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1 Introduction

Message-passing communication in MPASS, which is based on the linear sequent
calculus, is synchronous in the sense that both sending and receiving are potentially
blocking actions. This is often a convenient abstraction, but under the hood com-
munication is usually asynchronous in the sense that sending does not block but
receiving does. In other formalisms for concurrency such as the π-calculus, we
have synchronous [Milner et al., 1992] and asynchronous [Boudol, 1992] versions.
So it is natural to look for an asynchronous calculus based on the interpretation of
linear propositions as session types. It turns out that such a calculus exists and un-
covers several new connections, in particular to futures in functional programming
languages [Halstead, 1985] that are usually thought of as a form of shared mem-
ory concurrency. In this lecture we will develop an asynchronous message-passing
calculus.

We know that in the untyped setting, the synchronous π-calculus is more ex-
pressive than the asynchronous one [Palamidessi, 2003]. In the setting of session
types, they turn out to have the same expressive power [Pfenning and Griffith,
2015], so we have to decide which formulation we would like to take as funda-
mental. Because of its (relative) proximity to an implementation and its connection
to futures, we prefer the asynchronous version as long as we can still relate it to
proof theory. It turns out that going down this path will also allow us to generalize
from linear to structural and then general adjoint types, which seems difficult to do
directly for the synchronous version.
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2 The Origin of Synchronous Communication

We refresh our memory about synchronous communication in MPASS. We use
internal choice as an example. When the provider sends a label k, the type of the
channel changes from ⊕{ℓ : Aℓ}ℓ∈L to Ak.

proc(send a k ; P ), proc(recv a (ℓ⇒ Qℓ)ℓ∈L)
−→ proc(P ) proc(Qk) (k ∈ L)

This communication is synchronous because sender and receive proceed to their
respective continuations at once. This ultimately comes from the linear sequent
calculus where the principal cases of cut reduction replace a cut of proposition
A⊕B either by a cut of A or of B, with subderivations on both premises of the cut.

Let’s also recall the typing rules where the change in type of the communication
channel is clearly visible.

k ∈ L ∆ ⊢ P :: (x : Ak)

∆ ⊢ send x k ; P :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

∆, x : Aℓ ⊢ Qℓ (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv k (ℓ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

We confirm that the synchronous nature of communication directly derives from
the synchronous nature of cut reduction. Writing out a binary case (as is customary
in logic):

D′

∆ ⊢ A

∆ ⊢ A⊕B
⊕R1

E1
∆′, A ⊢ C

E2
∆′, B ⊢ C

∆′, A⊕B ⊢ C
⊕L

∆,∆′ ⊢ C
cutA⊕B

−→

D′

∆ ⊢ A

E1
∆′, A ⊢ C

∆,∆′ ⊢ C
cutA

3 Continuation Channels instead of Continuation Processes

We cannot simply drop the continuation process P to make communication asyn-
chronous, because messages could be received out of order and progress would be
violated. For example:

bin = ⊕{b0 : bin, b1 : bin, e : 1}
one (x : bin) = send x b1 ; send x e ; send x ( )
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If we now match up a process that sends a binary 1 and one that receives a binary
number, all several kinds of mismatches can occur.

proc(call one a), proc(recv a (b0⇒ Q0 | b1⇒ Q1 | e⇒ Qe)
−→∗ proc(send a b1), proc(send a e), proc(send a ( )),

proc(recv a (b0⇒ Q0 | b1⇒ Q1 | e⇒ Qe))

Each of the messages could interact with the receiver, which could be an immediate
“message not understood” problem (when the message is ( )), or a later one (when
the message is e).

The way we solve this problem is to replace the continuation process of the sender
by a continuation channel. Ignoring for the moment where these continuation chan-
nels would come from, we might write

bin = ⊕{b0 : bin, b1 : bin, e : 1}
one (x : bin) = send x b1(x′) ; send x′ e(x′′) ; send x′′ ( ) % approximately

We need to fix this later to account for the creation of the continuation channels.
The receiver then not only selects the branch, but also receives a continuation chan-
nel for further communication.

proc(recv x (b0(x′)⇒ Q0(x
′) | b1(x′)⇒ Q1(x

′) | e(x′)⇒ Qe(x
′))

The idea is that x is used in only one place, and then x′ next, and then x′′, etc. so
channels and their types cannot be confused. This technique is due to Kobayashi
et al. [1996].

