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Abstract

A key component in proof assistant software is the meta-language used to en-
code the objects that are being reasoned about. Such a meta-language is called a
logical framework. Several different logical frameworks exist; some only provide
the most basic encoding of abstract syntax data, while others support power-
ful representation methodologies and concepts such as judgments-as-types and
higher-order abstract syntax, e.g. the logical framework LF.

The direct support for high-level concepts in the logical framework allows
for rapid prototyping of new logics, type systems, and semantics. It also eases
the development of theorems when the key concepts are directly supported.
A concept, which is becoming increasingly important, is resources, but so far
resources have not been supported very well by existing logical frameworks.

In this thesis I develop the theoretical infrastructure required to implement
— and give an implementation of — a new logical framework that extends LF
with the concepts of both linear resources, which must be used exactly once,
and affine resources, which can be used at most once.

I take a slightly revised version of CLF [CPWW02a] as the starting point
for my logical framework. I develop an explicit substitution calculus with linear
and affine types, which I use as the foundation in my implementation of CLF
called Celf. In this setting I prove strong normalization, type preservation, and
confluence for a context-split-oblivious reduction semantics. I define the pattern
fragment for the higher-order unification problem in linear and affine type theory
and give a deterministic algorithm that computes most general unifiers on this
fragment. I also extend this algorithm to the linear-changing pattern fragment
and use this to implement the unification algorithm in Celf. Finally, I describe
the Celf implementation.
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Chapter 1

Introduction

1.1 Background

Proof assistant software or interactive theorem provers are gaining increased
popularity and use. Several different systems exist, such as Twelf [PS99],
Abella [Gac08, Abea], Coq [Coq], Agda [BDN09], Isabelle [Isa], and many oth-
ers. A common structure to such systems is to first encode the object of interest,
say a programming language, a type system, a logic, or an operational seman-
tics, and then prove the relevant theorems about the encoding. An important
foundation of proof assistants is thus the meta-language used for encodings.
Such a meta-language is called a logical framework.

In general a logical framework is a language, e.g. a type theory, coupled
with an encoding methodology in order to make the language useful as a meta-
language.

In Twelf the logical framework is LF [HHP93], which is a dependently
typed lambda calculus. This framework comes with the encoding methodologies
judgments-as-types and higher-order abstract syntax, which have proven to be
immensely useful for encoding many different logics and semantics, in partic-
ular those which make use of bound variables as higher-order abstract syntax
provides α-conversion and substitution for free.

Bound variables continue to be an ubiquitous concept, but recent trends
in logics for computer science have seen an increasing focus on the concept of
resources. Examples include separation logic [Rey02] and session types [HVK98,
CP10]. It is therefore important to develop logical frameworks that directly
support the representation of resources.

A natural setting for the resource concept is linear and affine logic [Gir87,
Bie94], in which variables represent resources. A linear variable/resource must
be used exactly once, whereas an affine variable/resource can be used at most
once. Linear and affine logics are substructural, since they are characterized
by their restriction of the structural rules; weakening is disallowed for linear
assumptions and contraction is disallowed for both linear and affine assumptions.

Starting from LF the linear logical framework LLF [CP96] and subsequently
the concurrent logical framework CLF [CPWW02a] was suggested as a way to
incorporate first resources and then also concurrency into a logical framework.

LLF is a conservative extension of LF with the connectives (, &, and >

5



1.2. IMPLEMENTING A SUBSTRUCTURAL LOGICAL FRAMEWORK

from intuitionistic linear logic, and CLF is a conservative extension of LLF with
the linear logic connectives ⊗, 1, !, and ∃. CLF also includes a monad corre-
sponding to the lax modality in order to encapsulate the positive connectives
and thereby retain canonical forms. The equational theory of CLF includes a
permutative conversion of monadic bindings that facilitates a natural encoding
of concurrent computation traces. A number of examples demonstrating the
applicability of CLF as a logical framework was presented in the companion
tech report [CPWW02b], and the encoding methodology for the representation
of concurrent computations in CLF was further elaborated in [WCPW08].

Explicit substitutions [ACCL91, DHKP98, NW98, Kes07, BR95] are central
for modern implementations of systems that provide mechanisms for variable
binding, such as logical frameworks [PS99], theorem provers [Gac08, BGM+07],
proof assistants [Bar00], and programming language implementations [SPM03,
NM99, SLM98, PS08] and analysis [CNR08]. In particular, the explicit substi-
tution calculus λσ [ACCL91] forms the basis of the Twelf implementation and
it is directly used as a means to specify and implement unification [DHKP98].

1.2 Implementing a substructural logical frame-
work

The long-term goal of this work is to develop a full-fledged proof assistant that
supports resources as naturally and easily as e.g. Twelf supports higher-order
abstract syntax (see future work in chapter 7). Before this becomes possible we
need to be able to implement the underlying logical framework.

CLF has already been suggested as a suitable logical framework that facili-
tates the encoding of both resources and concurrency.

So far CLF has only been defined in terms of a canonical forms presentation.
But in order to implement a substructural logical framework such as CLF we
need a lot more. One of the most important things is unification, as this is a
crucial part of both type inference and proof search. This means a higher-order
unification algorithm that handles resources correctly. Additionally, we need
explicit substitutions both as a means to implement β-equality and in order to
support logic variables for unification.

Foreshadowing the development in chapter 5 it will become clear that the
additive unit, >, is problematic and needs to be replaced by affine types. In
particular, in a calculus with linear types, logic variables, and explicit substitu-
tions, the addition of > breaks decomposition of equality and makes invertibility
of substitutions ill-defined. I therefore revise CLF slightly in chapter 5 from its
original definition in [CPWW02a].

In the chapters ahead I build up to the logical framework implementation,
Celf, of the revised CLF type theory. So even though the various calculi pre-
sented throughout this thesis might look slightly different, they are all con-
structed as sub-calculi of the final CLF by only projecting away those details
that are irrelevant to the problem at hand.

6



1.3. CLF

1.3 CLF

As an example of the use of the CLF type theory as a logical framework, I
demonstrate an encoding of π-calculus with session types. I follow the presen-
tation in [HVK98] although slightly simplified for presentation purposes.

The encoding given below can be downloaded from http://www.twelf.org/

~celf/download/session-types.clf and can be run with Celf (see chapter 6).
The base language expressions, exp, are restricted to natural numbers, which

evaluate to themselves, and names, which will be introduced by binders when
needed.

% Base Language

exp : type.

z : exp.

s : exp -> exp.

% Base Language: Operational Semantics

eval : exp -> exp -> type.

evz : eval z z.

evs : eval (s E) (s V)

<- eval E V.

The encoding of types consists of base types, tp, session types, stp, and two
predicates encoding type validity by making sure that types match with their
co-type.

% Base Types

tp : type.

nat : tp.

% Session Types

stp : type.

down : tp -> stp -> stp.

up : tp -> stp -> stp.

end : stp.

st : stp -> stp -> tp. % Injection into Base Types

% Duality and validity of types

dual : stp -> stp -> type.

validtype : tp -> type.

d1 : dual (down T S) (up T S’)

<- validtype T

<- dual S S’.

d2 : dual (up T S) (down T S’)

<- validtype T

<- dual S S’.

d3 : dual end end.

vnat : validtype nat.

vst : validtype (st T T’)

<- dual T T’.
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1.3. CLF

Process expressions are encoded by the type pe. The process print e is
a stuck dummy process, which is used to record output in the example query
below.

% Process Primitives

channel : type.

pe : type.

request : exp -> (channel -> pe) -> pe.

accept : exp -> (channel -> pe) -> pe.

send : channel -> exp -> pe -> pe.

receive : channel -> (exp -> pe) -> pe.

| : pe -> pe -> pe.

inact : pe.

print : exp -> pe.

newS : tp -> (exp -> pe) -> pe.

The operational semantics works by representing each process P that is wait-
ing to execute as a linear assumption proc P in the context. The query at the
end demonstrates this by doing a proof search for proc p( {proc (print X)},
where p is the program

(νa)(accept a(k) in k![1]; k?(x) in print[x]

| request a(k) in k?(x) in k![x+ 1]; inact)

This effectively runs p with the expected result of print X for some X. When
run, Celf will perform the proof search and print the trace (proof term) together
with the solution X = 2.

% Operational Semantics

proc : pe -> type.

link : proc (accept A P1) -o proc (request A P2)

-o {Exists k. proc (P1 !k) * proc (P2 !k)}.

com : proc (send K E P1) -o proc (receive K P2)

-o eval E V

-> {proc P1 * proc (P2 !V)}.

par : proc (| P1 P2) -o {proc P1 * proc P2}.

clean : proc (inact) -o {1}.

introS : proc (newS T P)

-o {Exists a. !eval a a * proc (P !a)}.

#query * 1 * 1

proc (newS T (\!a.

| (accept a (\!k. send k (s z) (receive k \!x. print x)))

(request a (\!k. receive k (\!x. send k (s x) inact)))))

-o {proc (print X)}.

8



1.3. CLF

The typing judgment Θ; Γ ` P . ∆ is encoded by the type valid P . As-
sumptions a : S in Γ are represented by intuitionistic assumptions of a S, and
assumptions k : α in ∆ are represented as linear assumptions c_of k α. The
context Θ is not used in this example.

% Base Language: Static Semantics/Type System

of : exp -> tp -> type.

ofz : of z nat.

ofs : of (s N) nat

<- of N nat.

% Sessions: Static Semantics/Type System

valid : pe -> type.

c_of : channel -> stp -> type.

valid’ : channel -> pe -> type.

v_ : valid’ K P

o- valid P

o- ((c_of K end -o {1}) -@ {1}).

v_acc: valid (accept A P)

<- of A (st S S’)

o- (Pi k. c_of k S -o valid’ k (P !k)).

v_req: valid (request A P)

<- of A (st S S’)

o- (Pi k. c_of k S’ -o valid’ k (P !k)).

v_send: valid (send K E P)

o- c_of K (up T S)

<- of E T

o- (c_of K S -o valid’ K P).

v_receive: valid (receive K P)

o- c_of K (down T S)

o- (Pi x. of x T -> c_of K S -o valid’ K (P !x)).

v_inact: valid inact.

v_print : valid (print E)

<- of E T.

v_newS : valid (newS T P)

o- (Pi a. of a T -> valid (P !a))

<- validtype T.

v_par: valid (| P1 P2)

o- valid P1

o- valid P2.

The type valid’ k P is equivalent to valid P except that it, for a specific

9



1.4. CONTRIBUTIONS

channel k, specifies that linear assumptions of the form c_of k end are to be
ignored. The reason for structuring it this way is to avoid premature unification
of an unknown session type with end during proof search. Proof search can then
be used as a session type inference algorithm by using logic variables as type
annotations. In particular we can run the following query to correctly infer the
session type of a in the program p from above.

#query * 1 * 1

valid (newS T (\!a.

| (accept a (\!k. send k (s z) (receive k \!x. print x)))

(request a (\!k. receive k (\!x. send k (s x) inact))))).

The output of the query looks like this:

Solution: v_newS !(vst !(d2 !(d1 !d3 !vnat) !vnat))

(\!a. \!X1. v_par

(v_req (\!k. \X2. v_ (\@X3. {1}) (v_receive

(\!x. \!X3. \X4. v_ (\@X5. {1}) (v_send

(\X5. v_ (\@X6. {let {1} = X6 X5 in 1}) v_inact)

!(ofs !X3) X4)) X2)) !X1)

(v_acc (\!k. \X2. v_ (\@X3. {1}) (v_send

(\X3. v_ (\@X4. {1}) (v_receive (\!x. \!X4. \X5. v_

(\@X6. {let {1} = X6 X5 in 1})

(v_print !X4)) X3)) !(ofs !ofz) X2)) !X1))

#T = st !(up !nat !(down !nat !end))

!(down !nat !(up !nat !end))

1.4 Contributions

My contributions and thesis are divided into two parts. A theoretical part
consisting of chapters 2 through 4 and partly chapters 5 through 6, and an
implementation part consisting of the Celf system and its documentation in
chapters 5 through 6.

