
Tri-Directional Type Checking

Frank Pfenning

(joint work with Joshua Dunfield)

Carnegie Mellon University

Invited Talk

Workshop on Intersection Types

and Related Systems (ITRS’02)

Copenhagen, Denmark, July 26, 2002

Warning: Work in progress

Acknowledgments: Rowan Davies

1

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

2

Why Aren’t Most Programs Verified?

• Difficulty of expressing a precise specification

• Difficulty of proving correctness

• Difficulty of co-evolving program, specification, and proof

• Problems exacerbated by poorly designed languages

3

Why Are Most Programs Type-Checked?

• Ease of expressing types

• Ease of checking types

• Ease of co-evolving programs and types

• Most useful in properly designed languages

4

A Continuum?

• Types as a minimal requirement for meaningful programs

• Specifications as a maximal requirement for correct

programs

• Suprisingly few intermediate points have been investigated

• Many errors are caught by simple type-checking

• But many errors also escape simple type-checking

5

A Research Program

• Designing systems for statically verifying program properties

• Evaluation along the following dimensions:

– Elegance, generality, brevity (ease of expression)

– Practicality of verification (ease of checking)

– Explicitness (ease of understanding and evolution)

– Support for modularity

• Some of these involve trade-offs

6

Influences

• Traditional static program analysis

emphasis there on automation and efficiency improvements

• Traditional type systems

emphasis there on inference and generality

7

The Basic Idea

• ML (cbv, funs, datatypes, effects) as a host language

• Data structures via datatypes

• Invariants on data structures via subtypes of datatypes

• Extend to full language via type constructors

intersection, universal, union, empty,

[universal dependent, existential dependent]

(modal, linear, temporal, . . . — future work)

8

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

9

Key Foundational Issue

• Question: What are the guiding principles in the design of

type (refinement) systems to express and verify program

properties?

• My Answer: Martin-Löf’s method of judgments and

derivations

• Proof-theoretic rather than model-theoretic

The meaning of a proposition is determined by [. . .]

what counts as a verification of it. — Per Martin-Löf,

1983

10

Central Technical Issues

• Design questions

– Rules for typing expressions

– Rules for subtyping

– Mechanism for type-checking

• Meta-theorems

– Adequacy for data representation

– Preservation of types under evaluation

– Progress from any well-typed configuration

– Decidability of type-checking

11

Static Judgments

• A type A is a type (elided in this talk)

• M : A M has type A

• Hypotheses x1:A1, . . . , xn:An, xi distinct (write Γ)

• Γ `M val M is a value (write V)

• Defining properties for hypothetical judgments

– Hypothesis rules

Γ, x:A,Γ′ ` x : A Γ, x:A,Γ′ ` x val

– Substitution principle (theorem)

If Γ ` V : A and Γ, x:A,Γ′ ` N : C then
Γ,Γ′ ` [V/x]N : C

12

Computation Judgments

• M −→β M
′ M beta-reduces to M ′

• E ctx E is an evaluation context, hole []

[] ctx

• E[M] replaces hole in E by M

• M −→M ′ M reduces to M ′

• Closure rule

M −→β M
′

E[M] −→ E[M ′]

13

Principles of Computation

• Progress principle (theorem)

If `M : A then either `M val or M −→M ′.

• Preservation principle (theorem)

If `M : A and M −→M ′ then `M ′ : A

• Note restriction to closed terms

14

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

15

Function Types A→B

• Introduction and elimination rules

Γ, x:A `M : B
→I

Γ ` λx.M : A→B
Γ `M : A→B Γ ` N : A→E

Γ `M N : B

• Values

Γ ` λx.M val

• Computation (introduction followed by elimination)

(λx.M) V −→β [V/x]M

E ctx
E M ctx

V val E ctx
V E ctx

16

Mechanisms for Type-Checking

• Type synthesis (Church)

– Given Γ, M, synthesize unique [principal] A with

Γ `M : A or fail

– Requires type labels λx:A.M

– Does not generalize well to intersection and related types

• Type assignment (Curry)

