
Chapter 4

The Elf Programming
Language

Elf, thou lovest best, I think,
The time to sit in a cave and drink.

— William Allingham
In Fairy Land [All75]

In Chapter 2 we have seen how deductive systems can be used systematically to
specify aspects of the semantics of programming languages. In later chapters, we
will see many more examples of this kind, including some examples from logic. In
Chapter 3 we explored the logical framework LF as a formal meta-language for the
representation of programming languages, their semantics, and their meta-theory.
An important motivation behind the development of LF has been to provide a
formal basis for the implementation of proof-checking and theorem proving tools,
independently of any particular logic or deductive system. Note that search in the
context of LF is the dual of type-checking: given a type A, find a closed object
M of type A. If such an object M exists we refer to A as inhabited. Since types
represent judgments and objects represent deductions, this is a natural formulation
of the search for a deduction of a judgment via its representation in LF. Unlike
type-checking, of course, the question whether a closed object of a given type exists
is in general undecidable. The question of general search procedures for LF has
been studied by Elliott [Ell89, Ell90] and Pym and Wallen [PW90, Pym90, PW91,
Pym92], including the question of unification of LF objects modulo βη-conversion.

In the context of the study of programming languages, we encounter problems
that are different from general proof search. For example, once a type system has
been specified as a deductive system, how can we implement a type-checker or
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a type inference procedure for the language? Another natural question concerns
the operational semantics: once specified as a deductive system, how can we take
advantage of this specification to obtain an interpreter for the language? In both
of these cases we are in a situation where algorithms are known and need to be
implemented. The problem of proof search can also be phrased in these terms:
given a logical system, implement algorithms for proof search that are appropriate
to the system at hand.

Our approach to the implementation of algorithms is inspired by logic program-
ming: specifications and programs are written in the same language. In traditional
logic programming, the common basis for specifications and implementations has
been the logic of Horn clauses; here, the common basis will be the logical framework
LF. We would like to emphasize that specifications and programs are generally not
the same: many specifications are not useful if interpreted as programs, and many
programs would not normally be considered specifications. In the logic program-
ming paradigm, execution is the search for a derivation of some instance of a query.
The operational semantics of the logic programming language specifies precisely
how this search will be performed, given a list of inference rules that constitute
the program. Thus, if one understands this operational reading of inference rules,
the programmer can obtain the desired execution behavior by defining judgments
appropriately. We explain this in more detail in Section ?? and investigate it more
formally in Chapter ??.

Elf is a strongly typed language, since it is directly based on LF. The Elf
interpreter must thus perform type reconstruction on programs and queries before
executing them. Because of the complex type system of LF, this is a non-trivial task.
In fact, it has been shown by Dowek [Dow93] that the general type inference problem
for LF is undecidable, and thus not all types may be omitted from Elf programs.
The algorithm for type reconstruction which is used in the implementation [Pfe91a,
Pfe94] is based on the same constraint solving algorithm employed during execution.

The current implementation of Elf is within the Twelf system [PS99]. The reader
should consult an up-to-date version of the User’s Guide for further information
regarding the language, its implementation, and its use. Sources, binaries for various
architectures, examples, and other materials are available from the Twelf home
page [Twe98].

4.1 Concrete Syntax

The concrete syntax of Elf is very simple, since we only have to model the relatively
few constructs of LF. While LF is stratified into the levels of kinds, families, and
objects, the syntax is overloaded in that, for example, the symbol Π constructs
dependent function types and dependent kinds. Similarly, juxtaposition is concrete
syntax for instantiation of a type family and application of objects. We maintain this
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overloading in the concrete syntax for Elf and refer to expressions from any of the
three levels collectively as terms. A signature is given as a sequence of declarations.
We describe here only the core language which corresponds very closely to LF.
The main addition is a form of declaration id : term1 = term2 that introduces an
abbreviation id for term2.

Terms term ::= id a or c or x
| {id:term1}term2 Πx:A1. A2 or Πx:A. K
| [id:term1]term2 λx:A. M
| term1 term2 A M or M1 M2

| type type
| term1 -> term2 A1 → A2

| term1 <- term2 A2 → A1

| {id}term | [id]term | _ omitted terms
| term1:term2 type ascription
| (term) grouping

Declarations decl ::= id : term. a:K or c:A
| id : term1 = term2. c:A = M

The terminal id stands either for a bound variable, a free variable, or a constant
at the level of families or objects. Bound variables and constants in Elf can be
arbitrary identifiers, but free variables in a declaration or query must begin with an
uppercase letter (a free, undeclared lowercase identifier is flagged as an undeclared
constant). An uppercase identifier is one which begins with an underscore _ or
a letter in the range A through Z; all others are considered lowercase, including
numerals. Identifiers may contain all characters except (){}[]:.% and whitespace.
In particular, A->B would be a single identifier, while A -> B denotes a function
type. The left-pointing arrow as in B <- A is a syntactic variant and parsed into the
same representation as A -> B. It improves the readability of some Elf programs.
Recall that A -> B is just an abbreviation for {x:A} B where x does not occur in
B.