In order to give a solid foundation on which to implement substructural
logical frameworks in general and my logical framework Celf in particular, I
give several theoretical contributions concerning explicit substitution calculi and
unification in substructural type theories.

In chapter 2 I prove strong normalization for the explicit substitution cal-
culus λσ with a slight restriction in the congruence rules. λσ is the basis of the
internal data structures in both Twelf and Celf and it is not strongly normalizing
in its general form.

In chapter 3 I define a linear and affine type system for λσ with term meta-
variables along with a context-split-oblivious small-step reduction semantics for
which I prove type preservation and confluence.

All the theorems in these two chapters have been formalized and mechani-
cally checked in the proof assistants Abella and Twelf, respectively. The work
in the remainder of my thesis has only been checked by hand, as some theorems
are harder to formalize than others.

In chapter 4 I design the unification algorithm that is the core of Celf. Based
on the explicit substitution calculus from chapter 3 I define the pattern fragment

10



1.5. DIGITAL CONTENT

for higher-order unification problems in linear and affine type theory and give a
deterministic unification algorithm that computes most general unifiers. I then
extend the algorithm by a procedure called linearity pruning to bridge the gap
to the intuitionistic pattern fragment.

This lays the theoretical foundation for my logical framework Celf.
In chapter 5 I take the logical framework CLF and revise it by adding affine

types, removing >, and generalizing several of the constructs. In particular, I
show how to form the conservative generalization of the intuitionistic dependent
function-type Π and the linear function-type (.

Celf implements this revised version of CLF as a logical framework complete
with unification, type inference, implicit parameter inference and reconstruction,
and proof search. I describe the Celf implementation in chapter 6. Many of the
interface design choices have been inspired by Twelf.

Besides what has been presented in chapters 2 through 5 an implementation
with this level of complexity of course draws on several additional theoretical
contributions from both myself and others, most of which are outlined in chap-
ter 6. Most notably is the extension of the unification algorithm to a full-fledged
unification constraint simplification algorithm for the full CLF type theory; in
particular, I show how to reify non-deterministic context splits as unification
constraints to be solved by linearity pruning.

1.5 Digital content

Chapter 2 is formalized in Abella. The proof source files can be downloaded
from http://www.itu.dk/people/anderssn/exsub-sn.tgz.

Chapter 3 is formalized in Twelf. The proof source files can be downloaded
from http://www.itu.dk/people/anderssn/ex-sub-aff.tgz.

The current Celf implementation is at the time of writing version 2.6. It can
be downloaded from http://www.twelf.org/~celf.

1.6 About this thesis

This thesis has been written such that the chapters present a progression of
theoretical work with a common thread culminating in the Celf implementation,
but also in such a way that the individual chapters could be read independently.

Theorems that have been formalized in either Abella or Twelf are annotated
with references to their proofs in the corresponding source files.

A note about “I” vs. “we”: In our field of study it is common to write “we”
instead of “I”, either to refer to author and reader collectively, because of co-
authorship, or simply because of tradition. Apart from the front matter, the
conclusion, and this first chapter, I have thus written the entire thesis in the
plural style.
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Chapter 2

The λσ-Calculus and Strong
Normalization

2.1 Summary

In this chapter we show how a small restriction in the congruence rules of λσ
gives a strongly normalizing calculus, which is otherwise not strongly normal-
izing. In addition to general insight into the normalization properties of ex-
plicit substitution calculi, this result also provides a very flexible foundation for
the design of normalization procedures in any λ-calculus-based implementation,
such as logical frameworks and proof assistants, and in particular our logical
framework Celf.

The development in this chapter is formalized in the proof assistant Abella.
Each theorem is annotated with the corresponding Abella file and theorem
name. The Abella source files can be downloaded at http://www.itu.dk/

people/anderssn/exsub-sn.tgz. The proofs have also been made part of the
Abella example collection where they can be easily browsed: http://abella.

cs.umn.edu/examples/lambda-calculus/exsub-sn/.
This chapter has been separately published as a technical report [SN10].

2.2 Introduction

Consider the λ-calculus and its reduction semantics →β :

t ::= x | t1 t2 | λx. t

(λx. t1) t2 →β t1{t2/x}

As usual, terms are considered up to α-equivalence, and t1{t2/x} denotes the
capture-avoiding substitution of t2 for x in t1.

However, this form of substitution does not extend to meta-variables, since
we cannot resolve X{t/x} before we know the instantiation of X. Furthermore,
a decomposition of the substitution application into more atomic steps allows
for a more flexible and potentially more efficient implementation.

12



2.2. INTRODUCTION

The simplest approach to an internalization of substitution is to change
t1{t2/x} into an explicit substitution t1[t2/x]:

t ::= · · · | t1[t2/x]

and turn the definition of t1{t2/x} into reduction rules:

x[t/x]→ t (t1 t2)[t3/x]→ t1[t3/x] t2[t3/x]

y[t/x]→ y if x 6= y (λy. t1)[t2/x]→ λy. t1[t2/x] if x 6= y and y /∈ fv(t2)

along with the β-rule (λx. t1) t2 → t1[t2/x]. This explicit substitution calculus
is known as λx [Kes07, BR95].

However, without any way to compose substitutions, this calculus is not
confluent in the presence of meta-variables, and a naive addition of composition
rules breaks normalization.

Many different explicit substitution calculi have been proposed trying to
capture as many good properties as possible. Kesner gives a nice overview of
related work in [Kes07] and highlights six important and desirable properties of
explicit substitution calculi:

Confluence (C) Confluence of the reduction relation.

Meta-Confluence (MC) Confluence in the presence of meta-variables. This
can either refer to both term and substitution meta-variables or term
meta-variables alone.

Preservation of Strong Normalization (PSN) Any pure term that is strong-
ly normalizing with respect to→β is also strongly normalizing with respect
to →, where a pure term denotes an ordinary λ-term without any explicit
substitutions.

Strong Normalization (SN) Strong normalization of well-typed terms.

Simulation (SIM) The reduction relation → can simulate β-reduction, i.e.
t1 →β t2 implies t1 →∗ t2.

Full Composition (FC) For any t1 and t2 it holds that t1[t2/x]→∗ t1{t2/x}
for an appropriate extension of ordinary capture-avoiding substitution to
terms with explicit substitutions.

At least one very important property, which is crucial for implementation, is
missing from this list, namely:

Locality (L) The applicability of the reduction rules can be determined solely
from local information in the term.

As an example, all the rules of λx above are local, but the rule gc below, which
is known from several explicit substitution calculi [Kes07, BR95], is not, since
the side-condition cannot be achieved by α-conversion but must be checked by
traversing t1.

(gc) t1[t2/x]→ t1 if x /∈ fv(t1)

To our knowledge no explicit substitution calculus is known to have all of
these properties.
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2.3. THE λσ-CALCULUS

The λσ-calculus is a simple minimalistic explicit substitution calculus, which
has most of the properties we expect from an explicit substitution calculus (C,
SIM, FC, L), and it implements both β- and α-equality in a single uniform way
through the use of de Bruijn indices. It has already shown itself to be useful
for implementation and specification of higher-order unification [DHKP98] and
serves as the underlying calculus in Twelf.

However, λσ does not preserve strong normalization, i.e. a strongly normal-
izing λ-term might not be strongly normalizing as a λσ-term [Mel95]. Fur-
thermore, confluence of the system is fairly brittle as the introduction of meta-
variables can introduce non-confluence [CHL96]. We will address strong normal-
ization in this chapter and return to confluence in the presence of meta-variables
in chapter 3.

2.3 The λσ-calculus

The syntax of the λσ-calculus consists of terms and substitutions written in de
Bruijn notation:

Terms: M,N ::= 1 |M [s] | λM |M N

Substitutions: s, t ::= id | ↑ |M . s | s ◦ t

The variable 1 refers to the innermost λ-binder. Other variables are represented
with a closure and a sequence of shifts, e.g. 3 = 1[↑ ◦ ↑].

The intuition behind each of the substitution constructs is the following: A
term under an identity (id) is supposed to reduce to itself. A shift (↑) applied to
a term increments all freely occurring variables by one. An extension M . s will
substitute M for the variable 1, decrement all other freely occurring variables,
and then apply s to them. Finally, a composition of two substitutions s ◦ t
represents the substitution that first applies s and then t, i.e. M [s◦t] is supposed
to reduce to the same term as reducing each closure individually in M [s][t].

We will use ↑n where n ≥ 0 as a short-hand for n compositions of shift, i.e.
↑ ◦ (↑ ◦ (. . . ◦ (↑ ◦ ↑) . . .)), where ↑0 means id. Additionally, de Bruijn indices n
with n > 1 are short-hand for 1[↑n−1].

beta (λM) N → M [N . id]

clos-var 1[M . s] → M
clos-clos M [s][t] → M [s ◦ t]
clos-lam (λM)[s] → λ(M [1 . (s ◦ ↑)])
clos-app (M N)[s] → M [s] N [s]
clos-var-id 1[id] → 1

comp-id-L id ◦ s → s
comp-shift-id ↑ ◦ id → ↑
comp-shift ↑ ◦ (M . s) → s
comp-cons (M . s) ◦ t → M [t] . (s ◦ t)
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

Figure 2.1: Basic reduction rules
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2.3. THE λσ-CALCULUS

The reduction rules are shown in Figure 2.1. In addition to these rules we
are also going to include every possible congruence rule, i.e. we allow rewrites
to occur anywhere inside a term or substitution.

The rule beta corresponds to the ordinary β-step in the λ-calculus and in-
troduces an explicit substitution inside a closure. The rest of the rules are called
σ-rules and details how to evaluate closures and substitution compositions. The
fragment of the rules that excludes the beta rule is called the σ-fragment and
the corresponding relation is written →σ.

2.3.1 Variations of λσ

Several variations of λσ have been treated in the literature. The most important
distinction is whether or not we include term and substitution meta-variables.
In the presence of meta-variables the system presented above is not even locally
confluent, since the critical pair ((λM)N)[s] can reduce to both M [N [s] . s] and
M [N [s] . (s◦ id)]. Closing the critical pairs leads to the following four additional
rules:

comp-id-R s ◦ id → s
clos-id M [id] → M
var-shift 1 . ↑ → id
s-cons 1[s] . (↑ ◦ s) → s

The first two rules are the general right-identity rules and thus replace clos-
var-id and comp-shift-id. The var-shift and s-cons rules can be seen as
η-contraction rules on substitutions. The resulting system is easily seen to be
locally confluent by checking all the critical pairs.

Constants can be added to the calculus with just a single additional rule:

clos-const c[s] → c

We can also represent de Bruijn indices and sequences of shifts directly in
the syntax with the following five rules:

clos-var-dot2 (n+ 1)[M . s] → n[s]
clos-var-shift n[↑m] → n+m

comp-shift-dot ↑n+1 ◦ (M . s) → ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m → ↑n+m

eta-subst (n+ 1) . ↑n+1 → ↑n

These rules are essentially shortcuts in the sense that the first four can be
obtained by a sequence of the reduction steps shown in Figure 2.1 when n and
↑n are syntactic short-hands. It is also easy to check that the addition of the first
four rules suffices to evaluate all compositions and closures. These rules obsolete
clos-var-id, comp-shift-id, and comp-shift. The last rule generalizes var-
shift and corresponds to s-cons in the case when s = ↑n.

For now we will postpone further discussion of meta-variables. For the re-
mainder of this chapter we will therefore define λσ to be:

Terms: M,N ::= n | c |M [s] | λM |M N

Substitutions: s, t ::= ↑n |M . s | s ◦ t

where de Bruijn indices n have n ≥ 1 and shifts ↑n have n ≥ 0. The reduction
rules are given in Figure 2.2. We have excluded the two general right-identity
rules, as we can easily prove them admissible for the transitive closure:
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2.4. A NON-TERMINATING EXAMPLE

beta (λM) N → M [N . ↑0]

clos-const c[s] → c
clos-var-dot1 1[M . s] → M
clos-var-dot2 (n+ 1)[M . s] → n[s]
clos-var-shift n[↑m] → n+m
clos-clos M [s][t] → M [s ◦ t]
clos-lam (λM)[s] → λ(M [1 . (s ◦ ↑1)])
clos-app (M N)[s] → M [s] N [s]

comp-id-L ↑0 ◦ s → s
comp-cons (M . s) ◦ t → M [t] . (s ◦ t)
comp-shift-dot ↑n+1 ◦ (M . s) → ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m → ↑n+m

comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

eta-subst (n+ 1) . ↑n+1 → ↑n

Figure 2.2: Reduction rules

Theorem 2.3.1 (beta.thm:clos id ext). For all M and s we have M [↑0]→∗
M and s ◦ ↑0 →∗ s.