– Given Γ, M, A succeed if Γ `M : A, otherwise fail

– Very general (traditional for intersection types)

– Often undecidable

17

Bi-Directional Type-Checking

• Based on two judgments, combining synthesis with analysis

• Γ `M ↑ A Given Γ, M, synthesize A with Γ `M : A

• Γ `M ↓ A Given Γ, M, A, analyze if Γ `M : A

• Hypothesis rule

Γ, x : A,Γ′ ` x ↑ A

• New expression (M : A)

• Mutual dependencies (revisit later)

Γ `M ↑ A ↑↓
Γ `M ↓ A

Γ `M ↓ A ↓↑
Γ ` (M : A) ↑ A

• Several substitution principles (elided)

18

Bi-Directional Type-Checking of Functions

• Introduction forms are analyzed

Γ, x:A `M ↓ B
→I

Γ ` λx.M ↓ A→B

• Elimination forms are synthesized

Γ `M ↑ A→B Γ ` N ↓ A
→E

Γ `M N ↑ B

• Read ‘↑’ and ‘↓’ as ‘:’ to obtain type assignment rules

• No type annotations in normal forms. E.g., for any A,

` λf. λx. f(fx) ↓ (A→A)→ (A→A)

• Annotate redexes, e.g.,

` (λx. x : bits→ bits) (ε110) ↑ bits

19

Definitions

• Internalize substitution principle

Γ `M ↑ A Γ, x:A ` N ↓ C
Γ ` let x = M in N end ↓ C

• Computation

let x = V in N end −→β [V/x]N
E ctx

let x = E in N end ctx

• In practice, use definitions instead of redices

` let f = (λx. x : bits→ bits) in f (ε110) end ↓ bits

or ` let f : bits→ bits = λx. x in f (ε110) end ↓ bits

20

Remarks on Judgmental Method

• Specification is open-ended

• Constructs are defined orthogonally

• Proofs of meta-theoretic properties (e.g., progress,

preservation) decomposes along the same lines

• Logical connections

– Γ `M ↓ A without ↓↑ coercions characterizes normal

natural deductions of A with the subformula property

– This is in fact the origin of the rules

– Judgment is analytic in Γ, M, and A: any derivation

mentions only constituent terms and types of Γ, M, A

21

Adding Data Types

• Proceed by example: bit strings and natural numbers

• For general case, see [Dunfield’02] [Davies’02]

• Introduction forms

Γ ` ε ↓ bits

Γ `M ↓ bits

Γ `M 0 ↓ bits

Γ `M ↓ bits

Γ `M 1 ↓ bits

• ε represents empty string, 0 and 1 are postfix operators.

• For example: p0q= ε, p6q= ε1 1 0.

• Elimination form

Γ `M ↑ bits Γ ` Ne ↓ C Γ, x:bits ` N0 ↓ C Γ, y:bits ` N1 ↓ C
Γ ` caseM of ε⇒ Ne | x0⇒ N0 | y 1⇒ N1 ↓ C

22

Computation on Data Types

• Rules for computation, values, evaluation contexts

straightforward

• Need recursion for interesting functions

Γ, u:A `M ↓ A
Γ ` fix u.M ↓ A fix u.M −→β [fix u.M/u]M

• No new values or evaluation contexts

• Orthogonal to other constructs in this form

• Technical complication: u stands for a term, not a value

• Treat explicitly or restrict syntax to fix u. λx.M

23

Data Structure Invariants and Subtyping

• Example: natural numbers as bit strings without leading

zeroes.

