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1 Introduction

In the last lecture we have seen the fundamental properties of cut and identity elim-
ination. They guarantee the harmony of the right and left rules for the connectives
provides us with a proof-theoretic semantics: the meaning of a proposition is given
by its cut-free proofs. This is a valid semantic point of view since the left and right
rules only decompose propositions into their constituents so we don’t have to look
“outside” for their meaning. To put it another way: the proof-theoretic semantics
is compositional.

In intuitionistic logics, therefore, proofs are the primary carriers of meaning.
We therefore should think of them as being “first-class”, which is not usually the
case in classical mathematics: proofs are carried out, of course, but the study of
their formal structure is not so important. For example, you are unlikely to see a
notation for mathematical proofs as objects.

Besides the fact that proofs fundamentally provide meaning to the propositions,
they also have a central computational role. We will explore this in the next lecture.
So we need notations so we can write out proofs, reason about them, execute them,
etc. In this lecture we take a neutral point of view: all we want to do is to com-
pactly record the structure of proofs in the form of terms. These terms should have
enough information to unwind them into the two-dimensional proofs we are used
to, and vice versa.

These desiderata don’t change from structural to substructural logics, although
the process of checking them may change substantially.

2 Annotating the Sequent

As in the last lecture, we will focus here on ordered logic but the approach itself is
quite general. Our goal is to endow the inference rules with additional information
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so they operate on sequents of the form

Ω ⊢ M : A

where M is a proof (term) of A. In order to write out proof terms we should be
able to refer to particular antecedents in Ω. For example, if we have a rule \L and
we have multiple antecedents for the form A \ B, which antecedent is the rule
applied to? One solution is to count. For example, the rule might be applied to
the fifth antecedent. This works to an extent in ordered logic because the order of
antecedents never changes. However, it is complicated by the fact that antecedents
are split in some rules. For example, in a concrete rule application

A0 A1 ⊢ B A2 A3 ⊢ C

A0 A1 A2 A3 ⊢ B • C
•R

the numbering of antecedents is simple in the conclusion, but in the second premise
we suddenly start counting at 2 instead of 0. It is possible to account for that, but
proofs are very difficult to read. Also, since antecedents in linear logic are subject
to exchange, the numbering might change in complicated ways, as in

A0 A2 ⊢ B A1 A3 ⊢ C

A0 A1 A2 A3 ⊢ B ⊗ C
⊗R

Again, this can be dealt with, but there is a more abstract alternative. We label all
antecedents with distinct variables that we can refer to in proof terms. A sequent
then has the form

(x1 : A1) . . . (xn : An) ⊢ M : A

where all the xi are distinct and may be mentioned in M . We show the proof terms
(but not the variables in the antecedents) in blue.

We start with A \ B. Starting out, here is rule we want to annotate on the left,
and a partial annotation on the right. The Ω’s now stand for antecedents annotated
with variables.

A Ω ⊢ B

Ω ⊢ A \B
\R

(x : A) Ω ⊢ ? : B

Ω ⊢ ? : A \B
\R

A first thing we can say is that x must be chosen so it is fresh and doesn’t occur
already in Ω. This is so pervasive that it may often not be explicitly stated, relying
on the presupposition that all variables declared in the antecedent are distinct.

Continuing, we see that somehow there will be proof M : B once we annotate
the premise. We then just need to fill in the slot in the conclusion with a term using
it. We uniformly use the name of the rule as a proof constructor.

(x : A) Ω ⊢ M : B

Ω ⊢ ? : A \B
\R

(x : A) Ω ⊢ M : B

Ω ⊢ (\R (x.M)) : A \B
\R
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We also need to indicate the variable x and track, somehow, that it will be fresh
in the premise. We use the notation (x.M) for a bound occurrence of x with scope
M . Because the concrete names of bound variables do not matter, we can always
silently rename it in case the particular name x is already among the antecedents.
Many rules will take advantage of this notation and convention.

What about the left rule? It is applied to a particular antecedent, so this needs
to be explicit.

ΩA ⊢ A ΩL B ΩR ⊢ C

ΩL ΩA (A \B) ΩR ⊢ C
\L

ΩA ⊢ M : A ΩL (y : B) ΩR ⊢ P : C

ΩL ΩA (x : A \B) ΩR ⊢ (\L x ? ?) : C
\L

We have already filled in the proof terms for the two premises, and also a name
(y) for the antecedent B in the second premise. Now M is carried down without
change, because all variables in ΩA already exists in the conclusion, but we need to
abstract P over y because it must be fresh.