Proof. The proof is an easy mutual induction over M and s.

We have also omitted the general s-cons rule and only included eta-subst
in its place. The general s-cons rule is problematic in the sense that it is not
left-linear, so it is worth analyzing what it actually adds. It is easy to see that
any composition can reduce to either M .s or ↑n (a concrete reduction sequence
is given by Theorem 2.7.3 below). In these two cases s-cons gives us the two
reductions 1[M . s] . (↑1 ◦ (M . s))→M . s and 1[↑n] . (↑1 ◦ ↑n)→ ↑n. The former
can be achieved in two steps without s-cons, and the latter corresponds to eta-
subst. This shows that we do not lose any reduction sequences by excluding
the problematic s-cons in favor of eta-subst, and thus it is the better choice.

We are not going to say much about the congruence rules yet, so for now
we will just assume that we can perform any reduction step anywhere within a
term or substitution. We will return to this matter below in section 2.5.

2.4 A non-terminating example

Mellies showed in [Mel95] that the simply typed term

λv.(λx.(λy.y)((λz.z)x))((λw.w)v)

has an infinite reduction sequence in λσ. This is very counter-intuitive since the
ordinary simply typed λ-calculus is strongly normalizing and the σ-fragment of
λσ is also strongly normalizing [CHR92] (even on untyped terms).

We will sketch the idea of the counter-example here. Consider a β-redex
under a closure:

((λM) N)[s]
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2.5. REVISITING THE CONGRUENCE RULES

If we evaluate the redex first and then the substitution composition we arrive
at M [N [s].s]. If we instead begin by pushing the substitution through the
application we can get the following reduction sequence:

((λM) N)[s]→ (λM)[s] N [s]

→ (λM [1 . s ◦ ↑1]) N [s]

→M [1 . s ◦ ↑1][N [s] . ↑0]

→∗ M [N [s] . s ◦ (↑1 ◦ (N [s] . ↑0))]

Here we see a substitution s′ = ↑1 ◦ (N [s] . ↑0), which contains s, being applied
to s itself. Of course s′ can reduce in one step to ↑0, but if we carefully avoid
that specific reduction step and if s contains a β-redex then we can push s′

into s and through the redex in s and thus replicate the situation above with s′

instead of s. Now since s′ contains s and therefore also a β-redex we can keep
on doing this (see [Mel95] for all the details).

The term that we end up creating in this way consists of a sequence of
closures nested arbitrarily deep:

M [. . .M [. . .M [. . .M [. . .] . . .] . . .] . . .]

And consequently the reduction steps that we perform are similarly nested
deeper and deeper through an arbitrary number of closures and substitutions.

This also highlights the brittle nature of the counter-example. If we at any
time were to reduce any of the arising s′s to ↑0 the entire thing would normalize.
Thus we have an indication that a suitable minor tweak to the reduction strategy
will give us strong normalization (as opposed to the current non-deterministic,
everything-is-allowed reduction strategy).

2.5 Revisiting the congruence rules

Let us present the congruence rules that up until now have remained implicit:

M →M ′

M . s→M ′ . s

s→ s′

M . s→M . s′
s→ s′

s ◦ t→ s′ ◦ t
t→ t′

s ◦ t→ s ◦ t′

M →M ′

λM → λM ′
M →M ′

M N →M ′ N

N → N ′

M N →M N ′

M →M ′

M [s]→M ′[s]

s→ s′
(∗)

M [s]→M [s′]

If we get rid of the second congruence rule for closures (∗) then certainly we will
have a strongly normalizing calculus, but this is overly restrictive. If we instead
replace it by a version that only allows σ-steps then since the σ-fragment by
itself is strongly normalizing, we can hope for strong normalization. We are
therefore going to use the following congruence rule in place of (∗):

s→σ s
′

M [s]→σ M [s′]

The resulting rewrite system is indeed strongly normalizing for simply typed
terms as we will see below.
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2.6. STRONG NORMALIZATION OF λσ

c[e] → c 1[e1 . e2] → e1

(n+ 1)[e1 . e2] → n[e2] n[↑m] → n+m

e1[e2][e3] → e1[e2[e3]] (λe1)[e2] → λe1[1 . e2[↑1]]

(e1 . e2)[e3] → e1[e3] . e2[e3] ↑0[e] → e

↑n+1[e1 . e2] → ↑n[e2] ↑n[↑m] → ↑n+m

(n+ 1) . ↑n+1 → ↑n

e1 → e′1

e1[e2]→ e′1[e2]

e2 → e′2

e1[e2]→ e1[e′2]

e→ e′

λe→ λe′

e1 → e′1

e1 . e2 → e′1 . e2

e2 → e′2

e1 . e2 → e1 . e
′
2

Figure 2.3: Expression reduction rules

2.6 Strong normalization of λσ

The proof of strong normalization can be summarized to the following: Take
any reduction sequence and divide it into groups of σ-steps and applications of
beta. Since the σ-fragment is strongly normalizing we can focus on the beta
steps. If we relate each term to its σ-normal form then we can show that every
beta step corresponds to a regular β-reduction step in the λ-calculus, and we
therefore get preservation of strong normalization.

The complete proof is formalized in the proof assistant Abella. Below are
the central theorems along with references to the Abella source files.

2.6.1 Strong normalization of the σ-fragment

In [CHR92] the σ-fragment of λσ was proved strongly normalizing. The central
part of the proof consists of showing that if e is strongly normalizing then e[↑1]
is also strongly normalizing, where e is an expression (defined below). The proof
we give in this section share the same overall structure, but our proof of the
strong normalization of e[↑1] given strong normalization of e is greatly simplified
(Lemma 2.6.5 and Lemma 2.6.6 below).

In order to give a simpler proof of strong normalization of the σ-fragment,
we collapse the syntactic classes of terms and substitutions into a single class
called expressions:

Expressions: e ::= n | c | ↑n | e1[e2] | λe | e1 . e2

The set of reduction rules for expressions is given in Figure 2.3. We use the
following translation from terms and substitutions into expressions:

E(n) = n E(c) = c E(M [s]) = E(M)[E(s)]

E(λM) = λE(M) E(M N) = E(M) . E(N) E(↑n) = ↑n

E(M . s) = E(M) . E(s) E(s ◦ t) = E(s)[E(t)]
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2.6. STRONG NORMALIZATION OF λσ

It is easy to see that σ-reductions are preserved by the translation, and there-
fore strong normalization of expressions implies strong normalization of the
σ-fragment.

We shall write SN for the set of strongly normalizing expressions, and then
aim to prove e ∈ SN for all expressions e.

Strong normalization of the cases λe and e1 . e2 are fairly easy.

Lemma 2.6.1 (sigma-strong.thm:esn lam). If e ∈ SN then λe ∈ SN .

Lemma 2.6.2 (sigma-strong.thm:esn dot,esn dot inv). e1 .e2 ∈ SN if and
only if e1 ∈ SN and e2 ∈ SN .

Closures are a lot more difficult due to the rewrite (λe1)[e2]→ λe1[1 . e2[↑1]].
We will therefore split the proof depending on whether the given expressions
contain λs. We write the exclusion of λs from an expression e as λ /∈ e.1

Lemma 2.6.3 (sigma-strong.thm:esn clos nolam). If e1 ∈ SN , e2 ∈ SN ,
and λ /∈ e1 then e1[e2] ∈ SN .

These lemmas can be put together to prove strong normalization in the
absence of λs:

Theorem 2.6.4 (sigma-strong.thm:nolam esn). If λ /∈ e then e ∈ SN .

In order to prove the general statement we are going to need a version of
Lemma 2.6.3 without the restriction on e1. The tricky part is proving that
e2 ∈ SN implies e2[↑1] ∈ SN (and thus 1 . e2[↑1] ∈ SN ).

If we do an intuitive comparison between reduction sequences for e and e[↑1]
it seems that any reduction in e[↑1] either can be mimicked by a reduction in
e or consists of pushing the ↑1 through e. We will formalize this intuitive idea
by building a relation e

/∼ e′, such that e
/∼ e[↑1] for any e, and for any e′1 → e′2

with e1
/∼ e′1 then either e1

/∼ e′2 or e1 → e2 with e2
/∼ e′2. In the former case the

reduction e′1 → e′2 is intended to be one of the steps associated with pushing the
↑1 through the structure of the expression and thus the number of such steps
should be bounded by the structure of the expression. Given such a relation we
would get the desired lemma as a corollary to the fact that e ∈ SN and e

/∼ e′

implies e′ ∈ SN .
In order to build the relation such that it is closed under the conditions

stated above, we need it to contain e
/∼ e[e′] where e′ can be ↑1 and is closed

under at least 1 . · ◦ ↑1 and reduction. Instead of characterizing this class of
expressions we can simply take expressions without λ as we already know this
class to be in SN .

The relation is defined as follows:

c
/∼ c

λ /∈ e λ /∈ e′

e
/∼ e′

e2
/∼ e′2

e1[e2]
/∼ e1[e′2]

e1
/∼ e′1 e2

/∼ e′2

e1 . e2
/∼ e′1 . e′2

e
/∼ e′

λe
/∼ λe′

λ /∈ e′

e
/∼ e[e′]

e1
/∼ e′1 λ /∈ e2

e1[e2]
/∼ e′1[e2]

1The formalized proof represents the exclusion of λ by a predicate nolam. This predicate
also excludes constants to reduce the number of cases needed in the proofs, but it could just
as well have included them, and the general theorem is proved later anyway. Thus, whenever
we write λ /∈ e we will also exclude occurrences of constants in e.
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2.6. STRONG NORMALIZATION OF λσ

The following theorem states the desired simulation properties.

Lemma 2.6.5 (sigma-strong.thm:is esn rel under shift). If e0
/∼ e′0 then

there exists a k such that for all reductions e′0 → e′1 → · · · → e′n in n steps there
exists a sequence e0, e1, . . . , en such that

1. either ei → ei+1 or ei = ei+1 for 0 ≤ i < n,

2. ei
/∼ e′i for 0 ≤ i ≤ n, and

3. n ≥ k implies ei → ei+1 for some i.

It is noteworthy to consider how Lemma 2.6.5 is encoded in Abella. The
statement of the lemma is similar to strong normalization in the sense that
some limit k exists after which any reduction sequence will bottom out in some
way; in this case, have a corresponding reduction in the

/∼-related expression.
The Abella-encoding of SN is the following inductive definition:

e ∈ SN := ∀e′. e→ e′ ⊃ e′ ∈ SN

We can then give a similar, but slightly more complicated, inductive definition
of a relation SN [e] (denoted esn rel under shift in the formalization).

e′1 ∈ SN [e1] := e1
/∼ e′1 ∧ ∀e′2. e′1 → e′2 ⊃

(∃e2. e1 → e2 ∧ e2
/∼ e′2) ∨ e′2 ∈ SN [e1]

Lemma 2.6.5 can now be represented as the statement e
/∼ e′ ⊃ e′ ∈ SN [e].

By a nested induction on the strong normalization of e and the k from
Lemma 2.6.5 we get the following lemma:

Lemma 2.6.6 (sigma-strong.thm:exp under shift esn). If e ∈ SN and

e
/∼ e′ then e′ ∈ SN .

As an immediate corollary we get that e ∈ SN implies e[↑1] ∈ SN . This
gives us the desired version of Lemma 2.6.3 without the restriction on e1.

Lemma 2.6.7 (sigma-strong.thm:esn clos). If e1 ∈ SN and e2 ∈ SN then
e1[e2] ∈ SN .

Together Lemma 2.6.1, Lemma 2.6.2, and Lemma 2.6.7 give the strong nor-
malization theorem:

Theorem 2.6.8 (sigma-strong.thm:exp esn). Every expression is strongly
normalizing: e ∈ SN for all e.

