Tri-Directional Type Checking

Frank Pfenning
(joint work with Joshua Dunfield)
Carnegie Mellon University

Invited Talk
Workshop on Intersection Types and Related Systems (ITRS'02)

Copenhagen, Denmark, July 26, 2002

Warning: Work in progress
Acknowledgments: Rowan Davies

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Why Aren't Most Programs Verified?

- Difficulty of expressing a precise specification
- Difficulty of proving correctness
- Difficulty of co-evolving program, specification, and proof
- Problems exacerbated by poorly designed languages

Why Are Most Programs Type-Checked?

- Ease of expressing types
- Ease of checking types
- Ease of co-evolving programs and types
- Most useful in properly designed languages

A Continuum?

- Types as a minimal requirement for meaningful programs
- Specifications as a maximal requirement for correct programs
- Suprisingly few intermediate points have been investigated
- Many errors are caught by simple type-checking
- But many errors also escape simple type-checking

A Research Program

- Designing systems for statically verifying program properties
- Evaluation along the following dimensions:
- Elegance, generality, brevity (ease of expression)
- Practicality of verification (ease of checking)
- Explicitness (ease of understanding and evolution)
- Support for modularity
- Some of these involve trade-offs

Influences

- Traditional static program analysis emphasis there on automation and efficiency improvements
- Traditional type systems emphasis there on inference and generality

The Basic Idea

- ML (cbv, funs, datatypes, effects) as a host language
- Data structures via datatypes
- Invariants on data structures via subtypes of datatypes
- Extend to full language via type constructors intersection, universal, union, empty, [universal dependent, existential dependent] (modal, linear, temporal, ... - future work)

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Key Foundational Issue

- Question: What are the guiding principles in the design of type (refinement) systems to express and verify program properties?
- My Answer: Martin-Löf's method of judgments and derivations
- Proof-theoretic rather than model-theoretic

The meaning of a proposition is determined by [...] what counts as a verification of it. - Per Martin-Löf, 1983

Central Technical Issues

- Design questions
- Rules for typing expressions
- Rules for subtyping
- Mechanism for type-checking
- Meta-theorems
- Adequacy for data representation
- Preservation of types under evaluation
- Progress from any well-typed configuration
- Decidability of type-checking

Static Judgments

－A type $\quad A$ is a type（elided in this talk）
－$M: A \quad M$ has type A

- Hypotheses $x_{1}: A_{1}, \ldots, x_{n}: A_{n}, x_{i}$ distinct（write 「）
- 「ト M val $\quad M$ is a value（write V ）
－Defining properties for hypothetical judgments
－Hypothesis rules

$$
\overline{\Gamma, x: A, \Gamma^{\prime} \vdash x: A} \quad \overline{\Gamma, x: A, \Gamma^{\prime} \vdash x \mathrm{val}}
$$

－Substitution principle（theorem）

$$
\begin{aligned}
& \text { If } \Gamma \vdash V: A \text { and } \Gamma, x: A, \Gamma^{\prime} \vdash N: C \text { then } \\
& \Gamma, \Gamma^{\prime} \vdash[V / x] N: C
\end{aligned}
$$

Computation Judgments

- $M \longrightarrow_{\beta} M^{\prime} \quad M$ beta-reduces to M^{\prime}
- E ctx E is an evaluation context, hole [] [] ctx
- $E[M]$ replaces hole in E by M
- $M \longrightarrow M^{\prime} \quad M$ reduces to M^{\prime}
- Closure rule

$$
\frac{M \longrightarrow_{\beta} M^{\prime}}{E[M] \longrightarrow E\left[M^{\prime}\right]}
$$

Principles of Computation

- Progress principle (theorem)

$$
\text { If } \vdash M: A \text { then either } \vdash M \text { val or } M \longrightarrow M^{\prime} .
$$

- Preservation principle (theorem)

$$
\text { If } \vdash M: A \text { and } M \longrightarrow M^{\prime} \text { then } \vdash M^{\prime}: A
$$

- Note restriction to closed terms

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Function Types $A \rightarrow B$

- Introduction and elimination rules

$$
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B} \rightarrow I \quad \frac{\Gamma \vdash M: A \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B} \rightarrow E
$$

- Values

$$
\overline{\Gamma \vdash \lambda x . M \mathrm{val}}
$$

- Computation (introduction followed by elimination)

$$
\begin{array}{cc}
(\lambda x . M) V & \longrightarrow_{\beta}[V / x] M \\
\frac{E \operatorname{ctx}}{E M \operatorname{ctx}} & \frac{V \mathrm{val} E \mathrm{ctx}}{V E \operatorname{ctx}}
\end{array}
$$

Mechanisms for Type-Checking

- Type synthesis (Church)
- Given Γ, M, synthesize unique [principal] A with $\Gamma \vdash M: A$ or fail
- Requires type labels $\lambda x: A$. M
- Does not generalize well to intersection and related types
- Type assignment (Curry)
- Given Γ, M, A succeed if $\Gamma \vdash M: A$, otherwise fail
- Very general (traditional for intersection types)
- Often undecidable

