
Efficient Intuitionistic Theorem Proving with the
Polarized Inverse Method

Sean McLaughlin and Frank Pfenning

Department of Computer Science
Carnegie Mellon University

Abstract. The inverse method is a generic proof search procedure applicable
to non-classical logics satisfying cut elimination and the subformula property.
In this paper we describe a general architecture and several high-level optimiza-
tions that enable its efficient implementation. Some of these rely on logic-specific
properties, such as polarization and focusing, which have been shown to hold
in a wide range of non-classical logics. Others, such as rule subsumption and
recursive backward subsumption apply in general. We empirically evaluate our
techniques on first-order intuitionistic logic with our implementation Imogen and
demonstrate a substantial improvement over all other existing intuitionistic theo-
rem provers on problems from the ILTP problem library.

1 Introduction

The inverse method [11,6] uses forward saturation, generalizing resolution to non-
classical logics satisfying the subformula property and cut elimination. Focusing [1,10]
reduces the search space in a sequent calculus by restricting the application of inference
rules based on the polarities [9] of the connectives and atomic formulas. In this paper
we describe a framework for reasoning in such logics, and exhibit a concrete imple-
mentation of a theorem prover for intuitionistic predicate logic. The implementation,
called Imogen,1 is by some measure the most effective first order intuitionistic theorem
prover: On the ILTP library of intuitionistic challenge problems [16], a collection of in-
tuitionistic problems similar to the well known TPTP [17] library, Imogen solves over
150 more problems than its closest competitor.

This work continues a line of research on building efficient theorem provers for non-
classical logics using the inverse method, following Tammet [18] (for intuitionistic and
linear logic), Linprover [4,3] (for intuitionistic linear logic), and the early propositional
version of Imogen [12].

There are two primary contributions of this paper. On the logical side, explicit po-
larization of a given input formula determines basic characteristics of the search space.
The ability to choose from different polarizations of a formula, refining ideas from
Chaudhuri et al. [5], allows for logically motivated optimizations that do not compro-
mise soundness or completeness. On the implementation side, our architecture provides
a clean interface between the specification of basic logical inference (the front end) on
one side and saturating proof search (the back end) on the other. This separation allows

1 Imogen is available at http://www.cs.cmu.edu/∼seanmcl/research/imogen/.

http://www.cs.cmu.edu/~seanmcl/research/imogen/

for both theory-specific optimizations in the front end and logic-independent optimiza-
tions in the back end. As examples of the later, we present two simple but novel re-
dundancy elimination techniques: inference rule subsumption and recursive backward
subsumption.

2 A Polarized Sequent Calculus

We can limit the search space of the inverse method by searching only for focused
proofs [1]. In this section we give the rules for the (ground) backward polarized se-
quent calculus. This ground calculus will then be lifted to a free variable calculus and
proof search will proceed in the forward direction, from the initial sequents to the goal,
following the inverse method recipe [6]. One novelty of our approach is the use of
explicit polarization in formulas that syntactically mark the polarity of the atoms and
connectives. We first describe polarized formulas, and then show the backward sequent
calculus.

2.1 Polarized Formulas

A connective is positive if its left rule in the sequent calculus is invertible and negative
if its right rule is invertible. As shown below, our proof search fundamentally depends
on the polarity of connectives. In intuitionistic logic, the status of conjunction and truth
is ambiguous in the sense that they are both positive and negative, while their status in
linear logic is uniquely determined. We therefore syntactically distinguish positive and
negative formulas with so-called shift operators [9] explicitly coercing between them.
Even though we use the notation of linear logic, the behavior of the connectives is not
linear.

In the following, the meta-variable P ranges over atomic formulas which have the
form p(t1, . . . , tn) for predicates p. Note also that both in formulas and sequents, the
signs are not actual syntax but mnemonic guides to the reader.

Positive formulas A+ ::= P+ | A+ ⊗A+ | 1 | A+ ⊕A+ | 0 | ∃x. A+ | ↓A−

Negative formulas A− ::= P− | A− & A− | > | A+ (A− | ∀x. A− | ↑A+

The translation A− of an (unpolarized) formula F in intuitionistic logic is nondeter-
ministic, subject only to the constraints that the erasure defined below coincides with
the original formula (|A−| = F) and all predicates are assigned a consistent polarity.

For example, the formula ((p ∨ r) ∧ (q ⊃ r)) ⊃ (p ⊃ q) ⊃ r can be interpreted as
any of the following polarized formulas (among others):

((↓p− ⊕ ↓r−)⊗ ↓(↓q− (r−)) ((↓(↓p− (q−) (r−)

↓↑((↓p− ⊕ ↓r−)⊗ ↓(↓q− (r−)) ((↓↑↓(↓p− (q−) (r−)

↓(↑(p+ ⊕ r+) & (q+ (↑r+)) ((↓(p+ (↑q+) (↑r+)

Shift operators have highest binding precedence in our presentation of the examples. As
we will see from the inference rules given below, the choice of translation determines
the search behavior on the resulting polarized formula. Different choices can lead to
search spaces with radically different structure [5,12].