And thus, we have strong normalization of the σ-fragment of λσ.

Theorem 2.6.9 (lambda-sigma.thm:tm sn su,sub sns su). The reduction re-
lation →σ is strongly normalizing for terms and substitutions.
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2.6. STRONG NORMALIZATION OF λσ

2.6.2 Confluence of the σ-fragment

With strong normalization we can easily prove confluence of the σ-fragment by
first proving local confluence.

Theorem 2.6.10 (conf.thm:local conf). The σ-fragment is locally confluent.

1. If M1 σ← M →σ M2 then there exists an M ′ such that M1 →∗σ M ′ ∗σ←
M2.

2. If s1 σ← s→σ s2 then there exists an s′ such that s1 →∗σ s′ ∗σ← s2.

Theorem 2.6.11 (conf.thm:conf tm,conf sub). The σ-fragment is conflu-
ent.

1. If M1
∗
σ← M →∗σ M2 then there exists an M ′ such that M1 →∗σ M ′ ∗σ←

M2.

2. If s1
∗
σ← s→∗σ s2 then there exists an s′ such that s1 →∗σ s′ ∗σ← s2.

Together confluence and strong normalization give us the existence of unique
σ-normal forms. We shall denote the σ-normal form of a term M or substitution
s as σ(M) and σ(s), respectively.

2.6.3 Preservation of strong normalization

With the σ-fragment covered, we turn our attention to the beta steps. Let →β

denote a beta step. Then the reduction relation → is the disjoint union of →σ

and →β . The σ-normal forms correspond to the ordinary lambda calculus, so
for such terms we can define ordinary β-reduction in the following way:

M ⇒β M
′ := M →β M

′′ ∧M ′ = σ(M ′′)

Preservation of strong normalization (PSN) is the property that strong nor-
malization of σ(M) with respect to⇒β implies strong normalization of M with
respect to →.

Our restriction of the congruence rules allows us to prove that beta steps
correspond to β-steps in the ordinary lambda calculus:

Theorem 2.6.12 (beta.thm:project beta). If M →β M ′ then σ(M) ⇒β

σ(M ′).

Together with confluence and strong normalization of the σ-fragment, we
immediately get PSN:

Theorem 2.6.13 (strong-norm.thm:psn). If σ(M) is strongly normalizing
with respect to ⇒β then M is strongly normalizing with respect to →.

2.6.4 Strong normalization of simply typed λσ

So far, we have only considered untyped terms and substitutions. So before we
can talk about strong normalization of well-typed terms and substitutions, we
need to introduce the type system. The typing rules are standard for λσ and
given in Figure 2.4.
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2.7. EXTENDING THE STRONG NORMALIZATION PROOF

Γ, A ` 1 : A

Γ ` n : A

Γ, B ` n+ 1 : A

Γ ` s : Γ′ Γ′ `M : A

Γ `M [s] : A

Σ(c) = A

Γ ` c : A

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ, A `M : B

Γ ` λM : A→ B

Γ ` ↑0 : Γ

Γ ` ↑n : Γ′

Γ, A ` ↑n+1 : Γ′

Γ `M : A Γ ` s : Γ′

Γ `M . s : Γ′, A

Γ ` t : Γ′′ Γ′′ ` s : Γ′

Γ ` s ◦ t : Γ′

Figure 2.4: Types for λσ

Theorem 2.6.14 (typing.thm:of step ext). Subject reduction.

1. If Γ `M : A and M →M ′ then Γ `M ′ : A.

2. If Γ ` s : Γ′ and s→ s′ then Γ ` s′ : Γ′.

Since well-typed σ-normal forms are exactly the simply typed lambda cal-
culus, we have the usual proof of strong normalization using a logical relation.
The Abella proof is adapted from Girard’s proof of strong normalization in the
example suite of Abella [Abeb].

Theorem 2.6.15 (beta-sn.thm:strong beta). Let M be a σ-normal form
with Γ `M : A. Then M is strongly normalizing with respect to ⇒β.

Now PSN (Theorem 2.6.13) gives us strong normalization of simply typed
terms:

Theorem 2.6.16 (strong-norm.thm:strong tm). If Γ ` M : A then M is
strongly normalizing with respect to →.

We can adapt the proof of Lemma 2.6.3 to prove strong normalization of
compositions. We will not have to consider λs in this case, since for terms we
can simply appeal to Theorem 2.6.16.

Lemma 2.6.17 (strong-norm.thm:sns clos). If Γ ` t : Γ′′, Γ′′ ` s : Γ′, and
s and t are strongly normalizing then s ◦ t is strongly normalizing.

As an immediate consequence we get strong normalization of substitutions:

Theorem 2.6.18 (strong-norm.thm:strong sub). If Γ ` s : Γ′ then s is
strongly normalizing.

2.7 Extending the strong normalization proof

So far we have achieved strong normalization with the restricted congruence
rule:

s→σ s
′

M [s]→σ M [s′]

22



2.7. EXTENDING THE STRONG NORMALIZATION PROOF

With Theorem 2.6.18 we showed that substitutions are strongly normalizing,
and it is therefore plausible that we could allow a single application of the
unrestricted congruence rule in each step without breaking strong normalization.
The intuition is that whenever we take a step inside a substitution we maintain
the overall structure of the term disregarding the contents of substitutions.
Thus, a nested induction on the strong normalization of the term and the strong
normalization of all substitutions occurring within the term could presumably
extend the strong normalization to this slightly more general reduction relation.

Going further, we can consider an extension of the reduction relation that
allows the unrestricted congruence rule at most k times in each step for some
fixed number k. As we saw in the counter-example, the non-terminating re-
duction sequence involved deeper and deeper nesting of beta steps using the
unrestricted closure congruence rule. This means that having such a fixed limit
k is still going to rule out this particular counter-example.

In this section we will formalize these ideas and prove the extended reduction
relation strongly normalizing on well-typed terms and substitutions, thereby
pushing the boundary of strong normalization right up to the limit set by the
counter-example.

We will in the following assume that every term and substitution is well-
typed.

2.7.1 The extended reduction relation

We will define a reduction relation
k−→ for each natural number k ≥ 0 that allows

k applications of the unrestricted congruence rule.
The reduction relation

k−→ is shown in its entirety in Figure 2.5. Notice that,
for k = 0 the relation coincides with our regular reduction relation

0−→ =→, and
of course a larger value of k allows more reductions

k−→ ⊂ k+1−−→.
We will denote the subrelation of

k−→ that uses one of the rules clos1 or
clos2 at least once as

k−→[]
2. The subrelation that uses neither clos1 nor clos2

is denoted
k−→6 []3, such that

k−→ =
k−→[] ∪

k−→6 []. Since
k−→6 [] is independent of the

value of k we will also write this relation as →6 [].

2.7.2 Strong normalization of the extended reduction re-
lation

We will prove
k−→ strongly normalizing for terms and substitutions by induction

on k. For k = 0 the relation is equal to → and therefore strongly normalizing
by Theorem 2.6.16 and Theorem 2.6.18.

In the following we will prove the induction step.
If we first consider

k+1−−→[] then every step uses clos1. And this relation
is therefore strongly normalizing by the simultaneous induction on the strong
normalization of every substitution occurring inside the term, since these sub-
stitutions are in turn strongly normalizing by the induction on k.

2Read
k−→[] as “k-step-closure”, the subscript closure brackets [] should remind you that

the reduction must happen inside a closure.
3Read

k−→6 [] as “k-step-no-closure”, the subscript crossed-over closure brackets 6 [] should
remind you that the reduction must not happen inside a closure.
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beta (λM) N
k−→ M [N . id]

clos-const c[s]
k−→ c

clos-var-dot1 1[M . s]
k−→ M

clos-var-dot2 (n+ 1)[M . s]
k−→ n[s]

clos-var-shift n[↑m]
k−→ n+m

clos-clos M [s][t]
k−→ M [s ◦ t]

clos-lam (λM)[s]
k−→ λ(M [1 . (s ◦ ↑1)])

clos-app (M N)[s]
k−→ M [s] N [s]

comp-id-L ↑0 ◦ s k−→ s
comp-cons (M . s) ◦ t k−→ M [t] . (s ◦ t)
comp-shift-dot ↑n+1 ◦ (M . s)

k−→ ↑n ◦ s
comp-shift-shift ↑n ◦ ↑m k−→ ↑n+m

comp-comp (s1 ◦ s2) ◦ s3
k−→ s1 ◦ (s2 ◦ s3)

eta-subst (n+ 1) . ↑n+1 k−→ ↑n

M
k−→M ′

M . s
k−→M ′ . s

s
k−→ s′

M . s
k−→M . s′

s
k−→ s′

s ◦ t k−→ s′ ◦ t

t
k−→ t′

s ◦ t k−→ s ◦ t′

M
k−→M ′

λM
k−→ λM ′

M
k−→M ′

M N
k−→M ′ N

N
k−→ N ′

M N
k−→M N ′

M
k−→M ′

M [s]
k−→M ′[s]

s
k−→ s′

clos1
M [s]

k+1−−→M [s′]

s→σ s
′

clos2
M [s]

0−→M [s′]

Figure 2.5: Reduction rules

Theorem 2.7.1 (strong-ext.thm:is sn1 clo,is sn1s clo). Assuming that
k−→ is strongly normalizing on substitutions, the relation

k+1−−→[] is strongly nor-
malizing on terms and substitutions.

Assume we haveM1
k+1−−→∗[] M2 and we wish to proveM2 strongly normalizing

with respect to
k+1−−→. Any

k+1−−→ step taken by M2 is either a
k+1−−→[] step or a

k+1−−→6 [] step. In the first case we again have M1
k+1−−→∗[] M ′2 with the same M1,

and this case cannot happen indefinitely since
k+1−−→[] is strongly normalizing.

In the second case we have M1
k+1−−→∗[] M2 →6 [] M ′2. Since the steps from M1

to M2 only occur inside substitutions and the step from M2 to M ′2 only occurs
outside substitutions, the idea is to prove that these two parts commute in some
sense. That is, if we could prove M1 → M ′1

k+1−−→∗[] M ′2 then we could appeal to
induction on the strong normalization of M1 with respect to →. Unfortunately
this is not always the case, but this idea will lead us to something similar, which
in the end will get us there.

One of the hard cases turns out to be 1[s1]
k+1−−→∗[] 1[M ′2 . s2] →6 [] M ′2 since

this only gives us s1
k−→∗ M ′2 . s2 to work with. To deal with this case (and

a few similar cases) we will introduce a weak head normalization function for
substitution compositions.
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The functions wcomp(s) and wcomp(n; s) compute a weak head normal form
of s and ↑n ◦ s, respectively. They are defined as follows and easily seen to be
total.

wcomp(s) = wcomp(0; s)
wcomp(n1; ↑n2) = ↑n1+n2

wcomp(0;M . s) = M . s
wcomp(n+ 1;M . s) = wcomp(n; s)
wcomp(n; s1 ◦ s2) = case wcomp(n; s1) of

↑n
′
⇒ wcomp(n′; s2)

M . s⇒M [s2] . (s ◦ s2)

Since wcomp plays a bit with the associativity of composition, the following
theorems are not entirely trivial, but nevertheless true.

Theorem 2.7.2 (strong-ext.thm:wcomp to msteps su0). If wcomp(n; s) =
s′ then ↑n ◦ s→∗σ s′.

Theorem 2.7.3 (strong-ext.thm:wcomp0 to msteps su0). If wcomp(s) = s′

then s→∗σ s′.

The definition of wcomp is designed to do as little as possible. In partic-
ular, for s1 ◦ s2 it avoids any reduction in s2 whenever possible. This means
that wcomp computes the least possibly reduced weak head normal form in a
sense made precise by the following theorem. In particular, any reduction to a
substitution s2 with wcomp(s2) = s2 factors through wcomp.

Theorem 2.7.4 (strong-ext.thm:commute wcomp mstep1). If s1
m−→∗ s2 then

wcomp(n; s1)
m+1−−−→∗ wcomp(n; s2).