Revisiting our rules, they now become:

k ∈ L

x′ : Ak ⊢ send x k(x′) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕X

∆, x′ : Aℓ ⊢ Qℓ(x
′) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv k (ℓ(x′)⇒ Qℓ(x
′))ℓ∈L :: (z : C)

⊕L

Note that the right rule has become an axiom, that is, it has no logical premises.
This makes sense intuitively because when a message is received it should be
consumed by the recipient. The left rule only changes in the sense that x in the
premises has become the continuation channel x′.

In the reduction rule we see that the channel a no longer changes type, but
communication is transferred from a : ⊕{ℓ : Aℓ}ℓ∈L to the continuation channel
a′ : Ak.

proc(send a k(a′)), proc(recv a (ℓ(x′)⇒ Qℓ(x
′))ℓ∈L)

−→ proc(Qk(a
′)) (k ∈ L)
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4 Back to Logic

We have seen that the dynamics, if it holds up to scrutiny in the logic, would allow
for asynchronous communication. Extracting the binary logical rules we have:

A ⊢ A⊕B
⊕X1

B ⊢ A⊕B
⊕X2

∆, A ⊢ C ∆, B ⊢ C

∆, A⊕B ⊢ C
⊕L

The reductions:

A ⊢ A⊕B
⊕X1

E1
∆′, A ⊢ C

E2
∆′, B ⊢ C

∆′, A⊕B ⊢ C
⊕L

∆′, A ⊢ C
cutA⊕B

−→
E1

∆′, A ⊢ C

B ⊢ A⊕B
⊕X2

E1
∆′, A ⊢ C

E2
∆′, B ⊢ C

∆′, A⊕B ⊢ C
⊕L

∆′, A ⊢ C
cutA⊕B

−→
E2

∆′, B ⊢ C

In both cases, the cut disappears (which corresponds to a message receipt) and
only the recipient continues computation. The channel substitution is hidden in
this proof notation. For example, in first of the two reduction we would replace the
x : A resulting from the case split by the x′ : A label in the conclusion which is the
same as in the first premise. A symmetric case arises for the second reduction.

5 Generalizing to Other Connectives

We have seen that for internal choice the right rules turned into axioms (repre-
senting messages) and the left rule remained unchanged. In general, those rules
that carry information should become messages (and thus axioms) while invertible
rules should remain as they are. This means for positive connectives the right rules
become axioms while the left rules remain.

We call the result the semi-axiomatic sequent calculus (SAX) because half the rules
are turned into axioms while the other half remains the same.

A,B ⊢ A⊗B
⊗X

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

· ⊢ 1
1X

∆ ⊢ C

∆,1 ⊢ C
1L
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Because 1R is already an axiom, it does not change but we have given it a new
name, for uniformity. The negatives are symmetric in the sense that the left rules
become axioms (they are the ones carrying information) while the right rules re-
main (they are invertible).

∆ ⊢ A ∆ ⊢ B

∆ ⊢ A N B
NR

A N B ⊢ A
NX1

A N B ⊢ B
NX2

∆, A ⊢ B

∆ ⊢ A ⊸ B
⊸R

A,A ⊸ B ⊢ B
⊸X

We also have identity and cut as usual.

A ⊢ A
id

∆ ⊢ A ∆′, A ⊢ C

∆,∆′ ⊢ C
cut

Before we return to the computational meaning of these rules, we should ask the
obvious questions: (1) if we replace the positive right and negative left rules by
axioms do the same judgments hold, and (2) do cut and identity elimination still
hold?

6 Relating Sequent Calculus to SAX

We conjecture that the ordinary and semi-axiomatic sequent calculi prove the same
sequents. To show this, we will demonstrate how to derive the rules of each calcu-
lus in the other.