Bi-Directional Type-Checking

- Based on two judgments, combining synthesis with analysis
- $\Gamma \vdash M \uparrow A$ Given Γ, M, synthesize A with $\Gamma \vdash M: A$
- $\Gamma \vdash M \downarrow A \quad$ Given Γ, M, A, analyze if $\Gamma \vdash M: A$
- Hypothesis rule

$$
\overline{\Gamma, x: A, \Gamma^{\prime} \vdash x \uparrow A}
$$

- New expression ($M: A$)
- Mutual dependencies (revisit later)

$$
\frac{\Gamma \vdash M \uparrow A}{\Gamma \vdash M \downarrow A} \uparrow \downarrow \quad \frac{\Gamma \vdash M \downarrow A}{\Gamma \vdash(M: A) \uparrow A} \downarrow \uparrow
$$

- Several substitution principles (elided)

Bi-Directional Type-Checking of Functions

- Introduction forms are analyzed

$$
\frac{\Gamma, x: A \vdash M \downarrow B}{\Gamma \vdash \lambda x . M \downarrow A \rightarrow B} \rightarrow I
$$

- Elimination forms are synthesized

$$
\frac{\ulcorner\vdash M \uparrow A \rightarrow B \quad \Gamma \vdash N \downarrow A}{\Gamma \vdash M N \uparrow B} \rightarrow E
$$

- Read ' \uparrow ' and ' \downarrow ' as ' $:$ ' to obtain type assignment rules
- No type annotations in normal forms. E.g., for any A,

$$
\vdash \lambda f . \lambda x . f(f x) \downarrow(A \rightarrow A) \rightarrow(A \rightarrow A)
$$

- Annotate redexes, e.g.,

$$
\vdash(\lambda x . x: \text { bits } \rightarrow \text { bits })(\epsilon \mathbf{1 1 0}) \uparrow \text { bits }
$$

Definitions

- Internalize substitution principle

$$
\frac{\Gamma \vdash M \uparrow A \quad \Gamma, x: A \vdash N \downarrow C}{\Gamma \vdash \text { let } x=M \text { in } N \text { end } \downarrow C}
$$

- Computation

$$
\text { let } x=V \text { in } N \text { end } \longrightarrow_{\beta}[V / x] N
$$

$$
\frac{E \operatorname{ctx}}{\text { let } x=E \text { in } N \text { end ctx }}
$$

- In practice, use definitions instead of redices

$$
\begin{aligned}
& \vdash \text { let } f=(\lambda x . x: \text { bits } \rightarrow \text { bits }) \text { in } f(\epsilon \mathbf{1 1 0}) \text { end } \downarrow \text { bits } \\
\text { or } & \vdash \text { let } f: \text { bits } \rightarrow \text { bits }=\lambda x . x \text { in } f(\epsilon \mathbf{1 1 0}) \text { end } \downarrow \text { bits }
\end{aligned}
$$

Remarks on Judgmental Method

- Specification is open-ended
- Constructs are defined orthogonally
- Proofs of meta-theoretic properties (e.g., progress, preservation) decomposes along the same lines
- Logical connections
- $\ulcorner\vdash M \downarrow A$ without $\downarrow \uparrow$ coercions characterizes normal natural deductions of A with the subformula property
- This is in fact the origin of the rules
- Judgment is analytic in Γ, M, and A : any derivation mentions only constituent terms and types of Γ, M, A

Adding Data Types

- Proceed by example: bit strings and natural numbers
- For general case, see [Dunfield'02] [Davies'02]
- Introduction forms

$$
\overline{\Gamma \vdash \epsilon \downarrow \text { bits }} \quad \frac{\Gamma \vdash M \downarrow \text { bits }}{\Gamma \vdash M \mathbf{0} \downarrow \text { bits }} \quad \frac{\Gamma \vdash M \downarrow \text { bits }}{\Gamma \vdash M \mathbf{1} \downarrow \text { bits }}
$$

- ϵ represents empty string, $\mathbf{0}$ and $\mathbf{1}$ are postfix operators.
- For example: $\ulcorner 0\urcorner=\epsilon,\ulcorner 6\urcorner=\epsilon \mathbf{1} \mathbf{1 0}$.
- Elimination form

$$
\frac{\Gamma \vdash M \uparrow \text { bits } \quad \Gamma \vdash N_{e} \downarrow C \quad \Gamma, x: \text { bits } \vdash N_{0} \downarrow C \quad \Gamma, y: \text { bits } \vdash N_{1} \downarrow C}{\Gamma \vdash \text { case } M \text { of } \epsilon \Rightarrow N_{e}\left|x \mathbf{0} \Rightarrow N_{0}\right| y \mathbf{1} \Rightarrow N_{1} \downarrow C}
$$

Computation on Data Types

- Rules for computation, values, evaluation contexts straightforward
- Need recursion for interesting functions

$$
\frac{\Gamma, u: A \vdash M \downarrow A}{\Gamma \vdash \mathrm{fix} u . M \downarrow A} \quad \text { fix } u . M \longrightarrow_{\beta}[\mathrm{fix} u . M / u] M
$$