Returning our attention to the case 1[s1]
m−→∗[] 1[M .s2]→6 [] M , we can apply

Theorem 2.7.4 to s1
m−→∗ M . s2 and thereby get a → reduction step of 1[s1] to

some M ′ with M ′
m+1−−−→∗ M . This deals with most of the otherwise problematic

cases and allows us to prove the following theorem.

Theorem 2.7.5 (strong-ext.thm:commute clo noc). If M1
m−→∗[] M2 →6 [] M3

then there exists an M such that M1 →+ M
m+1−−−→∗ M3.

Theorem 2.7.5 presents the following diagram:

M1 M2

M M3

m ∗
[]

+ m+ 1 ∗
6 []

Unfortunately, the bottom arrow is a general reduction sequence M
m+1−−−→∗ M3

and not a reduction sequence inside closures M
m+1−−−→∗[] M3. The reduction

sequence from M to M3 can be divided into
m+1−−−→[] steps and →6 [] steps, so if it

is not entirely consisting of
m+1−−−→[] steps, we can split it as M

m+1−−−→∗[] M4 →6 []
M5

m+1−−−→∗ M3 and apply Theorem 2.7.5 to the left half:
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2.7. EXTENDING THE STRONG NORMALIZATION PROOF

M M4

M ′ M5 M3

m+ 1 ∗
[]

+ m+ 2 ∗ m+ 1 ∗
6 []

We can repeat this construction on M ′
m+2−−−→∗ M3 and since M is strongly

normalizing with respect to → we will eventually reach M →+ M ′′
m′−−→∗[] M3

for some m′. Thus, we have strengthened Theorem 2.7.5 into:

Theorem 2.7.6 (strong-ext.thm:commute clo noc2). If M1
m−→∗[] M2 →6 []

M3 then there exists m′ and M such that M1 →+ M
m′−−→∗[] M3.

Now we can prove
k+1−−→ strongly normalizing for some given term M2 by a

nested induction on the strong normalization of M1 with respect to → and the
strong normalization of M2 with respect to

k+1−−→[] and the invariant M1
m−→∗[] M2

for some m.

Theorem 2.7.7 (strong-ext.thm:is sn1). If
k+1−−→[] is strongly normalizing

then
k+1−−→ is strongly normalizing for terms.

Is it easy to refit the proofs of Lemma 2.6.17 and Theorem 2.6.18 to yield
strong normalization for substitutions with respect to

k+1−−→ given strong nor-
malization for terms.

With Theorem 2.7.1 and Theorem 2.7.7 we now have all the pieces to finish
the induction on k and prove

k−→ strongly normalizing for all k.

Theorem 2.7.8 (strong-ext.thm:strong N). The reduction relation
k−→ is

strongly normalizing for well-typed terms and substitutions for all k ≥ 0.
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Chapter 3

Curry-Style Explicit
Substitutions for the Linear
and Affine Lambda Calculus

3.1 Summary

In this chapter we introduce a calculus of explicit substitutions for the λ-calculus
with linear, affine, and intuitionistic variables and meta-variables. Using a
Curry-style formulation, we redesign and extend previously suggested type sys-
tems for linear explicit substitutions. This way, we obtain a fine-grained context-
split-oblivious small-step reduction semantics suitable for efficient implementa-
tion. In particular, we avoid syntactic splitting of substitutions. We prove that
subject reduction, confluence, and termination holds. All theorems have been
formally verified in the Twelf proof assistant.

All theorems proven in this chapter have been formalized and mechani-
cally checked in the proof assistant Twelf. The formalized theorems are an-
notated with the corresponding source file in which the proof can be found.
The Twelf source files can be downloaded at http://www.itu.dk/people/

anderssn/ex-sub-aff.tgz.
This chapter has been separately published at IJCAR 2010 [SNS10a].

3.2 Introduction

When denoting a λ-term using de Bruijn indices, we usually use one of two
commonly accepted notation styles. Following Church, we encode the simply-
typed term λx : a. x (of type a→ a) as λ · : a. 1 where 1 refers to the innermost
binder occurrence. Following Curry, we simplify this encoding, omit the type
label, and write λ1. Church style encodings are a bit more verbose, but the
real disadvantage lies in the additional code that has to be written to keep
type labels up to date, for example in substitution application for dependently
typed λ-terms. Therefore, for a real implementation, the brevity of Curry-style
notation renders it preferable. However, in reality, it is not as easily adopted, in
part because one needs to be sure a priori that type labels are indeed irrelevant
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3.3. EXPLICIT SUBSTITUTIONS

or at the very least efficiently inferable whenever necessary using techniques
such as, for example, bidirectional type checking.

Further differences between the two notation systems become apparent when
we consider linear and affine λ-calculi. A linear λ-term binds a variable that
must be used in the body of the term exactly once, whereas an affine λ-term
binds a variable that can be used at most once.

Consider, for example, the term M ̂N (pronounced M linearly applied to
N) of type B in some context Γ. Given the standard formulation of the (
elimination rule

Γ1 `M : A( B Γ2 ` N : A
( E

Γ1,Γ2 `M ̂N : B

it seems impossible to derive how to split Γ into Γ1 and Γ2 without examining
the structure of M or N . Even worse, deriving the context split might be further
complicated if M or N contain meta-variables.

When working with explicit substitutions this poses a real problem, since
substitutions must correspond to the context they are substituting for. In par-
ticular, this means that the reduction (M ̂N)[s]→ M [s1] ̂N [s2] depends on
the context split.

The lack of information on how to split the context in the Curry-style en-

coding suggests that the alternative Church-style version M Γ̂1onΓ2 N is to be
preferred. This version, however, renders terms, types, and contexts mutually
dependent, which puts a significant additional burden on the implementation
effort. In fact, we suspect that the prospect of the unwieldy complexity is at
least in part responsible for that there exist only so few implementations of
substructural logical frameworks, theorem provers, and other linear logic based
systems.

The problem is not new but has been observed in the past. Cervesato et
al. [CdPR99] give a good overview and discuss various suggestions and their
shortcomings. But none of the suggestions are satisfactory as they are either
too cumbersome to be usable in practice or lack basic properties such as subject
reduction. Additionally, none of the suggestions scale to meta-variables.

In this chapter we demonstrate that Curry-style explicit substitutions can
be made to work. We define a type system for a linear and affine λ-calculus with
explicit substitutions and meta-variables together with a Curry-style reduction
semantics. We prove subject reduction, confluence, and termination for our
calculus. This means that we can guarantee type preservation of the reduction
(M ̂N)[s]→M [s] ̂N [s] without splitting the substitution, and that our cal-
culus therefore permits much more concise data structures in implementations
than previously suggested type systems for linear λ-calculi.

The main contributions in this chapter are the subject reduction and conflu-
ence theorems. Subject reduction is achieved by a novel type system allowing
controlled occurrence of garbage terms (see the rules typ-cons-ua and typ-
cons-ul in Figure 3.3). Confluence on terms with meta-variables is achieved by
a limited η-expansion of substitutions.

3.3 Explicit substitutions

We define a calculus of explicit substitutions for the linear and affine λ-calculus
by extending λσ, which was defined in chapter 2. In order to simplify the pre-
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sentation we restrict attention to the simply typed fragment. A generalization
to dependent types is direct, but omitted for presentation purposes. We will
sketch the extension to dependent types in section 3.6. Our calculus denotes
variables in de Bruijn notation, since it is closer to a real implementation, avoids
naming problems due to α-conversion, and highlights the nature of the explicit
substitutions.

Types: A,B ::= a | A & B | A( B | A −@ B | A→ B

Terms: M,N ::= 1f |M [s] | 〈M,N〉 | fstM | sndM | X[s]

| λ̂M | λ̊M | λM |M ̂N |M @N |M N

Substitutions: s, t ::= id | ↑ |Mf . s | s ◦ t
Linearity flags: f ::= I | A | L

Types consist of base types (a), additive pairs (A & B), linear functions
(A( B), affine functions (A −@ B), and intuitionistic functions (A→ B).

Terms consist of the various introduction and elimination forms for each of
the type constructs along with variable indices (1f ), meta-variables (X), and
closures (M [s]). Variables nf with n > 1 do not need to be included explicitly
in the syntax, since they can be represented by a closure as described below.
We require each meta-variable to be under a closure as it gives rise to more
uniform normal forms; an alternative would have been to add the “reduction”
rule X → X[id]. Meta-variables are also called logic variables. Variables are
marked with a flag that indicates whether they reference an intuitionistic, affine,
or linear assumption.

Substitutions are composed from identity (id), shifts (↑), intuitionistic (M I),
affine (MA), and linear (ML) extensions, and an explicit substitution compo-
sition. In the interest of readability we introduce a syntactic category f for
linearity flags.

Example 3.1. Consider the term (λ̂1L ̂ 2A)̂ 2I where we write 2f as a short-

hand for 1f [↑]. In a named representation, this term is written as (λ̂x. x̂y)̂ z.
The 1L refers to the variable bound by the λ̂, the 2A to the first free variable
(because it is in the scope of the λ̂), and the 2I to the second free variable. No-

tice how the linear flag L on the variable 1L matches up with the linear binder λ̂.
This kind of well-formedness will be enforced by the typing rules. Furthermore,
the de Bruijn representation specifies that the first free variable is affine and the
second is intuitionistic. Explicit substitutions are used to represent an interme-
diate stage during ordinary β-reduction. Our term reduces to (1L ̂ 2A)[2IL . id]
where the L flag in the substitution signifies that we are substituting the term
2I for a linear variable.

The intuition behind each of the substitution constructs is the following:
A term under an identity is supposed to reduce to itself. A shift applied to
a term increments all freely occurring variables by one. An extension Mf . s
will substitute M for the variable 1f

′
(the typing rules will ensure that f and

f ′ are equal), decrement all other freely occurring variables by one, and then
apply s to them. Finally a composition of two substitutions s ◦ t represents the
substitution that first applies s and then t, i.e. M [s ◦ t] is supposed to reduce
to the same term as reducing each closure individually in M [s][t].
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We will use ↑n where n ≥ 0 as a short-hand for n compositions of shift, i.e.
↑ ◦ (↑ ◦ (. . . ◦ (↑ ◦ ↑) . . .)), where ↑0 means id. Additionally, de Bruijn indices nf

with n > 1 are short-hand for 1f [↑n−1].

3.4 The type system

Before we get to the actual typing judgments we introduce contexts.

3.4.1 Contexts

Since we are using de Bruijn indices, contexts are simply ordered lists of types
without any names. Looking up a variable n in a context Γ amounts to selecting
the nth element of Γ. This means that the usual context splitting from named
versions of linear λ-calculus has to be redefined, as this would otherwise ruin
the meaning of de Bruijn variables. Essentially we have to introduce dummy
elements in the context whenever we split, in order to maintain the correct
position of every type in the context. These dummy elements are in some
presentations [CdPR99] written as Γ ,̂ . Alternatively, one may view this as
never actually splitting the context, but instead maintaining a bit-vector with
the same length as the context, which indicates whether each particular variable
is available.

For a concise representation we will superimpose the bit-vector signifying
availability on the context along with the information about whether the dec-
laration is linear, affine, or intuitionistic. This information is called a context
linearity flag.

Contexts: Γ ::= · | Γ, Al

Context linearity flags: l ::= f | UL | UA

The usual linear, affine, and intuitionistic assumptions are written as Γ, AL,
Γ, AA, and Γ, AI, respectively. We flag a declaration with UA to denote that
an affine assumption is not available, and similarly flag unavailable linear as-
sumptions with UL.

The standard definition of the context splitting judgment Γ = Γ1 on Γ2 (or
context joining judgment depending on the direction it is being read) is shown
in Figure 3.1.

We will introduce a couple of auxiliary definitions to do with context splitting
and context linearity flag management. Any context may be trivially split into
Γ = Γ on Γ′ by putting all affine and linear assumptions to the left. This means
that Γ′ will consist of only the intuitionistic parts of Γ. We will denote this by
Γ and make it into a separate definition.

· = · Γ, AI = Γ, AI Γ, AL = Γ, AUL Γ, AA = Γ, AUA

Γ, AUL = Γ, AUL Γ, AUA = Γ, AUA

We will need to make reference to the largest context that can split to a
given context. This is denoted Γ and defined easily by changing every UL to L
and UA to A.