The right-pointing arrow -> is right associative, while the left-pointing arrow <-

is left associative. Juxtaposition binds tighter than the arrows and is left associative.
The scope of quantifications {x : A} and abstractions [x : A] extends to the next
closing parenthesis, bracket, brace or to the end of the term. Term reconstruction
fills in the omitted types in quantifications {x} and abstractions [x] and omitted
types or objects indicated by an underscore _ (see Section 4.2). In case of essential
ambiguity a warning or error message results.

Single-line comments begin with % and extend through the end of the line. A
delimited comment begins with %{ and ends with the matching }%, that is, delimited
comments may be properly nested. The parser for Elf also supports infix, prefix,
and postfix declarations.
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4.2 Type and Term Reconstruction

A crucial element in a practical implementation of LF is an algorithm for type
reconstruction. We will illustrate type reconstruction with the Mini-ML examples
from the previous chapter. First, the straightforward signature defining Mini-ML
expressions which is summarized on page 46.

exp : type. %name exp E x.

z : exp.

s : exp -> exp.

case : exp -> exp -> (exp -> exp) -> exp.

pair : exp -> exp -> exp.

fst : exp -> exp.

snd : exp -> exp.

lam : (exp -> exp) -> exp.

app : exp -> exp -> exp.

letv : exp -> (exp -> exp) -> exp.

letn : exp -> (exp -> exp) -> exp.

fix : (exp -> exp) -> exp.

The declaration %name exp E x. indicates to Elf that fresh variables of type
exp which are created during type reconstruction or search should be named E, E1,
E2, etc.

Next, we turn to the signature defining evaluations. Here are three declarations
as they appear on page 56.

eval : exp→ exp→ type
ev z : eval z z
ev s : ΠE:exp. ΠV :exp. eval E V → eval (s E) (s V )
ev case z : ΠE1:exp. ΠE2:exp. ΠE3:exp→ exp. ΠV :exp.

eval E1 z→ eval E2 V → eval (case E1 E2 E3) V

In Elf’s concrete syntax these would be written as

eval : exp -> exp -> type.

ev_z : eval z z.

ev_s : {E:exp} {V:exp} eval E V -> eval (s E) (s V).

ev_case_z :

{E1:exp} {E2:exp} {E3:exp -> exp} {V:exp}

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.
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A simple deduction, such as

ev z
z ↪→ z

ev z
z ↪→ z

ev s
s z ↪→ s z

ev case z
case z of z⇒ s z | s x⇒ z

is represented in Elf as

ev_case_z z (s z) ([x:exp] z) (s z) ev_z (ev_s z z ev_z).

The Elf implementation performs type checking and reconstruction; later we will
see how the user can also initiate search. In order to check that the object above
represents a derivation of case z of z⇒ s z | s x⇒ z, we construct an anonymous
definition

_ = ev_case_z z (s z) ([x:exp] z) (s z) ev_z (ev_s z z ev_z)

: eval (case z (s z) ([x:exp] z)) (s z).

The interpreter re-prints the declaration, which indicates that the given judgment
holds, that is, the object to the left of the colon has type type to the right of the
colon in the current signature. The current signature is embodied in the state of
the Twelf system and comprises all loaded files. Please see the Twelf User’s Guide
for details.

We now reconsider the declaration of ev_case_z. The types of E1, E2, E3, and
V are unambiguously determined by the kind of eval and the type of case. For
example, E1 must have type exp, since the first argument of eval must have type
exp. This means, the declaration of ev_case_z could be replaced by

ev_case_z :

{E1} {E2} {E3} {V}

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

It will frequently be the case that the types of the variables in a declaration can
be determined from the context they appear in. To abbreviate declarations further
we allow the omission of the explicit Π-quantifiers. Consequently, the declaration
above can be given even more succinctly as

ev_case_z : eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

This second step introduces a potential problem: the order of the quantifiers is not
determined by the abbreviated declaration. Therefore, we do not know which argu-
ment to ev_case_z stands for E1, which for E2, etc. Fortunately, these arguments
(which are objects) can be determined from the context in which ev_case_z occurs.
Let E1, E2, E3, V, E’ and V’ stand for objects yet to be determined and consider
the incomplete object
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ev_case_z E1 E2 E3 V (ev_z) (ev_s E’ V’ (ev_z)).

The typing judgment

ev_case_z E1 E2 E3 V

: eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V

holds for all valid objects E1, E2, E3, and V of appropriate type. The next argument,
ev_z has type eval z z. For the object to be well-typed we must thus have

eval E1 z = eval z z

where = represents definitional equality. Thus E1 = z. We can similarly determine
that E2 = s z, V = s z, E’ = z, and V’ = z. However, E3 is as yet undetermined.
But if we also know the type of the whole object, namely

eval (case z (s z) ([x:exp] z)) (s z),

then E3 = [x:exp] z also follows. Since it will generally be possible to determine
these arguments (up to conversion), we omit them in the input. We observe a strict
correspondence between implicit quantifiers in a constant declaration and implicit
arguments wherever the constant is used. This solves the problem that the order of
implicit arguments is unspecified. With the abbreviated declarations

eval : exp -> exp -> type.

ev_z : eval z z.

ev_s : eval E V -> eval (s E) (s V).

ev_case_z :

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

the derivation above is concisely represented by

ev_case_z (ev_z) (ev_s (ev_z))

: eval (case z (s z) ([x:exp] z)) (s z).