- No new values or evaluation contexts
- Orthogonal to other constructs in this form
- Technical complication: u stands for a term, not a value
- Treat explicitly or restrict syntax to fix $u . \lambda x . M$

Data Structure Invariants and Subtyping

- Example: natural numbers as bit strings without leading zeroes.
- Intuition: need positive numbers, at least internally

Natural Numbers	nat $::=\epsilon \mid \operatorname{pos}$
Positive Numbers	pos $::=\operatorname{pos} \mathbf{0} \mid$ nat $\mathbf{1}$

- Capture systematically and orthogonally to everything before via
- typing rules
- subtyping rules

Typing Natural Numbers

- New rules (ignore redundancy):

$$
\begin{array}{ll}
\overline{\Gamma \vdash \epsilon \downarrow \mathrm{nat}} & (\text { no } \epsilon \downarrow \mathrm{pos}) \\
\frac{\Gamma \vdash M \downarrow \mathrm{pos}}{\Gamma \vdash M \mathbf{0} \downarrow \mathrm{nat}} & \frac{\Gamma \vdash M \downarrow \mathrm{pos}}{\Gamma \vdash M \mathbf{0} \downarrow \mathrm{pos}} \\
\frac{\Gamma \vdash M \downarrow \text { nat }}{\Gamma \vdash M \mathbf{1} \downarrow \text { nat }} & \frac{\Gamma \vdash M \downarrow \mathrm{nat}}{\Gamma \vdash M \mathbf{1} \downarrow \mathrm{pos}}
\end{array}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash M \uparrow \text { nat } \quad \Gamma \vdash N_{e} \downarrow C \quad \Gamma, x: \text { pos } \vdash N_{0} \downarrow C \quad \Gamma, y: \text { nat } \vdash N_{1} \downarrow C}{\Gamma \vdash \text { case } M \text { of } \epsilon \Rightarrow N_{e}\left|x \mathbf{0} \Rightarrow N_{0}\right| y \mathbf{1} \Rightarrow N_{1} \downarrow C} \\
& \frac{\Gamma \vdash M \uparrow \operatorname{pos} \quad\left(\text { no } N_{\epsilon} \downarrow C\right) \quad \Gamma, x: \text { pos } \vdash N_{0} \downarrow C \quad \Gamma, y: \text { nat } \vdash N_{1} \downarrow C}{\Gamma \vdash \text { case } M \text { of } \epsilon \Rightarrow N_{e}\left|x \mathbf{0} \Rightarrow N_{0}\right| y \mathbf{1} \Rightarrow N_{1} \downarrow C}
\end{aligned}
$$

Subtyping Judgment

- New judgment $A \leq B \quad A$ is a subtype of B
- $A \leq B$ if every value of type A also has type B
- Reflexivity rule (\sim hypothesis rule)

$$
\overline{A \leq A}
$$

- Transitivity principle (theorem, \sim substitution principle)

$$
\text { If } A \leq B \text { and } B \leq C \text { then } A \leq C
$$

- Subsumption rule, replaces $\uparrow \downarrow$

$$
\frac{\Gamma \vdash M \uparrow A \quad \Gamma \vdash A \leq C}{\Gamma \vdash M \downarrow C}
$$

Subtyping of Data Types

- From the typing rules:

$$
\overline{\text { pos } \leq \text { nat }} \quad \overline{\text { nat } \leq \text { bits }} \quad \overline{\text { pos } \leq \text { bits }}
$$

- In general, a lattice
- Example of need for subsumption rule

$$
\begin{aligned}
& x: \text { pos } \vdash x \downarrow \text { nat } \\
& \text { since } x: \operatorname{pos} \vdash x \uparrow \text { pos } \\
& \text { and } \quad \text { pos } \leq \text { nat }
\end{aligned}
$$

- Subtyping of functions

$$
\frac{B_{1} \leq A_{1} \quad A_{2} \leq B_{2}}{A_{1} \rightarrow A_{2} \leq B_{1} \rightarrow B_{2}}
$$

Summary of Atomic Subtyping

- Type assignment 「トM：A
- Bi－directional system $\Gamma \vdash M \downarrow A$ ，「ト $M \uparrow A$
－Values V ，evaluation contexts $E\left[\right.$ ，reduction $M \longrightarrow M^{\prime}$
－Subtyping $A \leq B$
－All judgments are analytic and therefore decidable
－Can express data structure invariants recognizable by finite－state tree automata（regular tree languages）
－Cannot express，e．g．，lengths of lists or depths of trees

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Limitations of Atomic Subtyping

- Problem: consider shiftl $=\lambda x . x \mathbf{0}$.

$$
\begin{array}{ll}
\vdash \lambda x . x \mathbf{0} \downarrow \text { bits } \rightarrow \text { bits } \\
\vdash \lambda x . x \mathbf{0} \downarrow \text { nat } \rightarrow \text { bits } \\
\vdash \lambda x . x \mathbf{0} \downarrow \text { pos } \rightarrow \text { pos }
\end{array}
$$