• Intuition: need positive numbers, at least internally

Natural Numbers nat ::= ε | pos

Positive Numbers pos ::= pos 0 | nat 1

• Capture systematically and orthogonally to everything

before via

– typing rules

– subtyping rules

24

Typing Natural Numbers

• New rules (ignore redundancy):

Γ ` ε ↓ nat (no ε ↓ pos)

Γ `M ↓ pos

Γ `M 0 ↓ nat

Γ `M ↓ pos

Γ `M 0 ↓ pos

Γ `M ↓ nat

Γ `M 1 ↓ nat

Γ `M ↓ nat

Γ `M 1 ↓ pos

Γ `M ↑ nat Γ ` Ne ↓ C Γ, x:pos ` N0 ↓ C Γ, y:nat ` N1 ↓ C
Γ ` caseM of ε⇒ Ne | x0⇒ N0 | y 1⇒ N1 ↓ C

Γ `M ↑ pos (no Nε ↓ C) Γ, x:pos ` N0 ↓ C Γ, y:nat ` N1 ↓ C
Γ ` caseM of ε⇒ Ne | x0⇒ N0 | y 1⇒ N1 ↓ C

25

Subtyping Judgment

• New judgment A ≤ B A is a subtype of B

• A ≤ B if every value of type A also has type B

• Reflexivity rule (∼ hypothesis rule)

A ≤ A

• Transitivity principle (theorem, ∼ substitution principle)

If A ≤ B and B ≤ C then A ≤ C.

• Subsumption rule, replaces ↑↓
Γ `M ↑ A Γ ` A ≤ C

Γ `M ↓ C

26

Subtyping of Data Types

• From the typing rules:

pos ≤ nat nat ≤ bits pos ≤ bits

• In general, a lattice

• Example of need for subsumption rule

x:pos ` x ↓ nat

since x:pos ` x ↑ pos

and pos ≤ nat

• Subtyping of functions

B1 ≤ A1 A2 ≤ B2

A1→ A2 ≤ B1→B2

27

Summary of Atomic Subtyping

• Type assignment Γ `M : A

• Bi-directional system Γ `M ↓ A, Γ `M ↑ A

• Values V , evaluation contexts E[], reduction M −→M ′

• Subtyping A ≤ B

• All judgments are analytic and therefore decidable

• Can express data structure invariants recognizable by

finite-state tree automata (regular tree languages)

• Cannot express, e.g., lengths of lists or depths of trees

28

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

29

Limitations of Atomic Subtyping

• Problem: consider shiftl = λx. x0.

` λx. x0 ↓ bits→ bits

` λx. x0 ↓ nat→ bits

` λx. x0 ↓ pos→ pos

• These may all be needed, but cannot be expressed

simultaneously

• Especially troublesome for recursive functions

6 ` fix inc. λn. case n
of ε⇒ ε1
| x0⇒ x1
| x1⇒ (inc x) 0 % inc x : pos?

↓ nat→ nat

30

Intersection Types A ∧B

• Introduction and elimination forms

Γ ` V ↓ A Γ ` V ↓ B
∧I

Γ ` V ↓ A ∧B

Γ `M ↑ A ∧ B ∧E1Γ `M ↑ A
Γ `M ↑ A ∧B ∧E2Γ `M ↑ B

• Subject of judgment identical in premises and conclusion

• A ∧B a property type (refinement type)

• bits, A→B, A×B, 1 are constructor types

• Elimination rules are not redundant with bi-directionality

• Value restriction is necessary for type preservation with

effects [Davies & Pf, ICFP’00]

31

Subtyping Intersection Types

• Right and left rules (∼ sequent calculus)

A ≤ B A ≤ C ∧R
A ≤ B ∧ C

A ≤ C ∧L1
A ∧B ≤ C

B ≤ C ∧L2
A ∧B ≤ C

• Easily justified by our meaning explanation

• Transitivity remains admissible

• Distributivity[
(A→B) ∧ (A→C) ≤ A→ (B ∧ C)

]
would disturb orthogonality and is unsound with effects
[Davies & Pf, ICFP’00]

32

Example: External vs Internal Invariants

• Reconsider example

inc = fix inc. λn. case n
of ε⇒ ε1
| x0⇒ x1
| x1⇒ (inc x) 0 % inc x : pos(!)