First, translating from SAX to the sequent calculus. By showing that the SAX
rules are derivable in the sequent calculus we can conclude that SAX is sound. We
only show two examples.

A ⊢ A
idA

A ⊢ A⊕B
⊕R1

A ⊢ A
idA

B ⊢ B
idB

A,A ⊸ B ⊢ B
⊸L

So, in general to derive the new axioms we just need identity, while the negative
right and positive left rules remain unchanged.

Second, translating from the sequent calculus to SAX. We show that the sequent
calculus rules are derivable in SAX. Again the rules that don’t change are trivial.
We show two other examples.

∆ ⊢ A A ⊢ A⊕B
⊕X1

∆ ⊢ A⊕B
cutA

∆ ⊢ A A,A ⊸ B ⊢ B
⊸X

∆, A ⊸ B ⊢ B
cutA

∆′, B ⊢ C

∆,∆′, A ⊸ B ⊢ C
cutB

So for this direction we need cut. We formulate this as a theorem.
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Theorem 1 (Soundness and Completeness of SAX) ∆ ⊢ A in the sequent calculus
iff ∆ ⊢ A in SAX.

Proof: We prove in each direction that the rules in the other calculus are derivable.
This could be formalized as in induction over the structure of the given derivation.

From left to right we insert suitable cuts (as exemplified above) and from right
to left we insert suitable identities (as exemplified above). □

7 Cut Elimination for SAX

The fact that the translation requires us to insert cuts suggests that SAX does not
satisfy a traditional cut elimination result. You may want to construct a counterex-
ample for yourself before moving on.
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Here is a simple one for distinct atoms P , Q, and R.

Q ⊢ (P ⊕Q)⊕R

While easily provable in the sequent calculus, in SAX we are stuck right away. It is
not the form of an axiom, so we can only proceed with cut.

This is profoundly saddening if you are a logical fundamentalist and proof-
theorist. But it turns out that it is also an opportunity for new discoveries!

If you look at the sample cases where cut had to be inserted in the previous sec-
tion, you see that the cuts have a special form: they only eliminate a subformula of
the sequent we are trying to prove. In the first example we have A as a subformula
of A⊕B, in the second we have both A and B as subformulas of A ⊸ B. In general
such cuts are called analytic cuts. Here we call them snips, which is an even more
restricted class than analytic cuts in the sense that one of the two premises of a snip
must be an axiom or another snip. We elide a precise definition for now, but we
will come back to it in a future lecture.

We can easily see that we can eliminate all cuts that are not snips. We do this
by translating a SAX derivation to the sequent calculus, eliminating cut, and then
translating back. This back translation will only require snips if the given sequent
derivation is cut-free to start with.

This, however, is not fully satisfying since we would like to relate the rules of
computation to cut reduction. Looking ahead, there is indeed a direct cut elimina-
tion algorithm utilizing the cut reductions in SAX that we have shown, leaving only
snips. For a structural version of SAX, this is proved by DeYoung et al. [2020]—the
linear version is significantly easier.

8 Completing Process Assignment and Dynamics

We now take the logical rules back into typing rules, adding continuation channels
to all messages. Our convention to assign the name x′ to the continuation of a
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channel x. First, the positive connectives.

k ∈ L

x′ : Ak ⊢ send x k(x′) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕X

∆, x′ : Aℓ ⊢ Qℓ(x
′) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv x (ℓ(x′)⇒ Qℓ(x
′))ℓ∈L :: (z : C)

⊕L

y : A, x′ : B ⊢ send x (y, x′) :: (x : A⊗B)
⊗X

∆, y : A, x′ : B ⊢ Q(y, x′) :: (z : C)

∆, x : A⊗B ⊢ recv x ((y, x′)⇒ Q(y, x′)) :: (z : C)
⊗L

· ⊢ send x ( ) :: (x : 1)
1X

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ recv x (( )⇒ Q) :: (z : C)
1L

Now the negatives.