- These may all be needed, but cannot be expressed simultaneously
- Especially troublesome for recursive functions
$\nvdash \quad$ fix inc. λn. case n

$$
\begin{aligned}
& \text { of } \epsilon \Rightarrow \epsilon \mathbf{1} \\
& \mid x \mathbf{0} \Rightarrow x \mathbf{1} \\
& \mid x \mathbf{1} \Rightarrow(\text { inc } x) \mathbf{0} \quad \text { \% inc } x: \text { pos? }
\end{aligned}
$$

$$
\downarrow \text { nat } \rightarrow \text { nat }
$$

Intersection Types $A \wedge B$

- Introduction and elimination forms

$$
\begin{gathered}
\frac{\Gamma \vdash V \downarrow A}{\Gamma \vdash V \downarrow A \wedge B} \quad \Gamma \vdash V \downarrow B \\
\\
\frac{\Gamma \vdash M \uparrow A \wedge B}{\Gamma \vdash M \uparrow A} \wedge E_{1} \quad \frac{\Gamma \vdash M \uparrow A \wedge B}{\Gamma \vdash M \uparrow B} \wedge E_{2}
\end{gathered}
$$

- Subject of judgment identical in premises and conclusion
- $A \wedge B$ a property type (refinement type)
- bits, $A \rightarrow B, A \times B, 1$ are constructor types
- Elimination rules are not redundant with bi-directionality
- Value restriction is necessary for type preservation with effects [Davies \& Pf, ICFP'00]

Subtyping Intersection Types

- Right and left rules (\sim sequent calculus)

$$
\begin{gathered}
\frac{A \leq B \quad A \leq C}{A \leq B \wedge C} \wedge R \\
\frac{A \leq C}{A \wedge B \leq C} \wedge L_{1} \quad \frac{B \leq C}{A \wedge B \leq C} \wedge L_{2}
\end{gathered}
$$

- Easily justified by our meaning explanation
- Transitivity remains admissible
- Distributivity

$$
[\overline{(A \rightarrow B) \wedge(A \rightarrow C) \leq A \rightarrow(B \wedge C)}]
$$

would disturb orthogonality and is unsound with effects [Davies \& Pf, ICFP'00]

Example: External vs Internal Invariants

- Reconsider example

$$
\begin{aligned}
& \text { inc }=\text { fix inc. } \lambda n . \text { case } n \\
& \text { of } \epsilon \Rightarrow \epsilon \mathbf{1} \\
& \left\lvert\, \begin{array}{l}
\mid x \mathbf{0} \Rightarrow x \mathbf{1} \\
\mid x \mathbf{1} \Rightarrow(\text { inc } x) \mathbf{0} \quad \% \text { inc } x: \operatorname{pos}(!)
\end{array}\right.
\end{aligned}
$$

- Then

$$
\begin{aligned}
& \qquad \text { inc } \downarrow(\text { bits } \rightarrow \text { bits }) \wedge(\text { nat } \rightarrow \text { pos }) \\
& (\text { bits } \rightarrow \text { bits }) \wedge(\text { nat } \rightarrow \text { pos }) \leq \text { nat } \rightarrow \text { nat } \\
& (\text { bits } \rightarrow \text { bits }) \wedge(\text { nat } \rightarrow \text { pos }) \leq \text { pos } \rightarrow \text { pos }
\end{aligned}
$$

- But

$$
\nvdash \text { inc } \downarrow \text { nat } \rightarrow \text { nat }
$$

cannot be checked directly

Summary of Intersection Types

- Property types without term constructors
- Logically motivated subtyping
- Value restriction for soundness with effects
- No distributivity law for soundness with effects
- In practice may need to ascribe more explicit types
- Intersection orthogonal to all other types and constructor

Refinement Restriction

- System is cleanest with refinement restriction
- Segregate system explicitly into types (constructor types) and sorts (property types)
- Only sorts of similar structure may be compared or intersected
- Conservative over ML, including effects
- No further consideration in this talk (see [Freeman \& Pf'91] [Freeman'94] [Davies'97])

Universal Type T

- Introduction and elimination rules

$$
\overline{\Gamma \vdash V \downarrow \top}^{\top} I \quad \text { (no } T E \text { rule) }
$$

- Subtyping rules

$$
\overline{A \leq \top} \top R \quad \text { (no } \top L \text { rule) }
$$

- Value restriction necessary for progress theorem, otherwise, e.g.

$$
[\vdash(\epsilon \epsilon) \downarrow \top]
$$

- Confirms value restriction
- Useful for unreachable code, e.g.

$$
\begin{aligned}
\text { casenat }_{C}: & (\text { nat } \rightarrow C \rightarrow(\text { pos } \rightarrow C) \rightarrow(\text { nat } \rightarrow C)) \\
& \wedge(\text { pos } \rightarrow T \rightarrow(\text { pos } \rightarrow C) \rightarrow(\text { nat } \rightarrow C))
\end{aligned}
$$