• Then

` inc ↓ (bits→ bits) ∧ (nat→ pos)

(bits→ bits) ∧ (nat→ pos) ≤ nat→ nat

(bits→ bits) ∧ (nat→ pos) ≤ pos→ pos

• But

6 ` inc ↓ nat→ nat

cannot be checked directly

33

Summary of Intersection Types

• Property types without term constructors

• Logically motivated subtyping

• Value restriction for soundness with effects

• No distributivity law for soundness with effects

• In practice may need to ascribe more explicit types

• Intersection orthogonal to all other types and constructor

34

Refinement Restriction

• System is cleanest with refinement restriction

• Segregate system explicitly into types (constructor types)

and sorts (property types)

• Only sorts of similar structure may be compared or

intersected

• Conservative over ML, including effects

• No further consideration in this talk

(see [Freeman & Pf’91] [Freeman’94] [Davies’97])

35

Universal Type >

• Introduction and elimination rules
>I

Γ ` V ↓ > (no >E rule)

• Subtyping rules
>R

A ≤ > (no >L rule)

• Value restriction necessary for progress theorem, otherwise,
e.g.

[` (ε ε) ↓ >]

• Confirms value restriction

• Useful for unreachable code, e.g.

casenatC : (nat→C→ (pos→C)→ (nat→C))

∧ (pos→>→ (pos→C)→ (nat→ C))

36

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

37

Union Types A ∨B

• Another property type, not constructor type

• Introduction rules

Γ `M ↓ A ∨I1Γ `M ↓ A ∨B
Γ `M ↓ B ∨I2Γ `M ↓ A ∨B

• Problem: how do we write the elimination rule?

• A fundamental problem in natural deduction! [Prawitz’65]
[Girard]

• Subtyping is straightforward (∼ sequent calculus!)

A ≤ B ∨R1
A ≤ B ∨ C

A ≤ C ∨R2
A ≤ B ∨ C

A ≤ C B ≤ C ∨L
A ∨B ≤ C

38

The Substitution Approach

• Due to [MacQueen, Plotkin, Sethi’86] and

[Barbanera, Dezani-Ciancaglini, De’Liguoro’95]

• Union elimination

Γ `M : A ∨B Γ, x:A ` N : C Γ, x:B ` N : C

Γ ` [M/x]N : C

• Note uniformity of N in the two branches

• Does not satisfy type preservation:

Different copies of M can reduce differently in [M/x]N

• Too general, even for pure calculus

• Undecidable

39

Towards a Solution

• First idea: require exactly one occurrence of x in N

• Second idea: account for bi-directionality

• Union elimination: for N linear in x,

Γ `M ↑ A ∨B Γ, x:A ` N ↓ C Γ, x:B ` N ↓ C
Γ ` [M/x]N ↓ C

• Still not sound with effects(?)

40

Further Towards a Solution

• Third idea: require N to be an evaluation context.

Γ `M ↑ A ∨B Γ, x:A ` E[x] ↓ C Γ, x:B ` E[x] ↓ C
∨E

Γ ` E[M] ↓ C

• Restores progress and preservation

• Much more restrictive than Barbanera et al.

• Setting and goals are different

41

Example

• Use

Γ0 = f : (B1→C1) ∧ (B2→ C2),

g : A→ (B1 ∨B2),

x : A

• Show Γ0 ` f (g x) ↓ C1 ∨ C2

• Using evaluation context f []

Γ0 ` g x ↑ B1 ∨B2

Γ0, y:B1 ` f y ↓ C1

Γ0, y:B1 ` f y ↓ C1 ∨ C2

Γ0, y:B2 ` f y ↓ C2

Γ0, y:B2 ` f y ↓ C2 ∨ C2

Γ0 ` f (g x) ↓ C1 ∨ C2

42

Empty Type ⊥

• Zero-ary case of disjunction

• Introduction and elimination rules

(no ⊥I rule)

Γ `M ↑ ⊥
⊥E

Γ ` E[M] ↓ C

• Restriction to evaluation contexts critical

• Counterexample: for abort : nat→⊥,

((ε ε) (abort ε)) ↓ C
for any C, but violates progress.