ΩA ⊢ M : A ΩL (y : B) ΩR ⊢ P : C

ΩL ΩA (x : A \B) ΩR ⊢ (\L x M (y. P )) : C
\L

The rules for right implication can be developed entirely analogously.

Ω A ⊢ M : B

Ω ⊢ (/R (x.M)) : B / A
/R

ΩA ⊢ M : A ΩL (y : B) ΩR ⊢ P : C

ΩL (x : B / A) ΩA ΩR ⊢ (/L x M (y. P )) : C
/L

At this point we are almost ready for an example, except for the identity. In
certain places, like the first argument to left rules, only variables x are allowed. For
the succedent we have an arbitrary term M . This means we could either include
variables as a special case of a term, or we could use an explicit term construction
like Id. We use the latter approach, so that every inference rules is turned into a
corresponding constructor without exception.

(x : A) ⊢ (Id x) : A
id

As an example, let’s look at Lambek’s associativity law from last lecture, using
identity as a full rule.

A ⊢ A
id

B ⊢ B
id

C ⊢ C
id

(C / B) B ⊢ C
/L

A (A \ (C / B)) B ⊢ C
\L

(A \ (C / B)) B ⊢ A \ C
\R

A \ (C / B) ⊢ (A \ C) / B
/R
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To annotate this proof with a proof term, we start bottom up, labeling the an-
tecedent with a variable and writing question marks where we have not yet filled
in the information.

? : A ⊢ ? : A
id

(? : B) ⊢ ? : B
id

(? : C) ⊢ ? : C
id

(? : C / B) (? : B) ⊢ ? : C
/L

(? : A) (x : A \ (C / B)) (? : B) ⊢ ? : C
\L

(x : A \ (C / B)) (? : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

The /R rule introduces a new variable. In order to keep things straight, let’s give it
the name b.

? : A ⊢ ? : A
id

(b : B) ⊢ ? : B
id

(? : C) ⊢ ? : C
id

(? : C / B) (b : B) ⊢ ? : C
/L

(? : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

Actually, we now have some information about the proof term in the conclusion,
but let’s hold off filling that in until we have propagated more information upward.
The second inference for \R works in a symmetric way. We call the new variable a.

a : A ⊢ ? : A
id

(b : B) ⊢ ? : B
id

(? : C) ⊢ ? : C
id

(? : C / B) (b : B) ⊢ ? : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

Now the \L rule introduces a new variable, as does the following /L. We write
those in, naming sure to choose fresh names.

a : A ⊢ ? : A
id

(b : B) ⊢ ? : B
id

(c : C) ⊢ ? : C
id

(z : C / B) (b : B) ⊢ ? : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R
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Now that we have named all antecedents in all sequents, we can fill in the proof
terms according to our proof term language, starting at the top and moving to-
wards the bottom. We combine these into two steps, starting with the identities.

a : A ⊢ (Id a) : A
id

(b : B) ⊢ (Id b) : B
id

(c : C) ⊢ (Id c) : C
id

(z : C / B) (b : B) ⊢ ? : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ ? : C
\L

(x : A \ (C / B)) (b : B) ⊢ ? : A \ C
\R

x : A \ (C / B) ⊢ ? : (A \ C) / B
/R

And then we complete the terms for the remaining rule applications, working
downwards.

a : A ⊢ (Id a) : A
id

(b : B) ⊢ (Id b) : B
id

(c : C) ⊢ (Id c) : C
id

(z : C / B) (b : B) ⊢ (/L z (Id b) (c. Id c)) : C
/L

(a : A) (x : A \ (C / B)) (b : B) ⊢ (\L x (Id a) (/L z (Id b) (c. Id c))) : C
\L

(x : A \ (C / B)) (b : B) ⊢ (\R (a. \L x (Id a) (/L z (Id b) (c. Id c)))) : A \ C
\R

x : A \ (C / B) ⊢ (/R (b. \R (a. \L x (Id a) (/L z (Id b) (c. Id c))))) : (A \ C) / B
/R

There is a lot of redundant information in this derivation. In fact, starting with

x : A \ (C / B) ⊢ (/R (b. \R (a. \L x (Id a) (/L z (Id b) (c. Id c))))) : (A \ C) / B

we can reconstruct the whole derivation in a unique way.
This correspondence can be stated formally as two theorems (for antecedents Ω

that are labelled with unique variables).

(i) Given Ω, M , and A, either there is a unique derivation

D
Ω ⊢ M : A

or there is no such derivation.