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Union Types $A \vee B$

- Another property type, not constructor type
- Introduction rules

$$
\frac{\Gamma \vdash M \downarrow A}{\Gamma \vdash M \downarrow A \vee B} \vee I_{1} \quad \frac{\Gamma \vdash M \downarrow B}{\Gamma \vdash M \downarrow A \vee B} \vee I_{2}
$$

- Problem: how do we write the elimination rule?
- A fundamental problem in natural deduction! [Prawitz'65] [Girard]
- Subtyping is straightforward (\sim sequent calculus!)

$$
\begin{gathered}
\frac{A \leq B}{A \leq B \vee C} \vee R_{1} \quad \frac{A \leq C}{A \leq B \vee C} \vee R_{2} \\
\frac{A \leq C \quad B \leq C}{A \vee B \leq C} \vee L
\end{gathered}
$$

The Substitution Approach

- Due to [MacQueen, Plotkin, Sethi'86] and [Barbanera, Dezani-Ciancaglini, De'Liguoro'95]
- Union elimination

$$
\frac{\ulcorner\vdash M: A \vee B \quad \Gamma, x: A \vdash N: C \quad \Gamma, x: B \vdash N: C}{\Gamma \vdash[M / x] N: C}
$$

- Note uniformity of N in the two branches
- Does not satisfy type preservation: Different copies of M can reduce differently in $[M / x] N$
- Too general, even for pure calculus
- Undecidable

Towards a Solution

- First idea: require exactly one occurrence of x in N
- Second idea: account for bi-directionality
- Union elimination: for N linear in x,

$$
\frac{\Gamma \vdash M \uparrow A \vee B \quad\ulcorner, x: A \vdash N \downarrow C \quad\ulcorner, x: B \vdash N \downarrow C}{\Gamma \vdash[M / x] N \downarrow C}
$$

- Still not sound with effects(?)

Further Towards a Solution

- Third idea: require N to be an evaluation context.

$$
\frac{\Gamma \vdash M \uparrow A \vee B \quad \Gamma, x: A \vdash E[x] \downarrow C \quad \Gamma, x: B \vdash E[x] \downarrow C}{\Gamma \vdash E[M] \downarrow C} \vee E
$$

- Restores progress and preservation
- Much more restrictive than Barbanera et al.
- Setting and goals are different

Example

- Use

$$
\begin{aligned}
\Gamma_{0}= & f:\left(B_{1} \rightarrow C_{1}\right) \wedge\left(B_{2} \rightarrow C_{2}\right) \\
& g: A \rightarrow\left(B_{1} \vee B_{2}\right) \\
& x: A
\end{aligned}
$$

- Show $\Gamma_{0} \vdash f(g x) \downarrow C_{1} \vee C_{2}$
- Using evaluation context f []

$$
\frac{\Gamma_{0} \vdash g x \uparrow B_{1} \vee B_{2} \frac{\Gamma_{0}, y: B_{1} \vdash f y \downarrow C_{1}}{\Gamma_{0}, y: B_{1} \vdash f y \downarrow C_{1} \vee C_{2}} \quad \frac{\Gamma_{0}, y: B_{2} \vdash f y \downarrow C_{2}}{\Gamma_{0}, y: B_{2} \vdash f y \downarrow C_{2} \vee C_{2}}}{\Gamma_{0} \vdash f(g x) \downarrow C_{1} \vee C_{2}}
$$

Empty Type \perp

- Zero-ary case of disjunction
- Introduction and elimination rules

$$
\text { (no } \perp I \text { rule) } \quad \frac{\Gamma \vdash M \uparrow \perp}{\Gamma \vdash E[M] \downarrow C} \perp E
$$

- Restriction to evaluation contexts critical
- Counterexample: for abort : nat $\rightarrow \perp$,

$$
((\epsilon \epsilon)(\text { abort } \epsilon)) \downarrow C
$$

for any C, but violates progress.

- Note: $(\epsilon \epsilon$) [] is not an evaluation context!
- Subtyping

$$
\text { (no } \perp R \text { rule) } \quad \overline{\perp \leq C} \perp L
$$

Another Problem

- System is not yet general enough
- Example: use

$$
\begin{aligned}
\Gamma_{1}= & f: \text { nat } \rightarrow\left(B_{1} \rightarrow C_{1}\right) \wedge\left(B_{2} \rightarrow C_{2}\right), \\
& h: \text { nat } \rightarrow \text { nat } \\
& g: A \rightarrow\left(B_{1} \vee B_{2}\right), \\
& x: A
\end{aligned}
$$

- Show $\Gamma_{1} \vdash f(h \epsilon)(g x) \downarrow C_{1} \vee C_{2}$?
- Problem $f(h \epsilon)$ [] is not an evaluation context!

