by inc

In state (2) we had a choice between applying incg to the first or second occurrence
of inc, and we arbitrarily picked the first one. Either way would have led to the
same quiescent state at the end. We express adequacy using regular expression
notation to capture the permissible forms of the ordered state.

1. We are given an initial state in the form ¢ (0 | 1)* inc*.

2. We apply rules in a don’t-care nondeterministic manner until we reach qui-
escence. Each intermediate state will have the form e (0 | 1 | inc)*.

3. We have computed the output in the form of a final state € (0 | 1)* when we
have reached quiescence.
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6 Blocks World as Linear Inference

As a final example in today’s lecture we present a version of the classic blocks
world planning problem as linear inference. We have a robot hand that can hold a
single block and a table with possible severals stacks of labeled blocks. The robot
hand can pick up a block from the top of a stack and put it down on top of another
stack or an empty spot on the table. We can either explore all reachable states, or
create a plan to reach a particular goal state.

We start with the following propositions.

¢ empty (the robot hand is empty)
¢ holds(z) (the robot hand holds block x)
* on(z,y) (block x is on top of block y)

A plausible first attempt at a rule for picking up a block would be to state that we
can pick up a block z if (a) the hand is empty, and (b) is no other block on top of it.
In addition, if x is on some other block y then after we pick up z it is no longer on
1 so we need to remove that fact from the state.

empty —3Jz.on(z,z) on(zx,y)
holds(z)

pickup?

The difficulty with this rule is that the middle premise is intended to check a con-
dition on the state without actually altering the state. For one, we don’t have the
means to express this since we didn’t want to use logical connectives (like nega-
tion and the existential quantifier) in this lecture. Perhaps even more troubling is
that it would violate our fundamental definition of linear inference which allows
us to match the premises against an arbitrary portion of the state and carry over the
remainder unchanged. But if have a state such as empty, on(b, table), on(a, b) then
adding on(c, a) would suddenly render the rule inapplicable.

The solution is to express the condition that allows us to pick up a block in a
positive way, as another proposition. We then need to maintain the new proposi-
tion as part of the inference rules. Here, we add clear(z) to express that block z is
clear, that is, there is nothing on top of x. This should be true exactly if there does
not exist a z such that z is on z. The rule then becomes

empty clear(z) on(z,y)
holds(z) clear(y)

pickup

Notice that application of this rule will remove clear(x) from the state (the hand
now holds it) and adds clear(y) (z is no longer on top of y).
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We can think of the table itself as a pseudo-block, and mark the empty slots on
the table as clear. For example, if there are two spots on the table and on one we
have the stack a on top of b we would represent this as the state

empty, clear(a),on(a,b),on(b, table), clear(table)
In this state we can only pick up a, which would get us to the state
holds(a), clear(b), on(b, table), clear(table)

We can not pick up the table (the pseudo-block) because there is no proposition
on(table, z). Putting down a block is just the inverse of the rule for picking one up.

holds(x) clear(y)

putdown
empty clear(z) on(x,y)

At this point it should be clear that we can easily infer all the reachable state from
a valid initial state. But what is a valid initial state? This is not so easy to char-
acterize. For example, we don’t want to allow “circular stacks” with on(z,y) and
also on(y, z). We don’t want to allow the table to be on anything. We don’t want
to allow two different blocks to have the same label a. We don’t want the hand to
be empty and hold a block at the same time, because it would mean we really have
two hands. A general technique for describing valid linear states (including valid
initial states, which is the same in this case) is via generative grammars [Simmons,
2012], which are beyond the scope of the present lecture, but which we may return
to in a future lecture. Here we contend ourselves by saying that the state should
consist of distinct blocks and should be “physically possible”.

1. We are given a linear initial state consisting of distinct blocks and a finite
number of empty spots on the table clear(table) in a physically possible con-
figuration.

2. Inference rules are applied in a don’t-know nondeterministic way.

3. A state is reachable by robot actions from the initial state if and only if we can
reach it via linear inference.

Similar to the example of graph reachability, the actual plan for achieving a goal
state is encoded in its proof. We will return to the notion of proof at the beginning
of the next lecture.

7 Summary

We have introduced three forms of logical inference, without using any notion of
logical connective.
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Structural inference. States are sets of propositions representing the current state
of knowledge that grows monotonically during inference. A state is saturated
if any inference only deduces facts we already know. Some algorithms can
be expressed as sets of inferences rules that must saturate, applying rules in a
don’t-care nondeterministic manner. It is called structural because states are
identified up to the structural rules of exchange and contraction.

Linear inference. States are multisets of propositions. Linear inference consumes
the premises of a rule and adds its conclusions, thereby describing a change of
state. We can perform don’t-know nondeterministic inferences until we have
deduced all reachable states, or we can perform don’t-care nondeterministic
inference until we reach quiescence where no further rules can be applied.
Linear inference is a form of substructural inference because we deny the law
of contraction for states (while keeping the law of exchange).

Ordered inference. States are sequences of propositions. Inferences apply to con-
secutive propositions, replacing them with the (also consecutive) conclusions.
Like for linear inference, we can explore all possible reachable states or pro-
ceed in a don’t-care nondeterministic manner to reach a quiescent state. Or-
dered inference is another form of substructural inference, denying both the
laws of exchange and contraction.
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