(ii) Given a derivation Ω ⊢ A where the applications of left rules are marked
with their corresponding variable, then there is a unique term M such that
Ω ⊢ M : A.

The process s of constructing a derivation from a term is not entirely straight-
forward because of the necessary splits of the hypotheses in rules with multiple
premises. We could either look ahead to see which variables occur, or we can prop-
agate all antecedents to one of the premises and then pass on the ones that were
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not used to the other premises. In this algorithm, we need to make sure that uses
of variables in a derivation are consecutive so that order is suitably respected.

A general algorithm for the input/output interpretation of antecedents that
works for structural, linear, and ordered antecedents and even a mix is described
by Polakow [2000], with more proof details in his Ph.D. thesis [Polakow, 2001].
This system work during proof search when a full proof term isn’t even available for
checking, so it solves a somewhat more difficult problem than is needed here. Still,
it provides an elegant algorithmic solution.

We show one more example, for A •B. There is no variable binding in the right
rule.

Ω1 ⊢ A Ω2 ⊢ B

Ω1 Ω2 ⊢ A •B
•R

Ω1 ⊢ M : A Ω2 ⊢ N : B

Ω1 Ω2 ⊢ (•R M N) : A •B
•R

The left rule is a kind of pattern matching and therefore has to bind two fresh vari-
ables.

ΩL A B ΩR ⊢ C

ΩL (A •B) ΩR ⊢ C
•L

ΩL (y : A) (z : B) ΩR ⊢ P : C

ΩL (x : A •B) ΩR ⊢ (•L x (y. z. P )) : C
•L

Since the proof terms are constructed quite systematically, we don’t show the re-
maining rules. The language of proof terms is summarized in Figure 1.

3 Cut Reductions on Proof Terms

We an express the cut reductions between two proofs on the proof terms them-
selves. We show only one example (the principal reduction for fuse), but others are
similar. We first introduce a proof term for cut, taking it here as a given rules of
inference rather than just admissible.

Ω ⊢ M : A ΩL (x : A) ΩR ⊢ P : C

ΩL Ω ΩR ⊢ (CutA M (x. P )) : C
cutA

Now to the particular case. Before the reduction, we have

Ω1 ⊢ M : A Ω2 ⊢ N : B

Ω1 Ω2 ⊢ (•R M N) : A •B
•R

ΩL (y : A) (z : B) ΩR ⊢ P : C

ΩL (x : A •B) ΩR ⊢ (•L x (y. z. P )) : C
•L

ΩL Ω1 Ω2 ΩR ⊢ (CutA•B (•R M N) (x. •L x (y. z. P ))) : C
cutA•B

and after the reduction (writing in proof terms afresh):

−→R

Ω2 ⊢ N : B

Ω1 ⊢ M : A ΩL (y : A) (z : B) ΩR ⊢ P : C

ΩL Ω1 (z : B) ΩR ⊢ (CutA M (y. P )) : C
cutA

ΩL Ω1 Ω2 ΩR ⊢ (CutB N (z.CutA M (y. P ))) : C
cutB
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Expressing this purely on the proof term, we can recognize it as a kind of pattern
matching reduction, except that we don’t substitute the way we would usually
think of it in the definition of functional languages.

CutA•B (•R M N) (•L x (y. z. P )) −→R CutB N (z.CutA M (y. P ))

In the next lecture similar cut reductions play a much more significant role because
we will make the computational intuition more precise.

4 Invertibility and Polarity

When constructing proofs, bottom-up, a priori we have many possible choices.
Any left rule might apply to any matching antecedent, or a right rule to a matching
succedent. Applying a rule is a small step, breaking down just one connective.
Then we are again faced with a similar choice. Reducing this nondeterminism is
critical in proof search procedures, although it may not mean much regarding the
question of decidability.

For example, it is easy to see that the pure ordered logic we have seen is decid-
able once we know cut elimination, because the premises of all the rules are smaller
than the conclusion in the sense of having fewer connectives in them. Therefore,
any way we can try to construct a proof, bottom-up, will have to terminate, either
in success or in failure. If we try all of them, we will either find a proof or there
cannot be any.

Fortunately, we don’t need to search that blindly while remaining complete.
For each connective, either the left rule or the right rule in the sequent calculus is
invertible in the sense that the premises are provable if and only if the conclusion
is. So we can use such a rule, bottom-up, without having to consider any other
choices because we have preserved provability exactly.