2

|A+ ⊕B+| = |A+| ∨ |B+| |0| = ⊥ |1| = >
|A+ ⊗B+| = |A+| ∧ |B+| |↓A−| = |A−| |P+| = P
|A−&B−| = |A−| ∧ |B−| |>| = > |P−| = P
|A+ (B−| = |A+| ⊃ |B−| |↑A+| = |A+|
|∀x. A−| = ∀x. |A−| |∃x. A+| = ∃x. |A+|

Fig. 1. Erasure of polarized formulas

2.2 Backward Polarized Sequent Calculus

The backward calculus is a refinement of Gentzen’s LJ that eliminates don’t-care non-
deterministic choices, and manages don’t-know nondeterminism by chaining such in-
ferences in sequence. Andreoli was the first to define this focusing strategy and prove
it complete [1] for linear logic. Similar proofs for other logics soon followed [8,10,19],
demonstrating that polarization and focusing can be applied to optimize search in a
wide variety of logics.

The polarized calculus is defined via four mutually recursive judgments. In the judg-
ments, we separate the antecedents into positive and negative zones. We write Γ for an
unordered collection of negative formulas or positive atoms. Dually, C stands for a
positive formula or a negative atom.

The first two judgments concern formulas with invertible rules on the right and left.
Together, the two judgments form the inversion phase of focusing. In the rules RA-∀
and LA-∃, a is a new parameter.2

The context ∆+ is consists entirely of positive formulas and is ordered so that in-
ference rules can only be applied to the rightmost formula, eliminating don’t-care non-
determinism.

Γ ; ∆+ =⇒ A−; · (Right Inversion)

Γ ; ∆+ =⇒ ·; P−

Γ ; ∆+ =⇒ P−; ·
RA-Atom

Γ ; ∆+ =⇒ A−1 ; · Γ ; ∆+ =⇒ A−2 ; ·
Γ ; ∆+ =⇒ A−1 &A−2 ; ·

RA-&

Γ ; ∆+, A+
1 =⇒ A−2 ; ·

Γ ; ∆+ =⇒ A+
1 (A−2 ; ·

RA-(
Γ ; ∆+ =⇒ >; ·

RA->

Γ ; ∆+ =⇒ A(a)−; ·
Γ ; ∆+ =⇒ ∀x. A(x)−; ·

RA-∀a
Γ ; ∆+ =⇒ ·; A+

Γ ; ∆+ =⇒ ↑A+; ·
RA-↑

2 In our calculus, parameters differ syntactically from term variables, and are thus slightly differ-
ent than the eigenvariables found in other presentations of the inverse method. A formalization
of parameters and their effect on unification can be found in Chaudhuri [3].

3

Γ ; ∆+ =⇒ ·; C (Left Inversion)

Γ, P+; ∆+ =⇒ ·; C
Γ ; ∆+, P+ =⇒ ·; C

LA-Atom
Γ ; ∆+, A+

1 , A+
2 =⇒ ·; C

Γ ; ∆+, A+
1 ⊗A+

2 =⇒ ·; C
LA-⊗

Γ ; ∆+, A(a)+ =⇒ ·; C
Γ ; ∆+, ∃x. A(x)+ =⇒ ·; C

LA-∃a
Γ ; ∆+, A+

1 =⇒ ·; C Γ ; ∆+, A+
2 =⇒ ·; C

Γ ; ∆+, A+
1 ⊕A+

2 =⇒ ·; C
LA-⊕

Γ ; ∆+ =⇒ ·; C
Γ ; ∆+, 1 =⇒ ·; C

LA-1
Γ ; ∆+, 0 =⇒ ·; C

LA-0
Γ, A−; ∆+ =⇒ ·; C
Γ ; ∆+, ↓A− =⇒ ·; C

LA-↓

The next two judgments are concerned with non-invertible rules. These two judg-
ments make up the focusing phase.