• Note: (ε ε) [] is not an evaluation context!

• Subtyping

(no ⊥R rule)
⊥L⊥ ≤ C

43

Another Problem

• System is not yet general enough

• Example: use

Γ1 = f : nat→ (B1→C1) ∧ (B2→C2),
h : nat→ nat
g : A→ (B1 ∨B2),
x : A

• Show Γ1 ` f (h ε) (g x) ↓ C1 ∨ C2?

• Problem f (h ε) [] is not an evaluation context!

44

Solution

• Add “unary disjunction” rule

Γ `M ↑ A Γ, x:A ` E[x] ↓ C
Γ ` E[M] ↓ C

• Realizes a substitution principle that is normally admissible

• Also form of analytic cut

• Now

Γ1 ` h ε ↑ nat

Γ1, n:nat ` f n ↑ D Γ1, n:nat, k:D ` k (g x) ↓ C1 ∨ C2

Γ1, n:nat ` f n (g x) ↓ C1 ∨ C2

Γ1 ` f (h ε) (g x) ↓ C1 ∨ C2

for
Γ1 = f : nat→ (B1→C1) ∧ (B2→ C2),

h : nat→ nat,
g : A→ (B1 ∨B2),
x : A

D = (B1→C1) ∧ (B2→ C2)

45

Summary of Tri-Directional Rules

• Binary case (union elimination)

Γ `M ↑ A ∨B Γ, x:A ` E[x] ↓ C Γ, x:B ` E[x] ↓ C
∨E

Γ ` E[M] ↓ C

• Unary case (substitution)

Γ `M ↑ A Γ, x:A ` E[x] ↓ C
Γ ` E[M] ↓ C

• Zeroary case (contradiction)

Γ `M ↑ ⊥
⊥E

Γ ` E[M] ↓ C

• Note: unary case is not general cut, but analytic!

46

Some Theorems

• Progress Theorem

If `M : A then either `M val or M −→M ′.

• Preservation Theorem

If `M : A and M −→M ′ then `M ′ : A

• Tri-directional type-checking is decidable.

• Critical lemmas are substitution and various inversion
properties

• Example: Determinacy

If ` V : A ∨B then ` V : A or ` V : B

• Hold with and without mutable references

47

Tri-Directional Checking and Let-Normal Form

• Tri-directionality allows us to check the term in evaluation

order

• Appears related to bi-directional checking after translation

to let-normal form (2/3-continuation passing style,

A-normal form)

• For example,

f (h ε) (g x) 7→ let n = h ε in

let k = f n in

let y = g x in

let z = k y in

z end end end end

48

Left Rules for Type-Checking

• Also considered by Barbanera et al. (there: admissible)

• The following left rules are sound, but not admissible

Γ, x:A,Γ′ `M ↓ C ∧L1
Γ, x:A ∧B,Γ′ `M ↓ C

Γ, x:B,Γ′ `M ↓ C ∧L2
Γ, x:A ∧B,Γ′ `M ↓ C

Γ, x:A,Γ′ `M ↓ C Γ, x:B,Γ′ `M ↓ C
∨L

Γ, x:A ∨B,Γ′ `M ↓ C

⊥L
Γ, x:⊥,Γ′ `M ↓ C

• Conjecture: The correspondence between tri-directional

checking and bi-directional checking of let-normal form is

exact if we add the left rules to the typing judgment.

49

Related Work on This Correspondence

• [Sabry & Felleisen’94]

Is Continuation-Passing Useful for Data Flow Analysis?

• [Damian & Danvy’00]

Syntactic Accidents in Program Analysis

• [Palsberg & Wand’02]

CPS Transformation of Flow Information

50

Connections to Commuting Conversions

• Under the coercion interpretation,

– ∧ 7→ × (product type)

– > 7→ 1 (unit type)

– ∨ 7→+ (disjoint sum type)

– ⊥ 7→ 0 (void type)

• Different ways to apply contextual rules corresponds to

certain commuting conversions on disjoint sum and void

types

• These different versions are identified by CPS

transformation [deGroote99,deGroote01]

51

Alternative Methods for Type Checking for Unions

• [Pierce’91]

case M of x⇒ N for [M/x]N

determines where ∨L rule can be applied. No effects. Note

difference in operational semantics between two sides.