∆ ⊢ Pℓ(x
′) :: (x′ : Aℓ) (∀ℓ ∈ L)

∆ ⊢ recv x (ℓ(x′)⇒ Pℓ(x
′)) :: (x : N{ℓ : Aℓ}ℓ∈L)

NR

k ∈ L

x : N{ℓ : Aℓ}ℓ∈L ⊢ send x k(x′) :: (x′ : Ak)
NX

∆, y : A ⊢ P (y, x′) :: (x′ : B)

∆ ⊢ recv x ((y, x′)⇒ P (y, x′)) :: (x : A ⊸ B)
⊸R

y : A, x : A ⊸ B ⊢ send x (y, x′) :: (x′ : B)
⊸X

Cut and identity do not change from the sequent calculus.

y : A ⊢ fwd x y :: (x : A)
id

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: (z : C)

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: (z : C)
cut
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We refactor the dynamics as before.

Messages M ::= k(x′) | (y, x′) | ( )

Continuations K ::= (ℓ(x′)⇒ Pℓ(x
′))ℓ∈L (⊕,N)

| ((y, x′)⇒ P (y, x′)) (⊗,⊸)
| (( )⇒ P ) (1)

Processes P ::= x← P (x) ; Q(x) cut
| fwd x y id
| send x M
| recv x K
| call p x y1 . . . yn

The dynamics in this refactored form relies on the M ▷ K operation defined just
below. Recall that a global signature Σ contains (possibly mutually recursive) type
and process definitions.

proc(x← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)
proc(P (b)), proc(fwd a b) −→ proc(P (a))
proc(send a M), proc(recv a K) −→ proc(M ▷K)
proc(call p a b1 . . . bn) −→ proc(P (a, b1, . . . , bn))

for p x y1 . . . yn = P (x, y1, . . . , yn) ∈ Σ

k(a′)▷ (ℓ(x′)⇒ Pℓ(x
′))ℓ∈L = Pk(a

′) (k ∈ L)
(b, a′)▷ ((y, x′)⇒ P (y, x′)) = P (b, a′)
( )▷ (( )⇒ P ) = P

9 Example Revisited

Recall the earlier example, which wasn’t quite right because we could not explain
where the continuation channels would come from.

bin = ⊕{b0 : bin, b1 : bin, e : 1}
one (x : bin) = send x b1(x′) ; send x′ e(x′′) ; send x′′ ( ) % approximately

In SAX we have to explicitly allocate the continuation channels via cut. Because of
the orientation of the cut, this requires us to reverse the textual order of the send
actions.

one (x : bin) = x′′ ← send x′′ ( ) ;
x′ ← send x′ e(x′′) ;
send x b1(x′)
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Because of the concurrent nature of cut, the order is not significant for the compu-
tation of this process and we are left with three messages. These messages form a
queue, with the continuation channels acting as “pointers”.

proc(call one a) −→∗ proc(send a′′ ( )), proc(send a′ e(a′′)), proc(send a b1(a′))

Syntactically, the opposite order of sends in the definition would be closer to MPASS.
This can be achieved with a “reverse cut” where the client Q(x) precedes the provider
P (x).

∆′, x : A ⊢ Q(x) :: (z : C) ∆ ⊢ P (x) :: (x : A)

∆,∆′ ⊢ x→ Q(x) ; P (x) :: (z : C)
cutR

Since we just reverse the premises of the cut, this is just a syntactic convenience
and does not change the essence of the language. Then we could write:

one (x : bin) = x′ → send x b1(x′) ;
x′′ → send x′ e(x′′) ;
send x′′ ( )

We might decide to pick a different concrete syntax for this, to be discussed in the
next lecture.

During lecture, we also briefly discussed an alternative where x′ is somehow
computed from x, and that the sender and recipient agree on this computation.
This could be concrete “address arithmetic” (like: from x we go to x + 1) or more
abstract (like: from x we go to x.b1). This actually has a quite sensible logical inter-
pretation in terms of snips from Section 7 so we will come back to it, probably two
lectures from now. With this case we might write the process one as follows:

one (x : bin) = send x b1(_) ; send x.b1 e(_) ; send x.b1.e ( ) % with snips

We have elided the continuation channels in the send actions because they can be
computed from the channel x.
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