Γ � A+ (Right Focusing)

Γ, P+ � P+
RS-Atom

Γ � A+
1 Γ � A+

2

Γ � A+
1 ⊗A+

2

RS-⊗
Γ � 1

RS-1

Γ � A+
1

Γ � A+
1 ⊕A+

2

RS-⊕1
Γ � A+

2

Γ � A+
1 ⊕A+

2

RS-⊕2
No rule for 0

Γ � A(t)+

Γ � ∃x. A+
RS-∃

Γ ; · =⇒ A−; ·
Γ � ↓A−

RS-↓

Γ ; A− � C (Left Focusing)

Γ ; P− � P−
LS-Atom

Γ ; A−1 � C

Γ ; A−1 &A−2 � C
LS-&1

Γ ; A−2 � C

Γ ; A−1 &A−2 � C
LS-&2

No rule for >

Γ � A+
1 Γ ; A−2 � C

Γ ; A+
1 (A−2 � C

LS-(
Γ ; A(t)− � C

Γ ; ∀x. A− � C
LS-∀

Γ ; A+ =⇒ ·; C
Γ ; ↑A+ � C

LS-↑

Backward search for a proof of A− starts with an inversion from ·; · =⇒ A−; ·.
The proof then alternates between focusing and inversion phases. Call a focusing phase
followed by an inversion phase a block. The boundary between blocks is of particular
importance. The sequents at the boundary have the form Γ ; · =⇒ ·;C. We call such
sequents stable. There are two rules that control the phase changes at stable sequents
(the block boundaries).

Γ � A+

Γ ; · =⇒ ·; A+
FocusR

Γ, A−; A− � C

Γ, A−; · =⇒ ·; C
FocusL

4

↓(↓a (b) (c, ↓a (b, a; a � ·; a
LS-Atom

↓(↓a (b) (c, ↓a (b, a; . =⇒ a; ·
FocusL

↓(↓a (b) (c, ↓a (b, a; · � ↓a; ·
RS-↓ ...

↓(↓a (b) (c, ↓a (b, a; ↓a (b � ·; b
LS-(

↓(↓a (b) (c, ↓a (b, a; · =⇒ ·; b
FocusL

...
...

↓(↓a (b) (c, ↓a (b; ↓(↓a (b) (c � ·; c
LS-(

↓(↓a (b) (c, ↓a (b; · =⇒ ·; c
FocusL

....
; ↓(↓(↓a (b) (c) =⇒ ↓(↓a (b) (c; ·

; =⇒ ↓(↓(↓a (b) (c) (↓(↓a (b) (c; ·
RA-(

Fig. 2. Backward proof, with blocks

An example of a backward derivation highlighting the block structure, is shown in
Figure 2. a, b, and c are negative atoms. The elided sections are deterministic application
of the above rules. Note that the nondeterminism occurs only at block boundaries.

Theorem 1 [10] If there exists an intuitionistic derivation of A, then for any polariza-
tion A− of A, there exists a focused derivation of ·; · =⇒ A−; ·.

2.3 Synthetic Connectives and Derived Rules

We have already observed that backward proofs have the property that the proof is
broken into blocks, with stable sequents at the boundary. The only rules applicable to
stable sequents are the rules that select a formula on which to focus. It is the formulas
occurring in stable sequents that form the primary objects of our further inquiry.

It helps to think of such formulas, abstracted over their free variables, as synthetic
connectives [2]. Define the synthetic connectives of a formula A as all subformulas of
A that could appear in stable sequents in a focused backward proof. In a change of
perspective, we can consider each block of a proof as the application of a left or right
rule for a synthetic connective. The rules operating on synthetic connectives are derived
from the rules for its constituent formulas. We can thus consider a backward proof as a
proof using only these synthetic (derived) rules. Each derived rule then corresponds to
a block of the original proof.

Since we need only consider stable sequents and synthetic connectives, we can sim-
plify notation, and ignore the (empty) positive left and negative right zones in the de-
rived rules. Write Γ ; · =⇒ ·;C as Γ =⇒ C. As a further simplification, we can give
formulas a predicate label and abstract over its free variables. This labeling technique is
described in detail in Degtyarev and Voronkov [6]. For the remainder, we assume this
labeling has been carried out. Define an atomic formula as either a label or a predicate

5

applied to a (possibly empty) list of terms. After labeling, our sequents consist entirely
of atomic formulas.

Example 1 In Figure 2, frame boxes surround the three blocks of the proof. The syn-
thetic connectives are a, ↓a (b and ↓(↓a (b) (c. There is a single derived rule for
each synthetic connective (though this is not the case in general). We implicitly carry
the principal formula of a left rule to all of its premises.