Solution

- Add "unary disjunction" rule

$$
\frac{\Gamma \vdash M \uparrow A \quad \Gamma, x: A \vdash E[x] \downarrow C}{\Gamma \vdash E[M] \downarrow C}
$$

- Realizes a substitution principle that is normally admissible
- Also form of analytic cut
- Now

$$
\frac{\Gamma_{1} \vdash h \epsilon \uparrow \frac{\Gamma_{1}, n: \text { nat } \vdash f n \uparrow D \quad \Gamma_{1}, n: \text { nat }, k: D \vdash k(g x) \downarrow C_{1} \vee C_{2}}{\Gamma_{1}, n: \text { nat } \vdash f n(g x) \downarrow C_{1} \vee C_{2}}}{\Gamma_{1} \vdash f(h \epsilon)(g x) \downarrow C_{1} \vee C_{2}}
$$

for

$$
\begin{aligned}
\Gamma_{1}= & f: \text { nat } \rightarrow\left(B_{1} \rightarrow C_{1}\right) \wedge\left(B_{2} \rightarrow C_{2}\right), \\
& h: \text { nat } \rightarrow \text { nat } \\
& g: A \rightarrow\left(B_{1} \vee B_{2}\right), \\
& x: A \\
D= & \left(B_{1} \rightarrow C_{1}\right) \wedge\left(B_{2} \rightarrow C_{2}\right)
\end{aligned}
$$

Summary of Tri-Directional Rules

- Binary case (union elimination)

$$
\frac{\ulcorner\vdash M \uparrow A \vee B \quad\ulcorner, x: A \vdash E[x] \downarrow C \quad\ulcorner, x: B \vdash E[x] \downarrow C}{\Gamma \vdash E[M] \downarrow C} \vee E
$$

- Unary case (substitution)

$$
\frac{\Gamma \vdash M \uparrow A \quad \Gamma, x: A \vdash E[x] \downarrow C}{\Gamma \vdash E[M] \downarrow C}
$$

- Zeroary case (contradiction)

$$
\frac{\Gamma \vdash M \uparrow \perp}{\Gamma \vdash E[M] \downarrow C} \perp E
$$

- Note: unary case is not general cut, but analytic!

Some Theorems

- Progress Theorem

$$
\text { If } \vdash M: A \text { then either } \vdash M \text { val or } M \longrightarrow M^{\prime}
$$

- Preservation Theorem

$$
\text { If } \vdash M: A \text { and } M \longrightarrow M^{\prime} \text { then } \vdash M^{\prime}: A
$$

- Tri-directional type-checking is decidable.
- Critical lemmas are substitution and various inversion properties
- Example: Determinacy

$$
\text { If } \vdash V: A \vee B \text { then } \vdash V: A \text { or } \vdash V: B
$$

- Hold with and without mutable references

Tri-Directional Checking and Let-Normal Form

- Tri-directionality allows us to check the term in evaluation order
- Appears related to bi-directional checking after translation to let-normal form (2/3-continuation passing style, A-normal form)
- For example,

$$
\begin{aligned}
f(h \epsilon)(g x) \mapsto & \text { let } n=h \epsilon \text { in } \\
& \text { let } k=f n \text { in } \\
& \text { let } y=g x \text { in } \\
& \text { let } z=k y \text { in } \\
& z \text { end end end end }
\end{aligned}
$$

Left Rules for Type-Checking

- Also considered by Barbanera et al. (there: admissible)
- The following left rules are sound, but not admissible

$$
\begin{gathered}
\frac{\Gamma, x: A, \Gamma^{\prime} \vdash M \downarrow C}{\Gamma, x: A \wedge B, \Gamma^{\prime} \vdash M \downarrow C} \wedge L_{1} \quad \frac{\Gamma, x: B, \Gamma^{\prime} \vdash M \downarrow C}{\Gamma, x: A \wedge B, \Gamma^{\prime} \vdash M \downarrow C} \wedge L_{2} \\
\frac{\Gamma, x: A, \Gamma^{\prime} \vdash M \downarrow C \quad \Gamma, x: B, \Gamma^{\prime} \vdash M \downarrow C}{\Gamma, x: A \vee B, \Gamma^{\prime} \vdash M \downarrow C} \vee L \\
\Gamma, x: \perp, \Gamma^{\prime} \vdash M \downarrow C \\
\end{gathered}
$$

- Conjecture: The correspondence between tri-directional checking and bi-directional checking of let-normal form is exact if we add the left rules to the typing judgment.

Related Work on This Correspondence

- [Sabry \& Felleisen'94]

Is Continuation-Passing Useful for Data Flow Analysis?

- [Damian \& Danvy'00]

Syntactic Accidents in Program Analysis

- [Palsberg \& Wand'02]

CPS Transformation of Flow Information

Connections to Commuting Conversions

- Under the coercion interpretation,
$-\wedge \mapsto \times$ (product type)
$-\top \mapsto 1$ (unit type)
$-\vee \mapsto+$ (disjoint sum type)
$-\perp \mapsto 0$ (void type)
- Different ways to apply contextual rules corresponds to certain commuting conversions on disjoint sum and void types
- These different versions are identified by CPS transformation [deGroote99,deGroote01]

Alternative Methods for Type Checking for Unions

- [Pierce'91]

$$
\text { case } M \text { of } x \Rightarrow N \quad \text { for } \quad[M / x] N
$$

determines where $\vee L$ rule can be applied. No effects. Note difference in operational semantics between two sides.