While arguments to an object of truly dependent function type (Πx:A. B where
x occurs free in B) are often redundant, there are examples where arguments cannot
be reconstructed unambiguously. It is a matter of practical experience that the great
majority of arguments to dependently typed functions do not need to be explicitly
given, but can be reconstructed from context. The Elf type reconstruction algorithm
will give a warning when an implicit quantifier in a constant declaration is likely to
lead to essential ambiguity later.

For debugging purposes it is sometimes useful to know the values of recon-
structed types and objects. The front-end of the Elf implementation can thus print
the internal and fully explicit form of all the declarations if desired. Type recon-
struction is discussed in further detail in the documentation of the implementation.
For the remainder of this chapter, the main feature to keep in mind is the duality
between implicit quantifiers and implicit arguments.
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4.3 A Mini-ML Interpreter in Elf

Let us recap the signatureEV defining evaluation as developed so far in the previous
section.

eval : exp -> exp -> type.

ev_z : eval z z.

ev_s : eval E V -> eval (s E) (s V).

ev_case_z :

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

One can now follow follow the path of Section 3.6 and translate the LF signature
into Elf syntax. Our main concern in this section, however, will be to implement
an executable interpreter for Mini-ML in Elf. In logic programming languages in
general computation is search for a derivation. In Elf, computation is search for
a derivation of a judgment according to a particular operational interpretation of
inference rules. In the terminology of the LF type theory, this translates to the
search for an object of a given type over a particular signature.

To consider a concrete example, assume we are given a Mini-ML expression e.
We would like to find an object V and a closed object D of type eval peq V. Thus,
we are looking simultaneously for a closed instance of a type, eval peq V, and a
closed object of this instance of the type. How would this search proceed? As an
example, consider e = case z of z ⇒ s z | s x ⇒ z. The query would have the
form

?- D : eval (case z (s z) ([x:exp] z)) V.

where V is a free variable. Now the Elf interpreter will attempt to use each of the
constants in the given signature in turn in order to construct a canonical object of
this type. Neither ev_z nor ev_s are appropriate, since the types do not match.
However, there is an instance of the last declaration

ev_case_z : eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

whose conclusion eval (case E1 E2 E3) V matches the current query by instanti-
ating E1 = z, E2 = (s z), E3 = ([x:exp] z), and V = V. Thus, solutions to the
subgoals

?- D2 : eval (s z) V.

?- D1 : eval z z.

would provide a solution D = ev_case_z D1 D2 to the original query. At this point
during the search, the incomplete derivation in mathematical notation would be

D1

z ↪→ z
D2

s z ↪→ v
ev case z

(case z of z⇒ s z | s x⇒ z) ↪→ v
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where D1, D2, and v are still to be filled in. Thus computation in Elf corresponds to
bottom-up search for a derivation of a judgment. We solve the currently unsolved
subgoals going through the partial deduction in a depth-first, left-to-right manner.
So the next step would be to solve

?- D1 : eval z z.

We see that only one inference rule can apply, namely ev z, instantiating D1 to
ev_z. Now the subgoal D2 can be matched against the type of ev_s, leading to the
further subgoal

?- D3 : eval z V1.

while instantiating V to s V1 for a new variable V1 and D2 to ev_s D3. In mathe-
matical notation, the current state of search would be the partial derivation

ev z
z ↪→ z

D3

z ↪→ v1
ev s

s z ↪→ s v1
ev case z.

(case z of z⇒ s z | s x⇒ z) ↪→ s v1

The subgoals D3 can be solved directly by ev_z, instantiating V1 to z. We obtain
the following cumulative substitution:

D = ev_case_z D1 D2

D2 = ev_s D3,

V = s V1,

D3 = ev_z,

V1 = z,

D1 = ev_z.

Eliminating the intermediate variables we obtain the same answer that Elf would
return.

?- D : eval (case z (s z) ([x:exp] z)) V.

V = s z,

D = ev_case_z ev_z (ev_s ev_z).

One can see that the matching process which is required for this search procedure
must allow instantiation of the query as well as the declarations. The problem of
finding a common instance of two terms is called unification. A unification algorithm
for terms in first-order logic was first sketched by Herbrand [Her30]. The first full
description of an efficient algorithm for unification was given by Robinson [Rob65],
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which has henceforth been a central building block for automated theorem prov-
ing procedures and logic programming languages. In Elf, Robinson’s algorithm is
not directly applicable because of the presence of types and λ-abstraction. Huet
showed that unification in the simply-typed λ-calculus is undecidable [Hue73], a
result later sharpened by Goldfarb [Gol81]. The main difficulty stems from the
notion of definitional equality, which can be taken as β or βη-convertibility. Of
course, the simply-typed λ-calculus is a subsystem of the LF type theory, and thus
unifiability is undecidable for LF as well. A practical semi-decision procedure for
unifiability in the simply-typed λ-calculus has been proposed by Huet [Hue75] and
used in a number of implementations of theorem provers and logic programming
languages [AINP88, Pfe91a, Pau94]. However, the procedure has the drawback
that it may not only diverge but also branch, which is difficult to control in logic
programming. Thus, in Elf, we have adopted the approach of constraint logic pro-
gramming languages first proposed by Jaffar and Lassez [JL87], whereby difficult
unification problems are postponed and carried along as constraints during execu-
tion. We will say more about the exact nature of the constraint solving algorithm
employed in Elf in Section ??. In this chapter, all unification problems encountered
will be essentially first-order.