Γ, a =⇒ a
Syn1

Γ =⇒ a
Γ, ↓a (b =⇒ b

Syn2
Γ, a =⇒ b

Γ, ↓(↓a (b) (c =⇒ c
Syn3

These rules correspond to the blocks shown in Figure 2. Corresponding labeled rules
for L1 = ↓a (b and L2 = ↓(↓a (b) (c are

Γ, a =⇒ a
Syn1

Γ =⇒ a
Γ, L1 =⇒ b

Syn2
Γ, a =⇒ b

Γ, L2 =⇒ c
Syn3

Then the blocks of the proof from Figure 2 can be compressed to the succinct

L1, L2, a =⇒ a
Syn1

L1, L2, a =⇒ b
Syn2

L1, L2 =⇒ c
Syn3

3 The Polarized Inverse Method

In the previous section we developed a system for focused backwards proofs. We first
described backward focused proofs because the inference rules are simpler and the re-
lation to the semantics, e.g., natural deduction, is more direct. We will now invert the
backward calculus, allowing us to understand synthetic inference rules in the forward
direction. The inverse method has a number of advantages over backward methods. The
most important is that derived sequents in the inverse method are independent entities.
That is, their free variables are quantified locally outside the sequent. In contrast, back-
ward sequents are only valid in a global context: Variables are quantified over the entire
proof object. This difference makes determining non-theoremhood (via saturation) and
redundancy elimination (via subsumption) easier for the inverse method.

3.1 Forward Rules

Recall the following rules from the backward (unfocused) intuitionistic sequent calcu-
lus:

Γ, a =⇒ a
Init

Γ,⊥ =⇒ A
⊥-L

Γ =⇒ A Γ =⇒ B
Γ =⇒ A ∧B

∧-R

Interpreting these rules for forward search shows some difficulties. In the forward di-
rection we want to guess neither the context Γ , nor the formula A in the ⊥-L rule. We

6

therefore allow the succedent to be empty, and ignore Γ in such initial sequents. The
analogous forward sequents have the form

a −→ a Init ⊥ −→ · ⊥-L
Γ1 −→ A Γ2 −→ B

Γ1 ∪ Γ2 −→ A ∧B
∧-R

A forward sequent stands for all of its weakening and substitution instances. This
new form of sequent requires a more complicated notion of matching (or applying)
inference rules. We now define the operations necessary for proof search in the forward
polarized sequent calculus lifted [6] to free variables. We assume the reader is familiar
with the usual notions of substitutions and most general unifiers.

Definition 1 (Forward Sequents) A forward sequent has the form Γ −→ C where
Γ is a set of atomic formulas and C is either the empty set or a set containing a single
atomic formula. It is written Γ −→ A in the case that C = {A}, or Γ −→ · in case
C = ∅. The set Γ consists of the antecedents, and C is called the succedent.

The variables of a sequent are implicitly universally quantified outside the sequent. This
means every time a sequent is used, we have to rename its variables to be fresh. We will
apply such renamings tacitly.

Definition 2 (Inference rules) An inference rule with name id,

H1 . . . Hn

Q
idΠ

has premises H1, . . . ,Hn and conclusion Q, all of which are sequents. Π is a set of
parameters (the fixed parameters) that are introduced during the inversion phase. In-
ference rules are schematic in their variables, which can range over formulas or terms.

Matching Given some known sequents, we wish to derive new sequents using the in-
ference rules. The process of inferring new sequents from known sequents using infer-
ence rules is called matching. First note that we must take into account the parameters
introduced by the rule to ensure the eigenvariable condition. Consider the rule

−→ p(x, a)
−→ ∃x. ∀y. p(x, y)

Ra

We must ensure when matching rule R to sequent ∆ −→ δ that parameter a does not
occur in ∆. Moreover, x must not be unified with any term containing a. We will define
matching by cases depending on whether the consequent of the conclusion is empty or
not. Let vars(t) denote the free variables of term t.

Definition 3 (Rule Matching 1) Sequents ∆1 −→ δ1, . . . ,∆n −→ δn match rule

Γ1 −→ A1 · · · Γn −→ An

Γ −→ A
RΠ

with substitution θ if the following conditions hold for all 1 ≤ i ≤ n.

7

1. Either δiθ = Aiθ or δi = ·.
2. The parameters Πθ do not occur in ∆iθ \ Γiθ.
3. The parameters Πθ do not occur in vars(Γi, Ai)θ
4. For any two parameters a, b ∈ Π , aθ 6= bθ

In that case, the resulting sequent is

Γθ ∪ (∆1θ \ Γ1θ) ∪ . . . ∪ (∆nθ \ Γnθ) −→ Aθ

If there is a premise with an empty succedent in the rule, then the conclusion also has an
empty succedent. In this case, we can rearrange the premises so that the first k premises
have an empty antecedent. Then we can use the following definition of matching.