· = · Γ, AI = Γ, AI Γ, AL = Γ, AL Γ, AA = Γ, AA
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join-nil
· = · on ·

Γ = Γ1 on Γ2
join-i

Γ, AI = Γ1, A
I on Γ2, A

I

Γ = Γ1 on Γ2
join-l-used

Γ, AUL = Γ1, A
UL on Γ2, A

UL

Γ = Γ1 on Γ2
join-l-L

Γ, AL = Γ1, A
L on Γ2, A

UL

Γ = Γ1 on Γ2
join-l-R

Γ, AL = Γ1, A
UL on Γ2, A

L

Γ = Γ1 on Γ2
join-a-used

Γ, AUA = Γ1, A
UA on Γ2, A

UA

Γ = Γ1 on Γ2
join-a-L

Γ, AA = Γ1, A
A on Γ2, A

UA

Γ = Γ1 on Γ2
join-a-R

Γ, AA = Γ1, A
UA on Γ2, A

A

Figure 3.1: Context splitting

Γ, AUL = Γ, AL Γ, AUA = Γ, AA

Additionally, we will need a predicate on contexts specifying that there are
no linear assumptions. We write this predicate as nolin(Γ) and it is defined to
be true iff no context linearity flag in Γ is L.

Notice that Γ = Γ implies nolin(Γ) whereas the opposite does not hold, since
nolin(Γ) does not preclude occurrences of A in Γ.

Finally, we need an affine weakening relation Γ �aff Γ′, which is defined as

Γ �aff Γ′ ≡ ∃Γ′′. Γ = Γ′′ on Γ′ ∧ nolin(Γ′′)

Notice that affine weakening is reflexive and transitive, as it merely amounts to
changing some number of As into UAs.

3.4.2 Types

The typing judgments for terms and substitutions are denoted Γ ` M : A and
Γ ` s : Γ′, respectively. The typing rules are shown in Figures 3.2 and 3.3. In
both cases the Γ describes the types and availability of the free variables, and in
the case of substitution typing, Γ′ describes the context that s substitutes for.

Each meta-variable X carries its own context ΓX and type AX as referenced
in the typing rule typ-metavar. This is equivalent to introducing a new con-
textual modal context [NPP08] of the form Ψ ::= · | Ψ, (X :: A in Γ). In order
to avoid clutter, we omit this additional context from the judgments, since it
would simply remain constant and be copied everywhere. Instead we keep the
lookup implicit by writing ΓX and AX to mean that X ::AX in ΓX is in Ψ.

The typ-cons-i, typ-cons-a, and typ-cons-l are the natural typing rules
for substitution extensions. A Church-style explicit substitution calculus would
then add two new syntactic substitution constructs, ⊥UL .s and ⊥UA .s, to cor-
respond to the contexts Γ′, AUL and Γ′, AUA with the following typing rules.

Γ ` s : Γ′
typ-cons-ul’

Γ ` ⊥UL . s : Γ′, AUL

Γ ` s : Γ′
typ-cons-ua’

Γ ` ⊥UA . s : Γ′, AUA
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nolin(Γ)
typ-var

Γ, Af ` 1f : A

Γ `M : A Γ ` N : B
typ-pair

Γ ` 〈M,N〉 : A & B

Γ `M : A & B
typ-fst

Γ ` fstM : A

Γ `M : A & B
typ-snd

Γ ` sndM : B

Γ, AL `M : B
typ-lam-l

Γ ` λ̂M : A( B

Γ, AA `M : B
typ-lam-a

Γ ` λ̊M : A −@ B

Γ = Γ1 on Γ2 Γ1 `M : A( B Γ2 ` N : A
typ-app-l

Γ `M ̂N : B

Γ = Γ1 on Γ2 nolin(Γ2) Γ1 `M : A −@ B Γ2 ` N : A
typ-app-a

Γ `M @N : B

Γ, AI `M : B
typ-lam-i

Γ ` λM : A→ B

Γ `M : A→ B Γ ` N : A
typ-app-i

Γ `M N : B

Γ ` s : Γ′ Γ′ `M : A
typ-clos

Γ `M [s] : A

Γ ` s : ΓX
typ-metavar

Γ ` X[s] : AX

Figure 3.2: Typing of terms

The application of these substitution constructs read as follows: do not substi-
tute anything for the variable 1 (since it does not occur), but decrement all free
variables by one and apply s. This approach has been tried before [GdPR00] but
yields the problem described in the introduction (section 3.2), i.e. the reduction
(M ̂N)[s]→M [s1] ̂N [s2] needs to split s according to the context split and
thus cannot be performed without this additional information.

Our solution to this problem is to reuse the syntax ML.s and MA.s where we
would expect ⊥UL . s and ⊥UA . s. The idea is then to perform the substitution
splitting on the typing judgments instead of the syntax — this is the crucial
switch from the Church-style approach to our Curry-style formulation. However,
we cannot reuse the typing rules typ-cons-ul’ and typ-cons-ua’, since this
would leave M untyped and prevent us from proving termination. And we
cannot just require M to be typed in some context, since M can potentially
violate linearity constraints. We therefore introduce a relaxed typing judgment
Γ `i M : A and get the typing rules typ-cons-ul and typ-cons-ua. This
relaxed judgment is similar to Γ ` M : A except that it makes all variables
available everywhere disregarding linearity and affineness, i.e. it can be obtained
by removing all nolin constraints and by replacing all the relations “Γ = Γ1 on
Γ2”, “Γ �aff Γ′”, and “Γ′ = Γ” by identity relations.

Example 3.2. Consider again the term (1L̂2A)[2IL.id] from Example 3.1. If we
follow the Church-style system sketched above, this term reduces to 1L[2IL . id]̂
2A[⊥UL . id], which in a few more steps reduces to the normal form 2Î1A. Note
that the two explicit substitutions are syntactically different. In our system, we
can however leave the substitution unchanged 1L[2IL .id]̂2A[2IL .id] and perform
splitting only on the type level using the rule typ-cons-ul defined in Figure 3.3.
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Γ �aff Γ′
typ-id

Γ ` id : Γ′

Γ �aff Γ′ l ∈ {I,A,UL,UA}
typ-shift

Γ, Al ` ↑ : Γ′

Γ = Γ1 on Γ2 Γ1 `M : A Γ2 ` s : Γ′
typ-cons-l

Γ `ML . s : Γ′, AL

Γ = Γ1 on Γ2 nolin(Γ1) Γ1 `M : A Γ2 ` s : Γ′

typ-cons-a
Γ `MA . s : Γ′, AA

Γ `i M : A Γ ` s : Γ′

typ-cons-ul
Γ `ML . s : Γ′, AUL

Γ `i M : A Γ ` s : Γ′
typ-cons-ua

Γ `MA . s : Γ′, AUA

Γ `M : A Γ ` s : Γ′
typ-cons-i

Γ `M I . s : Γ′, AI

Γ ` s2 : Γ′′ Γ′′ ` s1 : Γ′
typ-comp

Γ ` s1 ◦ s2 : Γ′

Figure 3.3: Typing of substitutions

The resulting normal form is of course the same.

The fact that this solves the problem and allows us to split type derivations
of substitutions without changing the actual syntactic substitution is shown in
Lemma 3.5.1.

Lemma 3.4.1 (int-typing-lemmas.elf:erase of,erase ofs).

1. If Γ `M : A then Γ `i M : A.

2. If Γ ` s : Γ′ then Γ `i s : Γ′.

Since affine assumptions can be weakened away at all leaves of a typing
derivation, we get the following weakening lemma:

Lemma 3.4.2 (weakening.elf).

1. If Γ1 `M : A and Γ2 �aff Γ1 then Γ2 `M : A.

2. If Γ1 ` s : Γ′ and Γ2 �aff Γ1 then Γ2 ` s : Γ′.

3. If Γ ` s : Γ′1 and Γ′1 �aff Γ′2 then Γ ` s : Γ′2.

3.5 Reduction semantics

The reduction rules defining the semantics are given in Figure 3.4. In order to
give a concise presentation of the congruence rules, we use Y LZM to denote an
expression Y with a hole in it, where the hole has been replaced by Z. Note
that this is completely syntactical and has no α-equivalence problems as we are
using de Bruijn indices.

Most reduction systems with explicit substitutions also include reductions
such as 1 . ↑ → id and 1[s] . (↑ ◦ s)→ s, and indeed without them (or something
similar) the system is not confluent. However, since these reductions essentially
are η-reductions on substitutions, it seems that they should really turn the
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beta-l (λ̂M) ̂N → M [NL . id]

beta-a (̊λM) @N → M [NA . id]
beta-i (λM) N → M [N I . id]
beta-fst fst〈M,N〉 → M
beta-snd snd〈M,N〉 → N

clos-var 1f [Mf ′ . s] → M
clos-clos M [s][t] → M [s ◦ t]
clos-metavar X[s][t] → X[s ◦ t]
clos-pair 〈M,N〉[s] → 〈M [s], N [s]〉
clos-fst (fstM)[s] → fst (M [s])
clos-snd (sndM)[s] → snd (M [s])

clos-lam-l (λ̂M)[s] → λ̂(M [1LL . (s ◦ ↑)])
clos-lam-a (̊λM)[s] → λ̊(M [1AA . (s ◦ ↑)])
clos-lam-i (λM)[s] → λ(M [1II . (s ◦ ↑)])
clos-app-l (M ̂N)[s] → M [s] ̂N [s]
clos-app-a (M @N)[s] → M [s] @N [s]
clos-app-i (M N)[s] → M [s] N [s]
clos-id M [id] → M

comp-id-L id ◦ s → s
comp-id-R s ◦ id → s
comp-shift ↑ ◦ (Mf . s) → s
comp-cons (Mf . s) ◦ t → M [t]f . (s ◦ t)
comp-comp (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

N → N ′
cong-tm-tm

MLNM→MLN ′M

s→ s′
cong-tm-sub

MLsM→MLs′M

M →M ′
cong-sub-tm

sLMM→ sLM ′M

t→ t′
cong-sub-sub

sLtM→ sLt′M

Figure 3.4: Reduction rules

other way, enabling us to η-expand substitutions. We will regain confluence by
allowing substitution expansion at meta-variables. This allows us to bound the
expansion by the context carried by the meta-variable, since this must match
the type of the substitution. The substitution expansion rules are given in
Figure 3.5 with the eta-sub rule extending the rules in Figure 3.4. Notice that
the eta-x-shifts-* rules are exactly s→ 1[s] . (↑ ◦ s) in the case where s = ↑n.

3.5.1 Type preservation

Lemma 3.5.1 (subst-lemmas.elf). Substitutions preserve context splits.

1. If Γ ` s : Γ′ and Γ′ = Γ′1 on Γ′2 then there exists Γ1 and Γ2 such that
Γ1 ` s : Γ′1, Γ2 ` s : Γ′2, and Γ = Γ1 on Γ2.

2. If Γ ` s : Γ′ and Γ′ = Γ′ on Γ′2 then there exists Γ2 such that Γ2 ` s : Γ′2
and Γ = Γ on Γ2.

34
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eta-x-shifts-i ↑n : Γ, AI →η (n+ 1)II . ↑n+1

eta-x-shifts-a ↑n : Γ, AA →η (n+ 1)AA . ↑n+1

eta-x-shifts-ua ↑n : Γ, AUA →η (n+ 1)AA . ↑n+1

eta-x-shifts-l ↑n : Γ, AL →η (n+ 1)LL . ↑n+1

eta-x-shifts-ul ↑n : Γ, AUL →η (n+ 1)LL . ↑n+1

s : ΓX →η s
′

eta-sub
X[s]→ X[s′]

s : Γ→η s
′

eta-x-i
M I . s : Γ, AI →η M

I . s′

s : Γ→η s
′

eta-x-a
MA . s : Γ, AA →η M

A . s′

s : Γ→η s
′

eta-x-ua
MA . s : Γ, AUA →η M

A . s′

s : Γ→η s
′

eta-x-l
ML . s : Γ, AL →η M

L . s′

s : Γ→η s
′

eta-x-ul
ML . s : Γ, AUL →η M

L . s′

Figure 3.5: Substitution expansion

3. If Γ ` s : Γ′ and nolin(Γ′) then nolin(Γ).

Notice that the second part of Lemma 3.5.1 is equivalent to the statement
that Γ ` s : Γ′ implies Γ ` s : Γ′. Also it might be tempting to try and prove
the second part from the first, but this does not work since Γ2 ` s : Γ′ does not
imply Γ2 = Γ2 due to the possible existence of affine assumptions in Γ2.