- [Wells, Dimock, Muller, Turbak'99]

Virtual terms copied to establish bijection between valid terms and typing derivations. Designed as intermediate language only, for expressing flow information.

- [Palsberg \& Pavlopoulou'00]

Disjunction only in subtyping (not typing), designed for flow information.

Summary of Tri-Directional Checking

- Tri-directional type-checking combines
- Synthesis ($\ulcorner\vdash M \uparrow A$, given Γ, M, generates all A)
- Analysis ($\ulcorner\vdash M \downarrow A$, given Γ, M, A, verify)
- Contextual rules (visit subterm in evaluation order)
- Theorem: Preservation and progress hold for call-by-value (even in the presence of effects)
- Theorem: Type checking is decidable (judgments are analytic on terms and types)
- Theorem: Conservative extension of various fragments (orthogonal definition of constructor types ($\rightarrow, \times, 1,+, 0$) and property types ($\wedge, ~ \top, \vee, \perp)$)

Practicality for Intersection Types

- Bi-directional checking is practical for \wedge, \top in SML [Davies'97]
- Good tradeoff between verbosity, expressive power, and efficiency of type-checking
- Implements refinement restriction (conservative over ML)
- Property complexity determines efficiency
- Infeasible examples exist [Reynolds'96]
- Use of unions only for data types and pattern matching

Adding Union Types in Implementation

- Conjecture practicality with some efficiency improvements
- Focusing strategy for subtyping [Davies \& Pf'00]
- Focusing strategy for typing
- Lazy splitting of $A \vee B$
- Memoization during multiple traversals
- Algorithmic conservativity?
- Infeasible examples exist
- Anticipate sparing use of unions outside data types

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Universal and Existential Dependent Types

- Many important data structure invariants cannot be expressed, for example
- Lists of length n
- Closed terms in de Bruijn form
- Height invariant on balanced trees
- Extend simple types to integrate indexed types (list(i)), universal dependent types ($\Pi a . A$), and existential dependent types ($\Sigma a . A$) [Xi'98, Xi \& Pf'98,99]
- Prior work suffered from a lack of intersections
- Ad hoc treatment of existential dependent types

Index Domain

- New hypotheses $a: \gamma$ for index variables a
- New hypotheses $i \doteq j$ for index terms i, j.
- New judgment $\Gamma \vdash i: \gamma$ for index domain
- Generalize subtyping $\ulcorner\vdash A \leq B$
- New subtyping for indexed data types δ, δ^{\prime}

$$
\frac{\left\ulcorner\vdash \delta \preceq \delta^{\prime} \quad\ulcorner\vdash i \doteq j\right.}{\Gamma \vdash \delta(i) \leq \delta^{\prime}(j)}
$$

Example: Lists

- Introduction

$$
\overline{\Gamma \vdash \text { nil } \downarrow \operatorname{list}(0)} \quad \frac{\Gamma \vdash M \downarrow \text { bits } \quad \Gamma \vdash L \downarrow \operatorname{list}(n)}{\Gamma \vdash \operatorname{cons}(M, L) \downarrow \operatorname{list}(n+1)}
$$

- Elimination

$$
\begin{aligned}
& \Gamma \vdash L \uparrow \operatorname{list}(n) \\
& \Gamma, n \doteq 0 \vdash N_{1} \downarrow C \\
& \Gamma, x: \text { bits, } a: n a t, n \doteq a+1, l: \operatorname{list}(a) \vdash N_{1} \downarrow C \\
& \Gamma \vdash \text { case } L \text { of nil } \Rightarrow N_{1} \mid \operatorname{cons}(x, l) \Rightarrow N_{2} \downarrow C
\end{aligned}
$$

Example Types

- Definite

$$
\text { append }: \Pi n: n a t . \Pi k: n a t . \operatorname{list}(n) \rightarrow \operatorname{list}(k) \rightarrow \operatorname{list}(n+k)
$$

- Indefinite

$$
\begin{aligned}
h d & :(\operatorname{list}(0) \rightarrow \perp) \wedge(\Pi n: \text { nat. list }(n+1) \rightarrow \operatorname{list}(n)) \\
t l & : \Pi n: \text { nat. } \operatorname{list}(n) \rightarrow(\operatorname{list}(n-1) \vee \operatorname{list}(0)) \\
\text { filter0 } & : \Pi n: \text { nat. } \operatorname{list}(n) \rightarrow \Sigma k: \text { nat. list }(k)
\end{aligned}
$$

- Existential types are not "optional" like unions!