Definition 4 (Rule Matching 2) Sequents ∆1 −→ δ1, . . . ,∆n −→ δn match rule

Γ1 −→ · · · · Γk −→ · Γk+1 −→ Ak+1 · · · Γn −→ An

Γ −→ · RΠ

if there exists a substitution θ such that

1. The parameters Πθ do not occur in ∆iθ \ Γiθ.
2. The parameters Πθ do not occur in vars(Γi, Ai)θ
3. For any two parameters a, b ∈ Π , aθ 6= bθ

and one of the following conditions holds:

1. – For all 1 ≤ i ≤ k, δi = ·.
– For all k + 1 ≤ i ≤ n, δi = · or δiθ = Aiθ.

In this case the resulting sequent is

Γθ ∪ (∆1θ \ Γ1θ) ∪ . . . ∪ (∆nθ \ Γnθ) −→ ·

2. – There exists 1 ≤ i ≤ k, δiθ = Aθ.
– For all 1 ≤ i ≤ k, δi = · or δiθ = Aθ.
– For all k + 1 ≤ i ≤ n, δi = · or δiθ = Aiθ.

In this case the resulting sequent is

Γθ ∪ (∆1θ \ Γ1θ) ∪ . . . ∪ (∆nθ \ Γnθ) −→ Aθ

The definition of matching assures that the forward application simulates a backward
rule application. Since we always combine unused premises in the same way, in the rest
of the paper we omit the contexts Γ in forward inference rules.

Example 2 If the synthetic connective is L1 = ↓(((∃y. ↓p(y)) (∀x. (p(x) & q(x)))
on the right, then the backward and forward synthetic rules are

Γ, p(a) =⇒ p(b) Γ, p(a) =⇒ q(b)

Γ =⇒ L1
Syna,b

p(a) −→ p(b) p(a) −→ q(b)

−→ L1
Syna,b

8

3.2 Proof Search

Before we can turn our observations into a method for proof search, we need two more
crucial definitions. First, the inverse method cannot in general prove a given sequent
exactly, but sometimes only a stronger form of it. This is captured by the subsumption
relation.

Definition 5 (Subsumption) A sequent Γ1 −→ C1 subsumes a sequent Γ2 −→ C2

if there exists a substitution θ such that |Γ1θ| = |Γ1| (i.e., θ does not contract Γ1) and
Γ1θ ⊆ Γ2 and C1θ ⊆ C2. Write Q � Q′ if Q subsumes Q′.

Suppose Q � Q′ and we are trying to prove Q′. Since weakening is an admissible
rule in the backward calculus, given a backward proof D of Q, we could modify D by
weakening, yielding a proof of Q′.

The second definition comes from the following observation. It is not the case that
(p(X, Y), p(Y, X) −→ g) � (p(Z,Z) −→ g), even though (p(Z,Z) −→ g)
is identical to (p(X, Y), p(Y, X) −→ g) under substitution {X 7→ Z, Y 7→ Z}.
(Remember that we maintain the premises as a set.) Since a sequent stands for its sub-
stitution instances, we should be able to infer the latter sequent. This consideration
motivates the definition of contraction:

Definition 6 (Contraction) Γθ, A1θ −→ Cθ is a contraction instance of a sequent
Γ,A1, A2 −→ C if θ is the most general unifier of A1, A2.

Now we have the basic operations necessary to define forward search using the po-
larized inverse method. We begin with a negative polarized input formula A−. We first
decompose the problem into stable sequents by applying the backward rules, inverting
the sequent ·; · =⇒ A−; ·. The leaves of the backward inversion are stable sequents.
Each stable sequent is solved independently. (This is why the bottom portion of Fig-
ure 2 is not contained in a block.) For each stable sequent, we determine the sequent’s
synthetic formulas, and generate the corresponding derived rules. We begin with a se-
quent database containing the initial sequents, those synthetic rules with no premises.
We repeatedly match the synthetic rules to known sequents in the forward direction.
The resulting matches, along with all of their contraction instances, are added to the
database. We continue in this way until we either generate a sequent that subsumes the
goal, or until the database is saturated, that is, any further inference would only add se-
quents subsumed by something already in the database. Due to the undecidability of the
problem, if the goal is not provable, it is possible that the database will never saturate.

Theorem 2 (Completeness) If there exists a (ground) backward focused derivation of
a polarized formula A, then such a derivation can be constructed using the polarized
inverse method.

Proof Analogous to the corresponding proof in Chaudhuri [3]. �

9

4 An Implementation Framework

We turn now to our implementation, called Imogen. The implementation is designed
as two distinct modules, referred to respectively as the front end and the back end.
The front end deals with the specifics of a particular logic and focusing strategy. It
takes a formula as input and returns the initial stable sequents, and for each sequent a
complete set of synthetic inference rules and initial sequents. The back end maintains a
database of known sequents, and applies the rules to the database using a fair strategy,
generating new sequents. It stops when it finds a sequent that subsumes the goal, or
when the database is saturated.