• [Wells, Dimock, Muller, Turbak’99]

Virtual terms copied to establish bijection between valid

terms and typing derivations. Designed as intermediate

language only, for expressing flow information.

• [Palsberg & Pavlopoulou’00]

Disjunction only in subtyping (not typing), designed for flow

information.

52

Summary of Tri-Directional Checking

• Tri-directional type-checking combines

– Synthesis (Γ `M ↑ A, given Γ, M, generates all A)

– Analysis (Γ `M ↓ A, given Γ, M, A, verify)

– Contextual rules (visit subterm in evaluation order)

• Theorem: Preservation and progress hold for call-by-value

(even in the presence of effects)

• Theorem: Type checking is decidable

(judgments are analytic on terms and types)

• Theorem: Conservative extension of various fragments

(orthogonal definition of constructor types (→, ×, 1, +, 0)

and property types (∧, >, ∨, ⊥))

53

Practicality for Intersection Types

• Bi-directional checking is practical for ∧, > in SML

[Davies’97]

• Good tradeoff between verbosity, expressive power, and

efficiency of type-checking

• Implements refinement restriction (conservative over ML)

• Property complexity determines efficiency

• Infeasible examples exist [Reynolds’96]

• Use of unions only for data types and pattern matching

54

Adding Union Types in Implementation

• Conjecture practicality with some efficiency improvements

– Focusing strategy for subtyping [Davies & Pf’00]

– Focusing strategy for typing

– Lazy splitting of A ∨B
– Memoization during multiple traversals

– Algorithmic conservativity?

• Infeasible examples exist

• Anticipate sparing use of unions outside data types

55

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

56

Universal and Existential Dependent Types

• Many important data structure invariants cannot be

expressed, for example

– Lists of length n

– Closed terms in de Bruijn form

– Height invariant on balanced trees

• Extend simple types to integrate indexed types (list(i)),

universal dependent types (Πa.A), and existential

dependent types (Σa.A) [Xi’98, Xi & Pf’98,99]

• Prior work suffered from a lack of intersections

• Ad hoc treatment of existential dependent types

57

Index Domain

• New hypotheses a:γ for index variables a

• New hypotheses i
.

= j for index terms i, j.

• New judgment Γ ` i : γ for index domain

• Generalize subtyping Γ ` A ≤ B

• New subtyping for indexed data types δ, δ′

Γ ` δ � δ′ Γ ` i .= j

Γ ` δ(i) ≤ δ′(j)

58

Example: Lists

• Introduction

Γ ` nil ↓ list(0)

Γ `M ↓ bits Γ ` L ↓ list(n)

Γ ` cons(M,L) ↓ list(n+ 1)

• Elimination

Γ ` L ↑ list(n)

Γ, n
.

= 0 ` N1 ↓ C

Γ, x:bits, a:nat, n
.

= a+ 1, l:list(a) ` N1 ↓ C
Γ ` case L of nil⇒ N1 | cons(x, l)⇒ N2 ↓ C

59

Example Types

• Definite

append : Πn:nat.Πk:nat. list(n)→ list(k)→ list(n+ k)

• Indefinite

hd : (list(0)→⊥) ∧ (Πn:nat. list(n+ 1)→ list(n))

tl : Πn:nat. list(n)→ (list(n− 1) ∨ list(0))

filter0 : Πn:nat. list(n)→Σk:nat. list(k)

• Existential types are not “optional” like unions!