We have not payed close attention to the order of various operations during
computation. In the first approximation, the operational semantics of Elf can be
described as follows. Assume we are given a list of goals A1, . . . , An with some
free variables. Each type of an object-level constant c in a signature has the form
Πy1:B1 . . .Πym:Bm. C1 → · · · → Ck → C, where C is an atomic type. We call C
the target type of c. Also, in analogy to logic programming, we call c a clause, C the
head of the clause c. Recall, that some of these quantifiers may remain implicit in
Elf. We instantiate y1, . . . , ym with fresh variables Y1, . . . , Ym and unify the resulting
instance of C ′ with A1, trying each constant in the signature in turn until unification
succeeds. Unification may instantiate C1, . . . , Ck to C ′1, . . . , C

′
k. We now set these

up as subgoals, that is, we obtain the new list of goals C ′k, . . . , C
′
1, A2, . . . , An. The

object we were looking for will be c Y1 . . . Yn M1 . . .Mk, where M1, . . . ,Mk are the
objects of type C ′1, . . . , C

′
k, respectively, yet to be determined. We say that the goal

A1 has been resolved with the clause c and refer to the process as back-chaining.
Note that the subgoals will be solved “from the inside out,” that is, C ′k is the first
one to be considered. If unification should fail and no further constants are available
in the signature, we backtrack, that is, we return to the most recent point where a
goal unified with a clause head (that is, a target type of a constant declaration in
a signature) and further choices were available. If there are no such choice points,
the overall goal fails.

Logic programming tradition suggests writing the (atomic) target type C first
in a declaration, since it makes is visually much easier to read a program. We
follow the same convention here, although the reader should keep in mind that
A -> B and B <- A are parsed to the same representation: the direction of the arrow
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has no semantic significance. The logical reading of B <- A is “B if A,” although
strictly speaking it should be “B is derivable if A is derivable.” The left-pointing
arrow is left associative so that C <- B <- A, (C <- B) <- A, A -> (B -> C), and
A -> B -> C are all syntactically different representations for the same type. Since
we solve innermost subgoals first, the operational interpretation of the clause

ev_case_z :

eval E1 z -> eval E2 V -> eval (case E1 E2 E3) V.

would be: “To solve a goal of the form eval (case E1 E2 E3) V, solve eval E2 V

and, if successful, solve eval E1 z.” On the other hand, the clause

ev_case_z : eval (case E1 E2 E3) V

<- eval E1 z

<- eval E2 V.

reads as: “to solve a goal of the form eval (case E1 E2 E3) V, solve eval E1 z

and, if successful, eval E2 V.” Clearly this latter interpretation is desirable from
the operational point of view, even though the argument order to ev_case_z is
reversed when compared to the LF encoding of the inference rules we have used so
far. This serves to illustrate that a signature that is adequate as a specification of
a deductive system is not necessarily adequate for search. We need to pay close
attention to the order of the declarations in a signature (since they will be tried in
succession) and the order of the subgoals (since they will be solved from the inside
out).

We now complete the signature describing the interpreter for Mini-ML in Elf.
It differs from the LF signature in Section 3.6 only in the order of the arguments
to the constants. First the complete rules concerning natural numbers.

ev_z : eval z z.

ev_s : eval (s E) (s V)

<- eval E V.

ev_case_z : eval (case E1 E2 E3) V

<- eval E1 z

<- eval E2 V.

ev_case_s : eval (case E1 E2 E3) V

<- eval E1 (s V1’)

<- eval (E3 V1’) V.

Recall that the application (E3 V1’) was used to implement substitution in
the object language. We discuss how this is handled operationally below when
considering ev_app. Pairs are straightforward.

ev_pair : eval (pair E1 E2) (pair V1 V2)

<- eval E1 V1
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<- eval E2 V2.

ev_fst : eval (fst E) V1

<- eval E (pair V1 V2).

ev_snd : eval (snd E) V2

<- eval E (pair V1 V2).

Abstraction and function application employ the notion of substitution. Recall
the inference rule and its representation in LF:

e1 ↪→ lam x. e′1 e2 ↪→ v2 [v2/x]e
′
1 ↪→ v

ev app
e1 e2 ↪→ v

ev app : ΠE1:exp. ΠE2:exp. ΠE′1:exp→ exp. ΠV2:exp. ΠV :exp.
eval E1 (lam E′1)
→ eval E2 V2

→ eval (E′1 V2) V
→ eval (app E1 E2) V.

As before, we transcribe this (and the trivial rule for evaluating λ-expressions) into
Elf.

ev_lam : eval (lam E) (lam E).

ev_app : eval (app E1 E2) V

<- eval E1 (lam E1’)

<- eval E2 V2

<- eval (E1’ V2) V.