This design makes it possible to use the same back end for different logics. While
Imogen now only supports two front ends, intuitionistic first-order logic and an opti-
mized front end for the propositional fragment, it would be straightforward to extend
to other logics. We are currently in the process of adding front ends for first-order logic
with constraints, and first-order logic with induction.

4.1 The Front End: Rule Generation and Matching

The front end has two distinct tasks. The first is to generate the initial rules and sequents
given an input formula and a focusing strategy. This is achieved by, for each synthetic
connective, evaluating the inference rules of Section 2 in the backward direction. Each
block of a potential backward proof becomes an inference rule.

The second is to define the main functions outlined in the last section: subsump-
tion, contraction, and rule matching. Subsumption can be an expensive operation, but is
straightforward to implement. Contraction can be problematic because if a sequent has
many antecedents with the same label or predicate symbol, there can be an exponen-
tial number of contraction instances. In such cases, it is not uncommon for Imogen to
generate tens of thousands of contraction instances of a single sequent.

To implement the function match of Definition 3, we use the technique of partial
rule application. Instead of having a fixed rule set and matching all the hypotheses
simultaneously, we have an expanding rule set, and match one premise at a time. The
match of a rule with n premises yields a new residual rule with n− 1 premises.

Example 3 Matching rule and sequent

p(X, Y) −→ q(X, Y) q(X, Y) −→ ·
r(X, Y) −→ · q(Z, c), p(c, Z) −→ q(c, Z)

yields the new inference rule

q(c, Y) −→ ·
q(Y, c), r(c, Y) −→ ·

Matching the new rule against q(c, d) −→ q(d, d) yields the new sequent
q(d, c), r(c, d) −→ q(d, d).

Similar to contraction, if both a rule and sequent have multiple instances of the same
label or predicate, matching can produce an inordinate number of new rules or sequents.

10

4.2 The Back End: Rule Application and Subsumption

The back end takes the initial sequents and rules from the front end, along with the
definitions of matching, subsumption and contraction. Then it uses a modified form of
the Otter loop to search for proofs.

The Otter Loop. The “Otter loop” is a general strategy for automated reasoning using
forward inference. In our version, there are two databases of sequents, called kept and
active, and two databases of rules (because of our partial rule matching strategy) also
so named. The active sequents (AS), consist of all the sequents that have already been
matched to rules in active rules (AR). Symmetrically, the active rules are the rules that
have been matched to the active sequents. The other databases, the kept rules (KR) and
sequents (KS), have not yet been considered for matching. A step of the loop proceeds
as follows, as shown in the figure below. Imogen chooses either a kept sequent or a kept
rule according to some fair strategy. Suppose it chooses a sequent. Then we are in the
situation in diagram. The sequent is added to the active sequents, and then is matched to
all active rules. This matching will generate new sequents (when the matched rule has
a single premise), and new rules (when the matched rule has multiple premises). The
new rules and sequents are added to the respective kept databases. A symmetric process
occurs when choosing a kept rule.

4.3 Subsumption

Redundancy elimination is an important part of an efficient implementation of the po-
larized inverse method. Imogen performs subsumption in a variety of ways. The first
is forward subsumption: New sequents generated during the matching process that are
subsumed by existing sequents are never added to the kept database. Another form of
subsumption occurs when a new sequent subsumes an existing active or kept sequent.
There are two forms of backward subsumption in Imogen. The first, simply called back-
ward subsumption is where we delete the subsumed sequent from the database. In re-
cursive backward subsumption we delete not only the subsumed sequent, but all of that
sequent’s descendents except those justifying the subsuming sequent. The idea is that
Imogen, with the new, stronger sequent, will eventually recreate equal or stronger forms
of the rules and sequents that were deleted. A final version of subsumption is called rule
subsumption. Rule subsumption occurs when a new sequent subsumes the conclusion
of an inference rule. In this case, whatever the content of the premises, the resulting
conclusion would be forward subsumed, as matching only instantiates variables and
adds to the antecedents. Thus, such a rule can be safely deleted.

Theorem 3 If there exists a derivation of A, then there exists a derivation that respects
forward, backward, and rule subsumption.

Proof For forward and backward subsumption, the proof is analogous to the one
given by Degtyarev and Voronkov [6]. Since each sequent that could be generated by
a subsumed rule would itself be subsumed, their argument extends easily to our frame-
work. �

11

For recursive backward subsumption, while the soundness is clear, it is not as easy to
see that our strategy is still complete.

