
Lecture Notes on
Data Layout

15-836: Substructural Logics
Frank Pfenning

Lecture 17
November 9, 2023

1 Introduction

Data layout is a critical component in the efficient compilation of functional lan-
guages (see, for example, [Morrisett, 1995, Weeks, 2006, Vollmer et al., 2017, 2019]).
Yet, in implementations of functional languages data layout decisions are left to
the compiler rather than being available to the programmer. In today’s lecture we
design a type system in which certain high-level data layout decisions are explicit
in the types, while lower-level details are still left to a compiler.

The surprising property of the type system is that it corresponds directly to a
fragment of adjoint logic in its semi-axiomatic formulation which we call SNAX.
In other words, SNAX provides a logical explanation for issues of data layout! Pe-
tersen et al. [2003] was an early attempt at characterizing data layout using an or-
dered type system. While this worked as far as it went, it did not generalize further.
The root cause seems to be that the proofs-as-programs interpretation for ordered
logic does not capture adjacency because the general rule of cut must apply to a
proposition in the middle of ordered antecedents.

The line of research on SAX provided a surprising twist. SAX itself does not
satisfy traditional cut elimination, as explained in a prior lecture. Certain cuts may
be allowed if the cut formula arises from a use of a new axiom and is therefore a
subformula of the goal sequent. We call these cuts snips and prove a new version
of cut elimination [DeYoung et al., 2020] in which snips are allowed to remain. But
we didn’t tackle the question what the computational meaning of snips might be. It
turns out that while a cut allocates a new memory cell, a snip merely computes an
address relative to an existing address.

The fundamental connection between semi-axiomatic proofs and data layout
is developed for nonlinear futures by DeYoung and Pfenning [2022]. Since this is
largely consistent with the approach and notation of this course, we will not repeat

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.2

repeat it in these notes but provide a link to the extended version of the paper
paper.1

These notes then will cover only the connection between partial focusing and
data layout in the SNAX source language under the shared memory interpretation,
which was discovered (during this course) in analogy to message sequences.

2 Data Layout: Compound Values

Message sequences were defined to model asynchronous communication along
buffered channels. We just consider the positive types, because we won’t be spe-
cific about how negative types are laid out (they are not directly observable, after
all).

Messages Sequences M ::= k(M) (⊕)

| (y,M) (⊗)
| () (1)
| ⟨x′⟩ (↓)
| x′ cont. channel

When we think about memory layout, we do not need the first component of a
pair to be an address—it could just be another value. The continuation channel x′

is replaced by an address x, but in the typing rules to come later we will restrict
such address to be of negative type. The reason is that we would like to statically
allocate the space for a value. We just write V and K instead of V and K since the
restricted case is just a special case.

Values V ::= k(V) (⊕)
| (V1, V2) (⊗)
| () (1)
| ⟨x⟩ (↓)
| x (⊸,N, ↑)

We picture the layout as follows:

k(V) k · · ·V · · ·

(V1, V2) · · ·V1 · · · · · ·V2 · · ·

()

⟨a⟩ a

a a

1https://arxiv.org/abs/2212.06321v3.pdf

LECTURE NOTES NOVEMBER 9, 2023

https://arxiv.org/abs/2212.06321v3.pdf

Data Layout L17.3

We imagine that the unit doesn’t actually take any space, but we still display it as
a narrow box.

Let’s look at two recursive types:

nat = ⊕{zero : 1, succ : nat}
list = ⊕{nil : 1, cons : nat⊗ list}

Because these types are recursive and purely positive, their layout would be un-
bounded in size. This is the same problem as posed by (possibly mutually) re-
cursive structs in C. In C, as here, the solution is to require an indirection via a
pointer/address, which has a fixed size representation.

The indirection can be either through a downshift ↓A or through a negative
type A−. For natural numbers, there are two obvious options:

nat = ⊕{zero : 1, succ : ↓nat} % eager
nat = ⊕{zero : 1, succ : ↑nat} % lazy

The first would be the ordinary (eager) natural numbers, observable in their en-
tirety. The second would be the lazy natural numbers because the successor a num-
ber would be succ ⟨a⟩ where at the address is a continuation that can compute the
tail.