With this lemma we can now prove type-preservation:

Theorem 3.5.2 (preservation-thm.elf:pres,press,pres-expand sub).
The reduction relation → is type-preserving.

1. If Γ `M : A and M →M ′ then Γ `M ′ : A.

2. If Γ ` s : Γ′ and s→ s′ then Γ ` s′ : Γ′.

3. If Γ ` s : Γ′ and s : Γ′ →η s
′ then Γ ` s′ : Γ′.

3.5.2 σ-reduction

Before we prove confluence and termination of the entire calculus, we deal with
substitutions. This will allow us to reduce the confluence and termination proofs
to the case of the ordinary λ-calculus.

Consider the reduction relation without the beta-* rules. Just as we did in
chapter 2, we will call this sub-relation σ-reduction and denote it →σ. A term
or substitution that cannot σ-reduce is said to be in σ-normal form. We write
this as the postfix predicate 6→σ.

Theorem 3.5.3 (signf-exists.elf:snf1-exists,ssnf1-exists). σ-reduc-
tion is terminating.

1. For all terms M there exists a term M ′ such that M →∗σ M ′ and M ′ 6→σ.

2. For all substitutions s there exists a substitution s′ such that s→∗σ s′ and
s′ 6→σ.
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↑n ∼η ↑n
s ∼η s′ M 6→σ

Mf . s ∼η Mf . s′

s ∼η s′

s′ ∼η s

↑n+1 ∼η s

↑n ∼η (n+ 1)ff . s

Figure 3.6: η-equivalence of substitutions

Furthermore typed σ-reduction is confluent, which is equivalent to having
unique normal forms, since it is terminating.1

For typed terms M and substitutions s we will denote their unique σ-normal
forms σ(M) and σ(s), respectively.

Theorem 3.5.4 (signf-uniq.elf:sigma-conf,sigma-confs). Typed σ-reduc-
tion is confluent.

1. If Γ ` M : A, M →∗σ M1, and M →∗σ M2 then there exists a term M ′

such that M1 →∗σ M ′ and M2 →∗σ M ′.

2. If Γ ` s : Γ′, s→∗σ s1, and s→∗σ s2 then there exists a substitution s′ such
that s1 →∗σ s′ and s2 →∗σ s′.

Having confluence of σ-reduction gives us a lot of nice algebraic properties.
One of the most important properties for the formalizations of the proofs is
σ(σ(M [s])[t]) = σ(M [s ◦ t]), which shows that substitution composition indeed
behaves as expected. But since we have restricted η-conversions on substitutions
we get no immediate corollaries from σ-confluence concerning η-equivalences. To
remedy this we will first define η-equivalence on substitutions in σ-normal form
and then show that η-equivalent substitutions indeed behave identically. The
definition of η-equivalence is given in Figure 3.6. The following lemma shows
that ∼η is an equivalence relation on typed substitutions since symmetry is
given by definition.

Lemma 3.5.5 (signf-equiv.elf:equiv ssnf refl,equiv ssnf trans). Re-
flexivity and transitivity for η-equivalence of substitutions.

1. If s 6→σ then s ∼η s.

2. If Γ ` s1 : Γ′, Γ ` s2 : Γ′, Γ ` s3 : Γ′, s1 ∼η s2, and s2 ∼η s3 then
s1 ∼η s3.

Lemma 3.5.6 (signf-equiv.elf:expand2equiv). η-equivalence of substitu-
tions contains η-expansion.

If s : Γ→η s
′ and s 6→σ then s ∼η s′.

Theorem 3.5.7 (signf-equiv.elf:signf-equiv,ssignf-equiv). Substitu-
tions that are η-equivalent behave the same way with respect to σ-reduction.

If Γ′ `M : A, Γ′ ` t : Γ′′, Γ ` s : Γ′, Γ ` s′ : Γ′, and s ∼η s′ then:

1. σ(M [s]) = σ(M [s′])

2. σ(t ◦ s) ∼η σ(t ◦ s′)
1The reason why we need types is because confluence relies on η-expansion of substitutions.
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M

M1 f(M) M2

f(M1) f(M2)

M ′

R∗1 R∗1
R∗1

R∗1 R∗1
R∗2 R∗2

R∗2 R∗2

M

M1 σ(M) M2

σ(M1) σ(M2)

M ′

β∗β∗

β∗ β∗

Figure 3.7: Confluence by the interpretation method

3.5.3 Confluence and termination

Now we have the tools necessary to prove confluence of the entire reduction
relation.

Lemma 3.5.8 (Generalized Interpretation Method). Given two sets B ⊆ A,
reduction relations R1 and R2 on A and B, respectively, and a function f : A→
B such that:

1. R2 ⊆ R∗1.

2. ∀M ∈ A : M →∗R1
f(M).

3. ∀M,M ′ ∈ A : M →∗R1
M ′ ⇒ f(M)→∗R2

f(M ′).

Then confluence of R2 implies confluence of R1.

Proof. The proof is by simple diagram chasing as shown in Figure 3.7 on the
left.

To prove confluence of the entire reduction relation we use Lemma 3.5.8
with σ-normalization as the interpreting function f . As R2 we take ordinary
β-reduction on σ-normal forms, which in our case can be defined as one of
the beta-* rules followed by σ-normalization. The situation is illustrated in
Figure 3.7 on the right. First everything is σ-normalized, then σ-normalization
is shown to preserve β-reduction, and finally confluence of the usual λ-calculus
is used to conclude confluence of our calculus.

Theorem 3.5.9 (confluence.elf). The reduction relation → is confluent on
typed terms and substitutions.

1. If Γ `M : A, M →∗ M1, and M →∗ M2 then there exists a term M ′ such
that M1 →∗ M ′ and M2 →∗ M ′.

2. If Γ ` s : Γ′, s→∗ s1, and s→∗ s2 then there exists a substitution s′ such
that s1 →∗ s′ and s2 →∗ s′.
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Similarly we can also prove termination of → from termination of the usual
λ-calculus by σ-normalization.

Theorem 3.5.10 (nf-exists.elf:nf-exists,ns-exists). The reduction re-
lation → is terminating on typed terms and substitutions.

1. If Γ `M : A then there exists a term M ′ such that M →M ′ and M ′ 6→.

2. If Γ ` s : Γ′ then there exists a substitution s′ such that s→ s′ and s′ 6→.

The normal forms for the reduction relation → are called β-normal forms
and because of Theorems 3.5.9 and 3.5.10 we know that they exist and are
unique.

3.6 Dependent types

The presented calculus can easily be extended to dependent types [Muñ98],
since this extension is orthogonal to linear and affine types. We will sketch the
extension here.

The base types a and intuitionistic function types A → B are replaced by
type families a M1 . . .Mn and dependent functions ΠA.B. The type system
is extended with a judgment Γ ` A : type specifying that the type A is well-
formed in the context Γ and a well-formedness requirement on contexts stating
that whenever we form the context Γ, Al we must have Γ ` A : type. The system
is then tied together by the central invariant stating that whenever Γ ` M : A
then Γ ` A : type.

The typing rules of the system become slightly more complicated to account
for the objects occurring in the types. As an example of one of the updated
rules, consider typ-cons-l which becomes:

Γ = Γ1 on Γ2 Γ1 `M : A[s] Γ2 ` s : Γ′

deptyp-cons-l
Γ `ML . s : Γ′, AL

Notice that Γ1 = Γ2 and that Lemma 3.5.1 gives us Γ2 ` s : Γ′ to ensure that
A[s] is well-formed in the right context.

Theorems 3.5.9 and 3.5.10 extend to the dependently typed setting as well,
since the proofs can be reused after type erasure.
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Chapter 4

Pattern Unification for the
Lambda Calculus with
Linear and Affine Types

4.1 Summary

We define the pattern fragment for higher-order unification problems in lin-
ear and affine type theory and give a deterministic unification algorithm that
computes most general unifiers.

We then extend the algorithm to the linear-changing pattern fragment by a
procedure called linearity pruning to bridge the gap to the intuitionistic pattern
fragment.

A shortened version of this chapter has been separately published at LFMTP
2010 [SNS10b].

4.2 Introduction

Logic programming languages, type inference algorithms, and automated theo-
rem provers are all examples of systems that rely on unification. If the unifica-
tion problem has to deal with logic variables at higher type (functional type),
we speak of higher-order unification [Hue75]. Higher-order unification is in gen-
eral undecidable, but it can be turned decidable, if appropriately restricted to
a fragment. For example, Miller’s pattern fragment characterizes a first-order
fragment, for which unification is decidable [Mil91].

As substructural type theories are becoming more prevalent, for example, in
systems that need to represent consumable resources, higher-order unification
algorithms need to deal with logic variables at linear or affine type. Linear
and affine type theories refine intuitionistic type theory in the following way:
Besides intuitionistic assumptions, which can be referred to an arbitrary number
of times, linear and affine assumptions are treated as resources that must be
referred to exactly once and at most once, respectively.

As substructural type theories are mere refinements, one might erroneously
suspect that the standard intuitionistic pattern unification algorithm can be
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applied to this setting directly. This, unfortunately, is not the case. Consider
the following two linear unification problems, where we write, as usual, ̂ for
linear application and juxtaposition for intuitionistic application.

F ̂ x .
= c ̂ (H1 x) ̂ (H2 x) (4.1)

F ̂ x .
= c ̂ (H x) (4.2)

These examples take place in a context in which x is an intuitionistic variable.
However, the linear application on the left-hand side implies that the variable
must occur exactly once in any valid instantiation of F , but in (4.1) we cannot
know whether x should occur in H1 or H2. This additional problem over normal
intuitionistic higher-order unification is caused exactly by the interaction of
linear and intuitionistic variables. We solve this issue by imposing a separation
of linear, affine, and intuitionistic variables.

In this chapter, we refine the intuitionistic pattern fragment into a pattern
fragment for linear and affine type theory. We describe a unification algorithm
for this fragment and prove it correct. Furthermore, we show that in this frag-
ment most general unifiers exist. Finally, we extend the algorithm with a proce-
dure we call linearity pruning. This procedure goes beyond the pattern fragment
and treats equations such as (4.1) and (4.2) where variables may have to change
their status, for example from being affine to linear. Unification problems in
this linear-changing pattern fragment continue to be decidable. For example,
for (4.2) the algorithm finds the most general unifier, which is F = λ̂x. ĉ(Ĝx)
and H = λx.G ̂ x. Our focus in this chapter is finding unique most general
unifiers, and since (4.1) has a set of most general unifiers of size two, we are not
going to try to solve it. However, one could easily extend linearity pruning to
these cases by considering the finite number of context splits.

Previous approaches to higher-order linear unification have been restricted
to highly non-deterministic algorithms, such as the pre-unification by Cervesato
and Pfenning [CP97]. In contrast, our algorithm is completely deterministic,
and very well suited for implementation. It is the core algorithm of the Celf
system (chapter 6).