The operational reading of the ev_app rule is as follows. In order to evaluate an
application e1 e2 we evaluate e1 and match the result against lam x. e′1. If this
succeeds we evaluate e2 to the value v2. Then we evaluate the result of substituting
v2 for x in e′1. The Mini-ML expression lam x. e′1 is represented as in LF as
lam (λx:exp. pe′1q), and the variable E1’ : exp -> exp will be instantiated to
([x:exp] pe′1q). In the operational semantics of Elf, an application which is not in
canonical form (such as (E1’ V2) after instantiation of E1’ and V2) will be reduced
until it is in head-normal form (see Section ??)—in this case this means performing
the substitution of V2 for the top-level bound variable in E1’. As an example,
consider the evaluation of (lam x. x) z which is given by the deduction

ev lam
lam x. x ↪→ lam x. x

ev z
z ↪→ z

ev z
z ↪→ z

ev app.
(lam x. x) z ↪→ z

The first goal is
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?- D : eval (app (lam [x:exp] x) z) V.

This is resolved with the clause ev_app, yielding the subgoals

?- D1 : eval (lam [x:exp] x) (lam E1’).

?- D2 : eval z V2.

?- D3 : eval (E1’ V2) V.

The first subgoal will be resolved with the clause ev_lam, instantiating E1’ to
([x:exp] x). The second subgoal will be resolved with the clause ev_z, instan-
tiating V2 to z. Thus, by the time the third subgoal is considered, it has been
instantiated to

?- D3 : eval (([x:exp] x) z) V.

When this goal is unified with the clauses in the signature, (([x:exp] x) z) is
reduced to z. It thus unifies with the head of the clause ev_z, and V is instantiated
to z to yield the answer

V = z.

D = ev_app ev_z ev_z ev_lam.

Note that because of the subgoal ordering, ev_lam is the last argument to ev_app.
Evaluation of let-expressions follows the same schema as function application,

and we again take advantage of meta-level β-reduction in order to model object-level
substitution.

ev_letv : eval (letv E1 E2) V

<- eval E1 V1

<- eval (E2 V1) V.

ev_letn : eval (letn E1 E2) V

<- eval (E2 E1) V.

The Elf declaration for evaluating a fixpoint construct is again a direct tran-
scription of the corresponding LF declaration. Recall the rule

[fix x. e/x]e ↪→ v
ev fix

fix x. e ↪→ v

ev_fix : eval (fix E) V

<- eval (E (fix E)) V.

This declaration introduces non-terminating computations into the interpreter. Re-
consider the example from page 17, fix x. x. Its representation in Elf is given by
fix ([x:exp] x). Attempting to evaluate this expression leads to the following
sequence of goals.
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?- D : eval (fix ([x:exp] x)) V.

?- D1 : eval (([x:exp] x) (fix ([x:exp] x))) V.

?- D1 : eval (fix ([x:exp] x)) V.

The step from the original goal to the first subgoal is simply the back-chaining step,
instantiating E to [x:exp] x. The second is a β-reduction required to transform
the goal into canonical form, relying on the rule of type conversion. The third goal
is then a renaming of the first one, and computation will diverge. This corresponds
to the earlier observation (see page 17) that there is no v such that the judgment
fix x. x ↪→ v is derivable.

It is also possible that evaluation fails finitely, although in our formulation of
the language this is only possible for Mini-ML expressions that are not well-typed
according to the Mini-ML typing rules. For example,

?- D : eval (fst z) V.

no

The only subgoal considered is D’ : eval z (pair V V2) after resolution with
the clause ev_fst. This subgoal fails, since there is no rule that would permit a
conclusion of this form, that is, no clause head unifies with eval z (pair V V2).

As a somewhat larger example, we reconsider the evaluation which doubles the
natural number 1, as given on page 17. Reading the justifications of the lines 1–17
from the bottom-up yields the same sequence of inference rules as reading the object
D below from left to right.

%query 1 *

D : eval (app

(fix [f:exp] lam [x:exp]

(case x z ([x’:exp] s (s (app f x’)))))

(s z))

V.

This generates the following answer:

V = s (s z),

D =

ev_app

(ev_case_s

(ev_s (ev_s (ev_app (ev_case_z ev_z ev_z)

ev_z (ev_fix ev_lam))))

(ev_s ev_z))

(ev_s ev_z) (ev_fix ev_lam).

The example above exhibits another feature of the Elf implementation. We can
pose query in the form %query n k A. which solves the query A and verifies that
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it produces precisely n solutions after k tries. Here * as either n or k represents
infinity.

One can also enter queries interactively after typing top in the Twelf server.
Then, after after displaying the first solution for V and D the Elf interpreter pauses.
If one simply inputs a newline then Elf prompts again with ?- , waiting for another
query. If the user types a semi-colon, then the interpreter backtracks as if the
most recent subgoal had failed, and tries to find another solution. This can be a
useful debugging device. We know that evaluation of Mini-ML expressions should
be deterministic in two ways: there should be only one value (see Theorem 2.6) and
there should also be at most one deduction of every evaluation judgment. Thus
backtracking should never result in another value or another deduction of the same
value. Fortunately, the interpreter confirms this property in this particular example.