But something doesn’t seem right, because shifts in mixed linear/nonlinear
logic go between structural and linear types. We are saved by the generality of
adjoint logic, where ↓ℓmA only requires that ℓ ≥ m. If we are working just with
linear natural numbers, the downshift would be ↓L

Lnat. For structural natural num-
bers it would probably ↓S

Snat. Since for the moment we are just working in purely
linear logic, we just write ↓A for ↓L

LA.
The ordinary eager lists might have pointers to natural numbers.

list = ⊕{nil : 1, cons : ↓nat⊗ ↓list}

The representation might be more compact for lists of booleans by “inlining” them
instead of having a pointer to a Boolean.

bool = ⊕{false : 1, true : 1}
listbool = ⊕{nil : 1, cons : bool⊗ ↓listbool}

When a pointer to the element is embedded in a list it is called a boxed representation;
otherwise it is said to be unboxed. Data of the unboxed type listbool might be layed
out as on of the following, where a is the address for the tail of the list.

nil X X X X

cons false a

cons true a

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.4

The extra unused space for nil is there because all values of type listbool should be
laid out with the same width.

3 Partial Focusing Revisited

As can be seen from the development above, values still arise from partial focusing
but with slightly different criteria for partiality. We begin with the rules for writing
with positive types.

∆ ⊢ V : ⌈A⌉

∆ ⊢ write x V :: (x : A)
write

Now we have rules for each of the positive types with the corresponding values.

∆ ⊢ V : ⌈Ak⌉

∆ ⊢ k(V) : ⌈⊕{ℓ : Aℓ}ℓ∈L⌉
⊕R

∆1 ⊢ V1 : ⌈A⌉ ∆ ⊢ V2 : ⌈B⌉

∆1,∆2 ⊢ (V1, V2) : ⌈A⊗B⌉
⊗R

· ⊢ () : ⌈1⌉
1R

When we encounter a downshift or a negative type we end the partial focusing
phase, either with the corresponding axiom or an identity.

x : A ⊢ ⟨x⟩ : ⌈↓A⌉
downX

x : A− ⊢ x : ⌈A−⌉
id−

Pattern matching works symmetrically. The pattern has to be deep enough to cover
all well-typed values of a given type. Inversion now has to continue on both sides
of a pair, so we need to generalize to allow the patterns to be nested.

Pattern Sequence V ::= V · V | (·)
Continuations K ::= (V ⇒ P | K) | ·

The sequence of nested patterns match the ordered context in ∆ ; Ω ⊢ K :: δ. The
judgment is started with Ω being a singleton.

∆ ; ⌈A⌉ ⊢ K :: δ

∆, x : A ⊢ read x K :: δ
read

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.5

∆ ; A B Ω ⊢ K @ (_,_) :: δ

∆ ; (A⊗B) Ω ⊢ K :: δ
⊗L

∆ ; Ω ⊢ K @ () :: δ

∆ ; 1 Ω ⊢ K :: δ
1L

∆ ; Aℓ Ω ⊢ K @ ℓ(_) :: δ (∀ℓ ∈ L)

∆ ; ⊕{ℓ : Aℓ}ℓ∈L Ω ⊢ K :: δ
⊕L

∆, x : A ; Ω ⊢ K @ ⟨x⟩ :: δ

∆ ; (↓A) Ω ⊢ K :: δ
↓L

∆, x : A− ; Ω ⊢ K @ x :: δ

∆ ; A− Ω ⊢ K :: δ

∆ ⊢ P :: δ

∆ ; · ⊢ (·) ⇒ P :: δ

In the definition below we don’t explicate failure conditions (for example, if there
no branches for a given tag, or if there is a mismatch between the projection p and
the pattern).

((V1, V2) · V ⇒ P | K) @ (_,_) = (V1 · V2 · V ⇒ P) | (K @ (_,_))

(() · V ⇒ P | K) @ () = (V ⇒ P) | (K @ ())

(ℓ(V) · V ⇒ P | K) @ ℓ(_) = (V · V ⇒ P) | (K @ ℓ(_))
(k(V) · V ⇒ P | K) @ ℓ(_) = K @ ℓ(_) for k ̸= ℓ and k ∈ L

(⟨x⟩ · V ⇒ P (x) | K) @ ⟨y⟩ = (V ⇒ P (y)) | (K @ ⟨y⟩)

(x · V ⇒ P (x) | K) @ y = (V ⇒ P (y)) | (K @ y)

(·) @ p = (·)

4 Example: Append with Three Types

We give three different examples, one for appending two lists of pointers to natural
numbers, and one for appending lists of (unboxed) booleans.