Universal Dependent Types

- Universal dependent type as property type
- Universal introduction

$$
\frac{\Gamma, a: \gamma \vdash M \downarrow A}{\Gamma \vdash M \downarrow \Pi a: \gamma \cdot A} \Pi I
$$

- Universal elimination

$$
\frac{\Gamma \vdash M \uparrow \sqcap a: \gamma . A \quad \Gamma \vdash i: \gamma}{\Gamma \vdash M \uparrow[i / a] A} \Pi E
$$

- Subtyping

$$
\frac{\Gamma, b: \gamma \vdash A \leq B}{\Gamma \vdash A \leq \forall b: \gamma . B} \forall R \quad \frac{\Gamma \vdash[i / a] A \leq B \quad \Gamma \vdash i: \gamma}{\Gamma \vdash \forall a: \gamma . A \leq B} \forall L
$$

Existential Dependent Types

- Existential dependent types as property type
- Existential introduction

$$
\frac{\Gamma \vdash M \downarrow[i / a] A \quad\ulcorner\vdash i: a}{\Gamma \vdash M \downarrow \Sigma a: \gamma \cdot A} \Sigma I
$$

- Existential elimination (requires contextual form)

$$
\frac{\Gamma \vdash M \uparrow \Sigma a: \gamma \cdot A \quad \Gamma, a: \gamma, x: A \vdash E[x] \downarrow C}{\Gamma \vdash E[M] \downarrow C} \Sigma E
$$

- Subtyping

$$
\frac{\Gamma \vdash A \leq[i / b] B \quad\ulcorner\vdash i: \gamma}{\Gamma \vdash A \leq \Sigma b: \gamma \cdot B} \Sigma R \quad \frac{\Gamma, a: \gamma \vdash A \leq B}{\Gamma \vdash \Sigma a: \gamma \cdot A \leq B} \Sigma L
$$

Summary: Dependent Types

- Definition orthogonal to other constructs
- Meta-theoretic analysis carries over
- For type-checking, collect equational constraints in index domain
- For decidability, constraint domain must be decidable in the presence of universal and existential variables
- Example: Presburger arithmetic
- Existential types are critical (e.g., filter)
- Clean formulation only with contextual rules

Outline

- Introduction
- Guiding Principles
- Atomic Subtyping
- Intersection Types
- Union Types
- [Dependent Types]
- Conclusion

Other Related Work

- Intersection types (many)
- Forsythe [Reynolds'88] [Reynolds'96]
- Intersections and explicit polymorphism [Pierce'91] [Pierce'97]
- Soft types (many)
- Shape analysis and software model checking (many)

Future Work: Parametric Polymorphism

- ML-style polymorphism via refinement restriction
- Bi-directionality for full parametric polymorphism requires subtyping
- Value restriction on $\forall I$ for soundness with effects [Davies \& Pf'00]
- Subtyping undecidable [Wells'95][Tiuryn \& Urzyczyn'96] even without distributivity [Chrzạszcz'98]
- Conjecture predicative part with universes decidable
- Combine with local inference? [Pierce \& Turner'97]

Other Future Work

- General case of data types (mostly done)
- Precise relationship to logic, CPS, commuting conversions
- Version for call-by-name, lazy evaluation
- Translation to monadic meta-language to encapsulate effects
- Sequential pattern matching with union and existential
- Apply where types express effects or resources(!)

Summary

- Refinement types to statically verify program invariants
- System constructed orthogonally based on judgments
- Conservativity with respect to fragments
- Bi-directional checking for intersection and universal types
- Tri-directional checking for union and existential types
- Type-checking in evaluation order
- Sound with effects through value and evaluation context restrictions
- Preliminary examples indicate it may be practical

Intersections are Unsound with Effects

- Counterexample

evaluates to ϵ which does not have type pos.
- Analogous counterexample with parametric polymorphism:

$$
\begin{aligned}
& \text { let } x=\operatorname{ref}(\lambda y . y): \forall \alpha .(\alpha \rightarrow \alpha) \text { ref } \\
& \text { in } \\
& x:=(\lambda y . \epsilon) ; \quad \% \text { use } x:(\text { nat } \rightarrow \text { nat) ref } \\
& (!x)(\epsilon \mathbf{1}) \quad \% \text { use } x:(\text { pos } \rightarrow \text { pos }) \text { ref } \\
& \text { end : pos }
\end{aligned}
$$

Distributivity is Unsound with Effects

- Recall distributivity

$$
[\overline{(A \rightarrow B) \wedge(A \rightarrow C) \leq A \rightarrow(B \wedge C)}]
$$

- Counterexample:
$\vdash \lambda u . \operatorname{ref}(\epsilon \mathbf{1}) \quad: \quad($ unit \rightarrow nat ref) $\wedge($ unit \rightarrow pos ref)
by distributivity and subsumption:
$\vdash \lambda u$. $\operatorname{ref}(\epsilon \mathbf{1}) \quad: \quad$ unit $\rightarrow($ nat ref \wedge pos ref $)$
$\vdash(\lambda u . \operatorname{ref}(\epsilon \mathbf{1}))\rangle:$ nat ref \wedge pos ref
- In a program:

$$
\begin{array}{ll}
\text { let } x=(\lambda u \cdot \operatorname{ref}(\epsilon \mathbf{1}))\langle \rangle & : \text { nat ref } \wedge \text { pos ref } \\
\text { in } \ldots \text { end } & \% \text { as on previous slide }
\end{array}
$$