Theorem 4 Recursive backward subsumption is nondeterministically complete. That
is, if the database saturates without subsuming the goal, then the goal can not be de-
rived.
Proof For every recursively deleted sequent we either retain a stronger sequent, or
we retain the possibility to recreate a stronger sequent. For the database to be saturated,
we must have subsumed or recreated all the deleted sequents. �

This is enough to obtain the correctness of our prover. By soundness (and, in ad-
dition, through an independently verifiable natural deduction proof object) we have a
proof when the goal is subsumed. If the database is saturated without subsuming the
goal, there cannot be a proof. We conjecture that recursive backward subsumption is
also complete in the stronger sense that if there is a proof we could in principle always
find it (since rule and sequent selection are fair), but we do not at present have a rigorous
proof.

Besides fairness, the proofs of completeness under the various forms of redundancy
elimination rely mainly on the following property of the (derived) rules used in the
forward direction: If the premise of a rule is subsumed, either the conclusion is already
subsumed or we can re-apply the rule and obtain a new conclusion which subsumes the
old one.

4.4 Other Features

The back end implements a few other notable features. In a backward proof the an-
tecedents of the goal sequent will occur in every sequent in the proof after the initial
stabilization phase. We can globalize these antecedents [5], which reduces the space
required to store sequents and avoids unnecessary operations on them. Imogen imple-
ments a variety of term indexing algorithms [7], including path and substitution tree
indexing to quickly retrieve elements of the databases. Experimental results show that
in our case path indexing is more efficient than substitution tree indexing. The back
end also maintains a descendent graph of the rules and sequents. This graph is used by
the front end to reconstruct a natural deduction proof term that can be checked by an
external tool.

5 Performance Evaluation

We now give some performance statistics and internal comparisons of the effects of
different optimizations. All of the Imogen statistics from this paper are from a 2.4 Ghz
Intel Macintosh, Darwin 9.6.0, with 2Gb of memory. Imogen is written in Standard ML,
and is compiled with MLton.
ILTP. We evaluated Imogen on ILTP, the Intuitionistic Logic Theorem Proving li-
brary [16]. The statistics from the ILTP website [15] are shown below. Currently the
library gives detailed results for 6 intuitionistic theorem provers on 2550 problems,
with a time limit of 10 minutes. The other provers from ILTP use various optimizations

12

of backward search. The non-Imogen statistics were run on a Xeon 3.4 GHz Linux,
Mandrake 10.2. The amount of memory is not given on the website. The first Imogen
statistic assign negative polarity to all atoms, which is the default behavior. The final
bar, marked Imogen*, assigns negative polarity to all atoms, tries to prove it for 60
seconds and reverts to the default assignment if neither proof nor refutation has been
found.

Note that, as usual, there are many theorems backwards methods can solve instantly
that Imogen can not solve, and vice versa. We only display total numbers due to space
constraints. The ILTP authors will include Imogen statistics in the next release of their
library. Besides solving the most total problems, Imogen does much better than other
provers at disproving non-theorems. This is a similar result to Imogen’s intuitionis-
tic propositional theorem prover described in McLaughlin and Pfenning [12]. Overall,
iLeanCoP solved 690 problems, while Imogen solved 784 and Imogen* 857.

 0

 200

 400

 600

 800

JProver ft-Prolog ileanSeP ileanTAP ileanCoP Imogen Imogen*

Refuted
Proved

Subsumption. The following table shows the performance of Imogen with different
settings for subsumption. The first three columns are for backward subsumption set-
tings. The last column does no rule subsumption.

 700

 715

 730

 745

 760

None Single Recursive No Rule Subs.

Polarization. One benefit of the polarized inverse method is that it is simple to sim-
ulate different focusing strategies using appropriate placement of double shifts. For
instance, if we wish to measure the effect of the inversion phase without the focusing
phase, or vice versa, we can strategically insert double shifts ↓↑ or ↑↓ at the locations
where focusing (or inversion) would take place. The double shifts will break the cur-
rent phase and generate a block boundary. The following table gives the performance of
some of these strategies, again using 10 second timeouts. Single Step simulates the un-
focused inverse method. Weak Focusing makes all focusing phases complete, but breaks

13

the inversion phases into single steps. Weak Inversion makes the inversion phase com-
plete, but breaks the focusing phase into single steps. Fair Weak Focusing is like weak
focusing but allows the initial stabilization phase to run unchecked. In all of these ex-
periments, we assigned negative polarity to all atoms. Positive Atoms makes all atoms
positive, but otherwise does no unnecessary shifting.