In the first example we pass memory contents directly instead of pointers.

type nat = +{’zero : 1, ’succ : <down> nat}
type list = +{’nil : 1, ’cons : <down> nat * <down> list}

proc append (R : list) (L : list) (K : list) =
read L (’nil() => move R K

| ’cons(<x>, <L’>) => R’ : list <- call append R’ L’ K
write R ’cons(<x>, <R’>))

In the next version, we pass pointers instead of the layout structures. Because in
this version we have to match all the way until we encounter an address, there is a
slight awkwardness in the recursive calls: we might prefer not to decompose and
recompose the tail of the list.

LECTURE NOTES NOVEMBER 9, 2023

Data Layout L17.6

type nat = +{’zero : 1, ’succ : nat_ptr}
type nat_ptr = <down> nat

type list = +{’nil : 1, ’cons : <down> nat * list_ptr}
type list_ptr = <down> list

proc append (R : list_ptr) (L : list_ptr) (K : list_ptr) =
read L (<’nil()> => move R K

| <’cons(<x>,<L’>)> => R’ : list_ptr <- call append R’ <L’> K
write R ’cons(<x>, R’))

In the unboxed example we see that partial matching could be quite helpful, be-
cause without that we need to match the entirety of the boolean instead of being
able to leave it as a variable.

type bool = +{’false : 1, ’true : 1}
type boollist = +{’nil : 1, ’cons : bool * <down>boollist}

proc append (R : boollist) (L : boollist) (K : boollist) =
read L (’nil() => move R K

| ’cons(’false(),<L’>) => R’ : list <- call append R’ L’ K
write R ’cons(’false(), <R’>)

| ’cons(’true(),<L’>) => R’ : list <- call append R’ L’ K
write R ’cons(’true(), <R’>))

It would be easy to accommodate partial matches by removing the restriction on
variables in values to be of negative type.

References

Henry DeYoung and Frank Pfenning. Data layout from a type-theoretic perspec-
tive. In 38th Conference on the Mathematical Foundations of Programming Semantics
(MFPS 2022). Electronic Notes in Theoretical Informatics and Computer Science
1, 2022. URL https://arxiv.org/abs/2212.06321v6. Invited paper. Ex-
tended version available at https://arxiv.org/abs/2212.06321v3.pdf.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent
calculus. In Z. Ariola, editor, 5th International Conference on Formal Structures
for Computation and Deduction (FSCD 2020), pages 29:1–29:22, Paris, France, June
2020. LIPIcs 167.

Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University,
December 1995. Available as Technical Report CMU-CS-95-226.

Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for
memory allocation and data layout. In G. Morrisett, editor, Conference Record
of the 30th Annual Symposium on Principles of Programming Languages (POPL’03),

LECTURE NOTES NOVEMBER 9, 2023

https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v3.pdf

Data Layout L17.7

pages 172–184, New Orleans, Louisiana, January 2003. ACM Press. Extended
version available as Technical Report CMU-CS-02-171, December 2002.

Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya
Koparkar, Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton. Com-
piling tree transformas to operate on packed representations. In Peter Müller,
editor, 31st European Conference on Object-Oriented Programming (ECOOP 2017),
pages 26:1–26:29, Barcelona, Spain, June 2017. LIPIcs 745.

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, and Milind
Kulkarni. LoCal: A language for programs operating in serialized data. In
Kathryn McKinley and Kathleen Fisher, editors, 40th Conference on Programming
Language Design and Implementation (PLDI 2019), pages 48–62, Phoenix, Arizona,
June 2019. ACM.

Stephen Weeks. Whole-program compilation in MLton. In Andrew Kennedy
and Frano̧is Pottier, editors, Proceedings of the Workshop on ML, Portland, Ore-
gon, September 2006. ACM. Slides available at http://www.mlton.org/
References.attachments/060916-mlton.pdf.

LECTURE NOTES NOVEMBER 9, 2023

http://www.mlton.org/References.attachments/060916-mlton.pdf
http://www.mlton.org/References.attachments/060916-mlton.pdf

	Introduction
	Data Layout: Compound Values
	Partial Focusing Revisited
	Example: Append with Three Types