As a second example for an Elf program, we repeat the definition of value

Values v ::= z | s v | 〈v1, v2〉 | lam x. e

which was presented as a judgment on page 18 and as an LF signature on page 62.

value : exp -> type. %name value P.

val_z : value z.

val_s : value (s E) <- value E.

val_pair : value (pair E1 E2) <- value E1 <- value E2.

val_lam : value (lam E).

This signature can be used as a program to decide if a given expression is a
value. For example,

?- value (pair z (s z)).

Empty Substitution.

More? n

?- value (fst (pair z (s z))).

no

?- value (lam [x] (fst x)).

Empty Substitution.

More? y

No more solutions

Here we use a special query form that consists only of a type A, rather than a typing
judgment M : A. Such a query is interpreted as X : A for a new free variable X
whose instantiation will not be shown with in the answer substitution. In many
cases this query form is substantially more efficient than the form M : A, since the
interpreter can optimize such queries and does not construct the potentially large
object M .



4.4. AN IMPLEMENTATION OF VALUE SOUNDNESS 97

4.4 An Implementation of Value Soundness

We now return to the proof of value soundness which was first given in Section 2.4
and formalized in Section 3.7. The theorem states that evaluation always returns
a value. The proof of the theorem proceeds by induction over the structure of the
derivation D of the judgment e ↪→ v, that is, the evaluation of e. The first step in
the formalization of this proof is to formulate a judgment between deductions,

D
e ↪→ v

=⇒ P
v Value

which relates every D to some P and whose definition is based on the structure
of D. This judgment is then represented in LF as a type family vs, following the
judgments-as-types principle.

vs : ΠE:exp. ΠV :exp. eval E V → value V → type.

Each of the various cases in the induction proof gives rise to one inference rule
for the =⇒ judgment, and each such inference rule is represented by a constant
declaration in LF. We illustrate the Elf implementation with the case where D
ends in the rule ev fst and then present the remainder of the signature in Elf more
tersely.

Case:

D =

D′
e′ ↪→ 〈v1, v2〉

ev fst.
fst e′ ↪→ v1

Then the induction hypothesis applied to D′ yields a deduction P ′ of the
judgment 〈v1, v2〉 Value. By examining the inference rules we can see that
P ′ must end in an application of the val pair rule, that is,

P ′ =

P1

v1 Value
P2

v2 Value
val pair

〈v1, v2〉 Value

for some P1 and P2. Hence v1 Value must be derivable, which is what we
needed to show.
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This is represented by the following inference rule for the =⇒ judgment.

D′
e′ ↪→ 〈v1, v2〉

=⇒

P1

v1 Value
P2

v2 Value
val pair

〈v1, v2〉 Value
vs fst

D′
e ↪→ 〈v1, v2〉

ev fst
fst e′ ↪→ v1

=⇒ P1

v1 Value

Its representation in LF is given by

vs fst : ΠE′:exp. ΠV1:exp. ΠV2:exp.
ΠD′:eval E′ (pair V1 V2). ΠP1:value V1. ΠP2:value V2.

vs E (pair V1 V2) D
′ (val pair V1 V2 P1 P2)

→ vs (fst E′) V1 (ev fst E V1 V2 D
′) P1

This may seem unwieldy, but Elf’s type reconstruction comes to our aid. In the
declaration of vs, the quantifiers on E and V can remain implicit:

vs : eval E V -> value V -> type.

The corresponding arguments to vs now also remain implicit. We also repeat the
declarations for the inference rules involved in the deduction above.

ev_fst : eval (fst E) V1 <- eval E (pair V1 V2).

val_pair : value (pair E1 E2) <- value E1 <- value E2.

Here is the declaration of the vs fst constant:

vs_fst : vs (ev_fst D’) P1 <- vs D’ (val_pair P2 P1).

Note that this declaration only has to deal with deductions, not with expressions.
Term reconstruction expands this into

vs_fst :

{E:exp} {E1:exp} {E2:exp} {D’:eval E (pair E1 E2)}

{P2:value E2} {P1:value E1}

vs E (pair E1 E2) D’ (val_pair E2 E1 P2 P1)

-> vs (fst E) E1 (ev_fst E E1 E2 D’) P1.

Disregarding the order of quantifiers and the choice of names, this is the LF dec-
laration given above. We show the complete signature which implements the proof
of value soundness without further comment. The declarations can be derived from
the material and the examples in Sections 2.4 and 3.7.
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vs : eval E V -> value V -> type.

% Natural Numbers

vs_z : vs (ev_z) (val_z).

vs_s : vs (ev_s D1) (val_s P1)

<- vs D1 P1.

vs_case_z : vs (ev_case_z D2 D1) P2

<- vs D2 P2.

vs_case_s : vs (ev_case_s D3 D1) P3

<- vs D3 P3.

% Pairs

vs_pair : vs (ev_pair D2 D1) (val_pair P2 P1)

<- vs D1 P1

<- vs D2 P2.

vs_fst : vs (ev_fst D’) P1

<- vs D’ (val_pair P2 P1).

vs_snd : vs (ev_snd D’) P2

<- vs D’ (val_pair P2 P1).