 0

 200

 400

 600

 800

Single Step Weak Foc. Weak Inv. Fair Weak Foc. Pos. Atoms

Refuted
Proved

6 Conclusion

In this paper we presented a basis for forward reasoning using the polarized inverse
method, and demonstrated its practical effectiveness in the case of intuitionistic logic. In
related work, Pientka et. al. [14] describe an experimental implementation of a focused
inverse method for LF. Chaudhuri [3] describes a focused inverse method prover for
linear logic. Earlier work is by Tammet [18] who describes an implementation of a for-
ward intuitionistic theorem prover. We did not compare Imogen to his system because
it is not part of ILTP. According to the ILTP website [15], the existing implementation,
called Gandalf, is unsound.

Our work is by no means complete. While the current implementation is flexible
with polarities, finding an optimal assignment of polarities needs to be studied. We now
have only simple-minded heuristics for selecting the polarity of atoms, conjunctions,
and inserting shifts. It is known, for instance [5], that using positive atoms simulates
backward chaining in the inverse method. In our experiments however, we find that
Imogen performs poorly on some problems that backchaining solves quickly. Given
the dramatic effect of such choices in propositional logic [12], this promises significant
potential for improvement.

Another optimization to consider would be to determine a subordination relation
on propositions [13]. This would prune the search space by deleting or strengthening
sequents of the form Γ, p −→ q if no proof of q could depend on a proof of p as
determined by the subordination relation.

Acknowledgments. This work has been partially supported by the Air Force Research
Laboratory grant FA87500720028 Accountable Information Flow via Explicit Formal
Proof and the National Science Foundation grant NSF-0716469 Manifest Security. The
authors would like to thank Kaustuv Chaudhuri for sharing his experience with the
focused inverse method for linear logic, Jens Otten for his help with the ILTP library,
Geoff Sutcliffe for help with the TPTP library, and finally the anonymous reviewers that
gave many constructive comments on a previous draft of this paper.

14

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):297–347, 1992.

2. J.-M. Andreoli. Focussing and proof construction. Annals of Pure and Applied Logic, 107(1–
3):131–163, 2001.

3. K. Chaudhuri. The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon
University, Dec. 2006. Technical report CMU-CS-06-162.

4. K. Chaudhuri and F. Pfenning. Focusing the inverse method for linear logic. In L. Ong,
editor, Computer Science Logic, pages 200–215. Springer, LNCS 3634, 2005.

5. K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization of forward and backward
chaining in the inverse method. Journal of Automated Reasoning, 40(2–3):133–177, 2008.

6. A. Degtyarev and A. Voronkov. The inverse method. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 4, pages 179–272. Elsevier
Science, 2001.

7. P. Graf. Term Indexing. Springer, LNCS 1053, 1996.
8. J. M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of

St. Andrews, Scotland, 1998.
9. F. Lamarche. Games semantics for full propositional linear logic. In Logic in Computer

Science, pages 464–473. IEEE Computer Society Press, 1995.
10. C. Liang and D. Miller. Focusing and polarization in intuitionistic logic. In J. Duparc and

T. A. Henzinger, editors, Computer Science Logic, pages 451–465. Springer, LNCS 4646,
2007.

11. S. Y. Maslov. An inverse method for establishing deducibility in classical predicate calculus.
Soviet Mathematical Doklady, 5:1420–1424, 1964.

12. S. McLaughlin and F. Pfenning. Imogen: Focusing the polarized inverse method for in-
tuitionistic propositional logic. In I. Cervesato, H. Veith, and A. Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 174–181. Springer,
LNCS 5330, 2008.

13. F. Pfenning and C. Schürmann. System description: Twelf — A meta-logical framework for
deductive systems. In H. Ganzinger, editor, Conference on Automated Deduction (CADE),
pages 202–206. Springer, LNAI 1632, 1999.

14. B. Pientka, D. X. Li, and F. Pompigne. Focusing the inverse method for LF: a preliminary
report. In International Workshop on Logical Frameworks and Meta-languages: Theory and
Practice, 2007.

15. T. Raths and J. Otten. The ILTP Library. http://www.iltp.de.
16. T. Raths, J. Otten, and C. Kreitz. The ILTP problem library for intuitionistic logic. Journal

of Automated Reasoning, 38(1-3):261–271, 2007.
17. C. Suttner and G. Sutcliffe. The TPTP problem library: TPTP v2.0.0. Technical Report

AR-97-01, Institut für Informatik, TU München, 1997.
18. T. Tammet. A resolution theorem prover for intuitionistic logic. In M. A. McRobbie and

J. K. Slaney, editors, Conference on Automated Deduction (CADE), pages 2–16. Springer,
LNAI 1104, 1996.

19. N. Zeilberger. Focusing and higher-order abstract syntax. In G. C. Necula and P. Wadler, edi-
tors, Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 359–369. ACM, 2008.

15

http://www.iltp.de

	 Efficient Intuitionistic Theorem Proving with the Polarized Inverse Method
	Sean McLaughlin and Frank Pfenning