60

Universal Dependent Types

• Universal dependent type as property type

• Universal introduction

Γ, a:γ `M ↓ A
ΠI

Γ `M ↓ Πa:γ.A

• Universal elimination

Γ `M ↑ Πa:γ.A Γ ` i : γ
ΠE

Γ `M ↑ [i/a]A

• Subtyping

Γ, b:γ ` A ≤ B
∀R

Γ ` A ≤ ∀b:γ.B
Γ ` [i/a]A ≤ B Γ ` i : γ

∀L
Γ ` ∀a:γ.A ≤ B

61

Existential Dependent Types

• Existential dependent types as property type

• Existential introduction

Γ `M ↓ [i/a]A Γ ` i : a
ΣI

Γ `M ↓ Σa:γ.A

• Existential elimination (requires contextual form)

Γ `M ↑ Σa:γ.A Γ, a:γ, x:A ` E[x] ↓ C
ΣE

Γ ` E[M] ↓ C

• Subtyping

Γ ` A ≤ [i/b]B Γ ` i : γ
ΣR

Γ ` A ≤ Σb:γ. B

Γ, a:γ ` A ≤ B
ΣL

Γ ` Σa:γ.A ≤ B

62

Summary: Dependent Types

• Definition orthogonal to other constructs

• Meta-theoretic analysis carries over

• For type-checking, collect equational constraints in index

domain

• For decidability, constraint domain must be decidable in the

presence of universal and existential variables

• Example: Presburger arithmetic

• Existential types are critical (e.g., filter)

• Clean formulation only with contextual rules

63

Outline

• Introduction

• Guiding Principles

• Atomic Subtyping

• Intersection Types

• Union Types

• [Dependent Types]

• Conclusion

64

Other Related Work

• Intersection types (many)

• Forsythe [Reynolds’88] [Reynolds’96]

• Intersections and explicit polymorphism [Pierce’91]

[Pierce’97]

• Soft types (many)

• Shape analysis and software model checking (many)

65

Future Work: Parametric Polymorphism

• ML-style polymorphism via refinement restriction

• Bi-directionality for full parametric polymorphism requires

subtyping

• Value restriction on ∀I for soundness with effects

[Davies & Pf’00]

• Subtyping undecidable [Wells’95][Tiuryn & Urzyczyn’96]

even without distributivity [Chrza̧szcz’98]

• Conjecture predicative part with universes decidable

• Combine with local inference? [Pierce & Turner’97]

66

Other Future Work

• General case of data types (mostly done)

• Precise relationship to logic, CPS, commuting conversions

• Version for call-by-name, lazy evaluation

• Translation to monadic meta-language to encapsulate

effects

• Sequential pattern matching with union and existential

• Apply where types express effects or resources(!)

67

Summary

• Refinement types to statically verify program invariants

• System constructed orthogonally based on judgments

• Conservativity with respect to fragments

• Bi-directional checking for intersection and universal types

• Tri-directional checking for union and existential types

• Type-checking in evaluation order

• Sound with effects through value and evaluation context

restrictions

• Preliminary examples indicate it may be practical

68

Intersections are Unsound with Effects

• Counterexample

let x = ref (ε1) : nat ref ∧ pos ref
in

x := ε; % use x : nat ref
!x % use x : pos ref

end : pos

evaluates to ε which does not have type pos.

• Analogous counterexample with parametric polymorphism:

let x = ref (λy. y) : ∀α. (α→ α) ref
in

x := (λy. ε); % use x : (nat→ nat) ref
(!x) (ε1) % use x : (pos→ pos) ref

end : pos

69

Distributivity is Unsound with Effects

• Recall distributivity[
(A→B) ∧ (A→C) ≤ A→ (B ∧ C)

]
• Counterexample:

` λu. ref (ε1) : (unit→ nat ref) ∧ (unit→ pos ref)

by distributivity and subsumption:

` λu. ref (ε1) : unit→ (nat ref ∧ pos ref)

` (λu. ref (ε1)) 〈 〉 : nat ref ∧ pos ref

• In a program:

let x = (λu. ref (ε1)) 〈 〉 : nat ref ∧ pos ref

in . . . end % as on previous slide

70