The question is which rules are invertible. There is an easy test: whichever rule
is applied first (again, reading bottom-up) in the identity expansion is the invertible
rule while the counterpart on the other side is not. Here is a tiny example:

A ⊢ A
idA

B ⊢ B
idB

A B ⊢ A •B
•R

A •B ⊢ A •B
•L

While it is now plausible that •L rule is invertible, we can see that •R is not because
we cannot (yet) break up the antecedents appropriately.

We can prove invertibility of •L in pure ordered logic using the admissibility of
cut and identity. You may want to try this yourself before peeking at the solution
on the next page.
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A ⊢ A
idA

B ⊢ B
idB

A B ⊢ A •B
•R

ΩL (A •B) ΩR ⊢ C

ΩL A B ΩR ⊢ C
cutA•B

You can see if you read this from the unproved premise to the conclusion, it is
just the inverted •L. Given any concrete proof of the second premise we can apply
cut elimination to obtain a direct proof of the conclusion.

But we have to be a bit careful that this notion of invertibility may not completely
coincide with the inference rule being reversible. For example, the rule

· ⊢ 1
1R

is technically invertible in the sense that whenever the conclusion is, so are all the
premises (namely none). However, we cannot always apply this rule when we see
1 in a succedent because the antecedents may not be empty. If we had formulated
the rule slightly differently:

∆ = (·)

∆ ⊢ 1
1R

then it would not no longer be invertible.
Therefore, instead of talking about the right or left invertibility of a rule, we

talk about the right or left invertibility of a connective. If we can always apply its
right or left rule without losing provability when a connective appears at the top
level of a proposition, we call the connective invertible on the right or on the left,
respectively.

The distinction of whether left or right rules are invertible is of fundamental im-
portance in studying proof theory, and its connection to computation. We call the
right invertible connectives negative, while left invertible connectives are positive.
For ordered logic, we get the following classification:

Negative (right invertible): A \B, A / B, A N B, ⊤

Positive (left invertible): A •B, A ◦B, 1, A⊕B, 0

5 A Zoo of Connectives

In linear and ordered logic, the polarity of each connective is uniquely determined.
Somewhat surprisingly, though, in structural logic conjunction has both invertible
left and right rules. This is because it actually unifies two different connectives we
know from linear logic: truth in the same state A⊗B (positive) and external choice
ANB (negative). It turns out that it is highly beneficial to make this distinction even
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for intuitionistic logic, but this is rarely done—its significance was not recognized
until the discovery of call-by-push-value (really: a polarized type system) [Levy,
2006]. We will see that positive types (including positive pairs) are eager while
negative types (including externa choice) are lazy.

Below is the table of connective in the various logics, where we see that certain
connectives further on the right becomes indistinguishable when we move to the
left. For example, if the order of antecedents is irrelevant (e.g., in linear logic) then
left and right implication (A\B and B/A) become indistinguishable and are written
as A ⊸ B.

structural linear ordered polarity pronunciation

A ⊃ B A ⊸ B A \B negative A under B
B / A negative B over A

A ∧B A⊗B A •B positive A fuse B
A ◦B positive A twist B

A N B A N B negative A with B

A ∨B A⊕B A⊕B positive A plus B

⊤ 1 1 positive one
⊤ ⊤ negative top

⊥ 0 0 positive zero

The ambiguous nature of general structural conjunction A∧B and ⊤ is resolved
at the linear level because these connectives split into two each: one positive and
one negative.

6 Summary

The language of proof terms is in Figure 1. Since the constructors are named after
the inference rules we don’t bother showing the inference rules. You should be able
to easily write them out.

Valid proof terms are in one-to-one correspondence with proofs, so they merely
serve as a compact notation here. We can then express operations such as cut re-
duction on these terms, rather than showing complex derivations.

If we think of cut and identity as being admissible, then IdA (at types other than
atoms P ) and CutA would be meta-level operations to compute a cut-free proof
from the arguments. But we need to keep in mind that cut reduction is highly
nondeterministic, so perhaps CutA M (x. P ) ∼ N it is best thought of a 4-place
relation between A, M , x. P , and N (all of the proofs being cut-free).

LECTURE NOTES SEPTEMBER 7, 2023



Proof Terms L4.10

M,N,P ::= CutA M (x. P ) | Id x
| \R (x.M) | \L x M (y. P )
| /R (x.M) | /L x M (y. P )
| •R M N | •L x (y. z. P )
| ◦R M N | ◦L x (z. y. P )
| NR M N | NL1 x (y. P ) | NL2 x (z. P )
| 1R | 1L x M
| ⊕R1 M | ⊕R2 N | ⊕L x (y.N) (z. P )
| ⊤R |
| | 0L x

Figure 1: Proof terms for ordered logic
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