% Functions

vs_lam : vs (ev_lam) (val_lam).

vs_app : vs (ev_app D3 D2 D1) P3

<- vs D3 P3.

% Definitions

vs_letv : vs (ev_letv D2 D1) P2

<- vs D2 P2.

vs_letn : vs (ev_letn D2) P2

<- vs D2 P2.

% Recursion

vs_fix : vs (ev_fix D1) P1

<- vs D1 P1.

This signature can be used to transform evaluations into value deductions. For
example, the evaluation of case z of z ⇒ s z | s x ⇒ z considered above is given
by the Elf object

ev_case_z (ev_s ev_z) ev_z

of type

eval (case z (s z) ([x:exp] z)) (s z).
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We can transform this evaluation into a derivation which shows that s z is a value:

?- vs (ev_case_z (ev_s ev_z) ev_z) P.

P = val_s val_z.

The sequence of subgoals considered is

?- vs (ev_case_z (ev_s ev_z) ev_z) P.

% Resolved with clause vs_case_z

?- vs (ev_s ev_z) P.

% Resolved with clause vs_s [with P = val_s P1]

?- vs ev_z P1.

% Resolved with clause vs_z [with P1 = val_z]

This approach to testing the meta-theory is feasible for this simple example. As
evaluations become more complicated, however, we would like to use the program
for evaluation to generate a appropriate derivations and then transform them. This
form of sequencing of computation can be achieved in Elf by using the declaration
%solve c : A. This will solve the query A obtain the first solution A’ with proof
term M and then making the definition c : A’ = M. Later queries can then refer to
c. For example,

%solve d0 : eval (case z (s z) ([x:exp] z) (s z)).

%query 1 * vs d0 P.

will construct d0 and then transform it to a value derivation using the higher-level
judgment vs that implements value soundness.

4.5 Input and Output Modes

Via the judgments-as-types and deductions-as-object principles of representation,
Elf unifies concepts which are ordinarily distinct in logic programming languages.
For example, a goal is represented as a type in Elf. If we look a little deeper, Elf
associates a variable M with each goal type A such that solving the goal requires
finding an object M of some instance of A. Therefore in some way Elf unifies the
concepts of goal and logic variable. On the other hand, the intuition underlying
the operational interpretation of judgments makes a clear distinction between con-
struction of a derivation and unification: unification is employed only to see if an
inference rule can be applied to reduce a goal to subgoals.

In Elf, the distinction between subgoals and logic variables is made based on the
presence or absence of a true dependency. Recall that the only distinction between
Πx:A. B and A → B is that x may occur in B in the first form, but not in the
second. For the purposes of the operational semantics of Elf, the truly dependent
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function type Πx:A. B where x does in fact occur somewhere in B is treated by
substituting a new logic variable for x which is subject to unification. The non-
dependent function type A→ B is treated by introducing A as a subgoal necessary
for the solution of B.

Therefore, a typical constant declaration which has the form

c : Πx1:A1 . . .Πxn:An. B1 → · · · → Bm. C

for an atomic type C, introduces logic variables X1, . . . , Xn, then finds most general
common instance between the goal G and C (possibly instantiatingX1, . . . , Xn and
then solves Bm, . . . , B1 as subgoals, in that order. Note that in practical programs,
the quantifiers on x1, . . . , xn are often implicit.

When writing a program it is important to kept this interpretation in mind. In
order to illustrate it, we write some simple programs.

First, the declaration of natural numbers. We declare s, the successor function,
as a prefix operator so we can write 2, for example, as s s 0 without additional
parentheses. Note that without the prefix declaration this term would be associated
to the left and parsed incorrectly as ((s s) 0).

nat : type. %name nat N.

0 : nat.

s : nat -> nat. %prefix 20 s.

The prefix declaration has the general form %prefix prec id1 . . . idn and gives the
constants id1, . . . , idn precedence prec. The second declaration introduces lists of
natural numbers. We declare “;” as a right-associative infix constructor for lists.

list : type. %name list L.

nil : list.

; : nat -> list -> list. %infix right 10 ;.

For example, (0 ; s 0 ; s s 0 ; nil) denotes the list of the first three natural
numbers; (0 ; ((s 0) ; ((s (s 0)) ; nil))) is its fully parenthesized version,
and (; 0 (; (s 0) (; (s (s 0)) nil))) is the prefix form which would have to
be used if no infix declarations had been supplied.

The definition of the append program is straightforward. It is implemented
as a type family indexed by three lists, where the third list must be the result of
appending the first two. This can easily be written as a judgment (see Exercise 4.6).

append : list -> list -> list -> type.

%mode append +L +K -M.

ap_nil : append nil K K.

ap_cons : append (X ; L) K (X ; M)

<- append L K M.
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The mode declaration

%mode append +L +K -M.

specifies that, for the operational reading, we should consider the first two argument
L and K as given input, while the third argument M is to be constructed by the
program as output. To make this more precise, we define that a term is ground if it
does not contain any logic variables. With the above mode declaration we specify
that first two arguments l and k to append should always be ground when a goal of
the form append l k m is to be solved. Secondly, it expresses that upon success, the
third argument m should always be ground. The Elf compiler verifies this property
as each declaration is read and issues an appropriate error message if it is violated.

This mode verification proceeds as follows. We first consider

ap_nil : append nil K K.

We may assume that the first two arguments are ground, that is, nil and K will be
ground when append is invoked. Therefore, if this rule succeeds, the third argument
K will indeed be ground.

Next we consider the second clause.

ap_cons : append (X ; L) K (X ; M)

<- append L K M.

We may assume that the first two arguments are ground when append is invoked.
Hence X, L, and K may be assumed to be ground. This is necessary to know that the
recursive call append L K M is well-moded: L and K are indeed ground. Inductively,
we may now assume that M is ground if this subgoal succeeds, since the third argu-
ment to M was designated as an output argument. Since we also already know that
X is ground, we thus conclude that (X ; M) is ground. Therefore the declaration is
well-moded.

This program exhibits the expected behavior when given ground lists as the first
two arguments. It can also be used to split a list when the third argument is given
the first two are variables. For example,

?- append (0 ; s 0 ; nil) (s s 0 ; nil) M.

M = 0 ; s 0 ; s s 0 ; nil.

We can also use the same implementation to split a list into two parts by posing
a query of the form append L K m for a given list m. This query constitutes a use
of append in the mode

%mode append -L -K +M.
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The reader may wish to analyze append to see why append also satisfies this mode
declaration. We can now use the %query construct to verify that the actual and
expected number of solutions coincide.

%query 4 *

append L K (0 ; s 0 ; s s 0 ; nil).

---------- Solution 1 ----------

K = 0 ; s 0 ; s s 0 ; nil;

L = nil.

---------- Solution 2 ----------

K = s 0 ; s s 0 ; nil;

L = 0 ; nil.

---------- Solution 3 ----------

K = s s 0 ; nil;

L = 0 ; s 0 ; nil.

---------- Solution 4 ----------

K = nil;

L = 0 ; s 0 ; s s 0 ; nil.

Mode-checking is a valuable tool for the programmer to check the correct def-
inition and use of predicate. Incorrect use often leads to non-termination. For
example, consider the following definition of the even numbers.

even : nat -> type.

%mode even +N.

even_ss : even (s (s N)) <- even N.

even_0 : even 0.

The mode declaration indicates that it should be used only to verify if a given
(ground) natural numbers is even. Indeed, the query

?- even N.

will fail to terminate without giving a single answer. It is not mode-correct, since N
is a logic variable in an input position. To see why this fails to terminate, we step
through the execution:

?- even N.

Solving...

% Goal 1:

even N.

% Resolved with clause even_ss

N = s s N1.

% Solving subgoal (1) of clause even_ss
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% Goal 2:

even N1.

% Resolved with clause even_ss

N1 = s s N2.

% Solving subgoal (1) of clause even_ss

% Goal 3:

even N2.

...

If definition of even was intended to enumerate all even numbers instead, we would
exchange the order of the two declarations even_0 and even_ss. We call this new
family even*.

even* : nat -> type.

%mode even* -N.

even*_0 : even* 0.

even*_ss : even* (s (s N)) <- even* N.

The mode declaration now indicates that the argument of even* is no longer an
input, but an output. Since the declarations are tried in order, execution now
succeeds infinitely many times, starting with 0 as the first answer. The query

%query * 10 even* N.

enumerates the first 10 answers and then stops.
It is also possible to declare variables to be neither input nor output by using

the pattern *X for an argument X. This kind of pattern is used, for example, in
the implementation of type inference in Section 5.5.

4.6 Exercises

Exercise 4.1 Show the sequence of subgoals generated by the query which at-
tempts to evaluate the Mini-ML expression (lam x. x x) (lam x. x x). Also show
that this expression is not well-typed in Mini-ML, although its representation is of
course well-typed in LF.

Exercise 4.2 The Elf interpreter for Mini-ML contains some obvious redundancies.
For example, while constructing an evaluation of case e1 of z ⇒ e2 | s x ⇒ e3,
the expression e1 will be evaluated twice if its value is not zero. Write a program
for evaluation of Mini-ML expressions in Elf that avoids this redundant computa-
tion and prove that the new interpreter and the natural semantics given here are
equivalent. Implement this proof as a higher-level judgment relating derivations.
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Exercise 4.3 Implement the optimized version of evaluation from Exercise 2.12 in
which values that are substituted for variables during evaluation are not evaluated

again. Based on the modified interpreter, implement bounded evaluation e
n
↪→ v

with the intended meaning that e evaluates to v in at most n steps (for a natural
number n). You may make the simplifying but unrealistic assumption that every
inference rule represents one step in the evaluation.

Exercise 4.4 Write Elf programs to implement quicksort and insertion sort for
lists of natural numbers, including all necessary auxiliary judgments.

Exercise 4.5 Write declarations to represent natural numbers in binary notation.

1. Implement a translation between binary and unary representations in Elf.

2. Formulate an appropriate representation theorem and prove it.

3. Implement the proof of the representation theorem in Elf.

Exercise 4.6 Give the definition of the judgment append as a deductive system.
append l1 l2 l3 should be derivable whenever l3 is the result of appending l1 and l2.
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