4.3 The explicit substitution calculus

4.3.1 Canonical forms

In chapter 3 we introduced a calculus of explicit substitutions for the λ-calculus
with linear, affine, and intuitionistic variables and logic variables. Along with
the calculus we introduced a type system and a reduction semantics, which was
proven to be type-preserving, confluent, and terminating. And in chapter 2
we also proved it strongly normalizing when reduction was disallowed inside
an arbitrary number of substitutions nested inside each other. We recall the
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nolin(Γ)

Γ, Af ` 1f ⇒ A

Γ ` nf ⇒ B l ∈ {I,A,UL,UA}

Γ, Al ` (n+ 1)f ⇒ B

Γ `M ⇒ a

Γ `M ⇐ a

Γ ` s : ΓX

Γ ` X[s]⇒ AX

Γ `M ⇐ A Γ ` N ⇐ B

Γ ` 〈M,N〉 ⇐ A & B

Γ `M ⇒ A & B

Γ ` fstM ⇒ A

Γ `M ⇒ A & B

Γ ` sndM ⇒ B

Γ, AL `M ⇐ B

Γ ` λ̂M ⇐ A( B

Γ = Γ1 on Γ2 Γ1 `M ⇒ A( B Γ2 ` N ⇐ A

Γ `M ̂N ⇒ B

Γ, AA `M ⇐ B

Γ ` λ̊M ⇐ A −@ B

Γ = Γ1 on Γ2 nolin(Γ2) Γ1 `M ⇒ A −@ B Γ2 ` N ⇐ A

Γ `M @N ⇒ B

Γ, AI `M ⇐ B

Γ ` λM ⇐ A→ B

Γ `M ⇒ A→ B Γ ` N ⇐ A

Γ `M N ⇒ B

Figure 4.1: Bidirectional typing of terms in canonical form

definition from chapter 3:

Types: A,B ::= a | A & B | A( B | A −@ B | A→ B

Terms: M,N ::= 1f |M [s] | 〈M,N〉 | fstM | sndM | X[s]

| λ̂M | λ̊M | λM |M ̂N |M @N |M N

Substitutions: s, t ::= id | ↑ |Mf . s | s ◦ t
Linearity flags: f ::= I | A | L
Contexts: Γ ::= · | Γ, Al

Context linearity flags: l ::= f | UL | UA

Each variable 1f is tagged with a flag signifying whether the variable is intuition-
istic, affine, or linear. We use ↑n where n ≥ 0 as a short-hand for n compositions
of shift, i.e. ↑ ◦ (↑ ◦ (. . . ◦ (↑ ◦ ↑) . . .)), where ↑0 means id. Additionally, de Bruijn
indices nf with n > 1 are short-hand for 1f [↑n−1]. The context linearity flags
and the corresponding assumptions in contexts are denoted intuitionistic (I),
affine (A), used affine (UA), linear (L), and used linear (UL).

In this chapter we will work exclusively with the corresponding calculus of
canonical forms and hereditary substitutions. This can be obtained simply by
viewing each term as a short-hand for its unique normal form and assuming that
everything is fully η-expanded. The resulting type system is shown in Figure 4.1
and Figure 4.2. We write Γ ` M : A as a shorthand for either Γ ` M ⇐ A or
Γ `M ⇒ A.

The intuitionistic part of a context Γ is formed by rendering all linear and
affine variables unavailable, which corresponds to changing the context linearity
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· ` ↑0 : ·

Γ ` ↑n : Γ′ l ∈ {I,A,UL,UA}

Γ, Al ` ↑n+1 : Γ′

Γ `M ⇐ A Γ ` s : Γ′

Γ `M I . s : Γ′, AI

Γ = Γ1 on Γ2 Γ1 `M ⇐ A Γ2 ` s : Γ′

Γ `ML . s : Γ′, AL

Γ `i M ⇐ A Γ ` s : Γ′

Γ `ML . s : Γ′, AUL

Γ = Γ1 on Γ2 nolin(Γ1) Γ1 `M ⇐ A Γ2 ` s : Γ′

Γ `MA . s : Γ′, AA

Γ `i M ⇐ A Γ ` s : Γ′

Γ `MA . s : Γ′, AUA

Figure 4.2: Typing of substitutions

flags from L to UL and A to UA. Similarly, the largest context that can split
to a given context is denoted Γ and constructed by changing every UL to L and
UA to A. The predicate nolin(Γ) specifies that no linear assumptions occur in
Γ, i.e. no flag in Γ is equal to L. The relaxed typing judgment Γ `i M : A is
similar to Γ ` M : A except that it makes all variables available everywhere
disregarding linearity and affineness.

Restricting ourselves to canonical forms while retaining the syntax of redices
and closures as short-hands for their corresponding normal forms induces equal-
ities corresponding to the rewrite rules of the original system. Similarly ↑n is
retained as a short-hand for its corresponding η-expanded form inducing the
equality ↑n = (n+ 1)ff . ↑n+1. The induced equalities are shown in Figure 4.3.
Additionally, the two typing rules for M [s] and s1 ◦ s2 from Figure 3.2 and
Figure 3.3, which are left out, are now simply admissible rules proving type
preservation of hereditary substitution:

Γ ` s : Γ′ Γ′ `M : A

Γ `M [s] : A

Γ ` s2 : Γ′′ Γ′′ ` s1 : Γ′

Γ ` s1 ◦ s2 : Γ′

4.3.2 Spine notation

We use spine notation [CP03] as a convenient short-hand for series of applica-
tions and projections. Spines are defined by the following grammar:

S ::= () |M ;S |M ;̊S |M ;̂ S | fst;S | snd;S
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1f [Mf . s] = M (λ̂M) ̂N = M [NL . id]

M [s][t] = M [s ◦ t] (̊λM) @N = M [NA . id]

X[s][t] = X[s ◦ t] (λM) N = M [N I . id]

〈M,N〉[s] = 〈M [s], N [s]〉 fst〈M,N〉 = M

(fstM)[s] = fst (M [s]) snd〈M,N〉 = N

(sndM)[s] = snd (M [s])

(λ̂M)[s] = λ̂(M [1LL . (s ◦ ↑)]) id ◦ s = s

(̊λM)[s] = λ̊(M [1AA . (s ◦ ↑)]) s ◦ id = s

(λM)[s] = λ(M [1II . (s ◦ ↑)]) ↑ ◦ (Mf . s) = s

(M ̂N)[s] = M [s] ̂N [s] (Mf . s) ◦ t = M [t]f . (s ◦ t)
(M @N)[s] = M [s] @N [s] (s1 ◦ s2) ◦ s3 = s1 ◦ (s2 ◦ s3)

(M N)[s] = M [s] N [s]

M [id] = M ↑n = (n+ 1)ff . ↑n+1

Figure 4.3: Equalities

The term M · S is short-hand for the term where all the terms and projections
in S are applied to M as follows:

M · () = M

M · (N ;S) = (M N) · S
M · (N̊ ;S) = (M @N) · S
M · (N ;̂ S) = (M ̂N) · S
M · (fst;S) = (fstM) · S
M · (snd;S) = (sndM) · S

We define S[s] to be the spine in which s is applied to each term in S. This
yields the equality (M · S)[s] = M [s] · S[s].

4.3.3 Instantiation of logic variables

We write [X ← N ]M for the instantiation of the logic variable X with term
N in term M . This means that all occurrences of X[s] · S are replaced by
N [s] · S. Note that the latter is a short-hand for its normal form. We will
assume that all instantiations are well-typed, i.e. we require that ΓX ` N : AX .
This requirement ensures that the resulting term [X ← N ]M is well-typed, by
induction on M and the subject reduction property of hereditary substitutions.

Theorem 4.3.1. If ΓX ` N : AX and Γ `M : A then Γ ` [X ← N ]M : A.

Theorem 4.3.1 is also called the contextual modal cut admissibility theorem
for linear and affine contextual modal logic.
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4.4 Patterns

The hallmark characteristic of the intuitionistic pattern fragment is the invert-
ibility of substitutions [DHKP98]. Our pattern fragment for the linear and
affine calculus that we are going to introduce next continues to guarantee this
important property.

4.4.1 The pattern fragment

Consider a substitution Γ ` af11 . . . a
fp
p . ↑n : Γ′. Assume that aj is a variable

n
f ′j
j . We say the substitution extension n

f ′jfj
j is linear if f ′jfj = LL, it is affine if

f ′jfj = AA, it is intuitionistic if f ′jfj = II, and it is linear-changing if f ′jfj = IL,
f ′jfj = IA, or f ′jfj = AL. Notice that the possibilities LI, AI, and LA cannot
occur in well-typed substitutions since this would imply referencing a linear or
affine assumption in an intuitionistic context or a linear assumption in an affine
context. This property of a variable in a substitution is called its mode.

Definition 4.4.1. A substitution Γ ` af11 . . . a
fp
p . ↑n : Γ′ is said to be a pattern

substitution if all the terms aj for j ∈ {1, . . . , p} are distinct de Bruijn indices
and none of them are linear-changing extensions in the substitution. A pattern
substitution is called a weakening substitution if the indices aj form an increasing
sequence.

Note that in a pattern substitution all de Bruijn indices are less than or
equal to n since n is equal to the length of Γ.

This definition is motivated by the need for a pattern substitution to have
a well-typed inverse (see section 4.4.3).

We define the extension of pattern substitution s by spine S, written as S . s:

() . s = s

(N ;S) . s = S . (N I . s)

(N̊ ;S) . s = S . (NA . s)

(N ;̂ S) . s = S . (NL . s)

(fst;S) . s = S . s

(snd;S) . s = S . s

This is motivated by the fact that S . s is the substitution that appears when
the logic variable X in X[s] ·S is lowered (lowering is explained below in 4.5.2).

Notice that we get the equality (S . s) ◦ t = S[t] . (s ◦ t) by induction on S.

Definition 4.4.2. A term M is said to be a pattern or within the pattern
fragment if all occurrences of logic variables X[s] · S satisfy the property that
the substitution S . s is a pattern substitution.

Recall example (4.1) from the introduction. In our system, the equation is
written as F [↑1] · (1I ;̂ ())

.
= c · (H1[↑1] · (1I; ()) ;̂ H2[↑1] · (1I; ()) ;̂ ()). We observe

that it is not a pattern since there is a linear-changing substitution extension
on the left-hand side in (1I ;̂ ()) . ↑1 = 1IL . ↑1.
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4.4.2 Stability of the pattern fragment

Most of the theorems below pertaining to the stability of the pattern frag-
ment are extensions of their intuitionistic counterparts, which can be found
in [DHKP98].

Lemma 4.4.3. If Γ ` s : Γ′ and Γ′ ` t : Γ′′ are pattern substitutions then the
following four substitutions are also pattern substitutions:

1. Γ, AI ` 1II . (s ◦ ↑) : Γ′, AI

2. Γ, AA ` 1AA . (s ◦ ↑) : Γ′, AA

3. Γ, AL ` 1LL . (s ◦ ↑) : Γ′, AL

4. Γ ` t ◦ s : Γ′′

Proof. Let s = af1f11 . . . a
fpfp
p . ↑n and t = bg1g11 . . . b

gqgq
q . ↑m. The substitutions

in 1, 2, and 3 are clearly pattern substitutions since

1ff . (s ◦ ↑) = 1ff . (a1 + 1)f1f1 . . . (ap + 1)fpfp . ↑n+1.

For the substitution in 4 we first notice that m = p, since both m and p are
equal to the length of Γ′.

t ◦ s = bg11 [s]g1 . . . bgqq [s]gq . ↑n = a
fb1g1
b1

. . . a
fbq gq
bq

. ↑n

Distinctness of the variables follows from distinctness in s and t, since two equal
variables abj = abi implies bj = bi, which in turn implies j = i.

The modes of the variables are also all either linear, affine, or intuitionistic
since their types are represented in all of Γ, Γ′, and Γ′′ and there are no linear-
changing variables in s or t.

Lemma 4.4.4. If t and S . s are pattern substitutions then so is S . (t ◦ s).

Proof. By induction on S and Lemma 4.4.3. We give only the case S = N ;S′

as the rest are either similar or trivial. Now 1II . (t ◦ ↑) and S′ . (N I . s) are
pattern substitutions, and the induction hypothesis therefore gives us that S′ .
((1II . (t ◦ ↑)) ◦ (N I . s)) is a pattern substitution, but now we are done since it
is also equal to S′ . (N I . (t ◦ s)) = (N ;S′) . (t ◦ s).

Lemma 4.4.5. If M is a pattern and s is a pattern substitution then M [s] is
a pattern.

Proof. By induction on M and Lemma 4.4.3. In the case M = X[t] · S we need
to prove that the normal form of S[s] . (t ◦ s) is a pattern substitution. But this
follows from Lemma 4.4.3 and the fact that (S . t) ◦ s = S[s] . (t ◦ s).

Lemma 4.4.6. If M is a pattern and S.s is a pattern substitution then M [s] ·S
is a pattern.

Proof. The proof is by induction on S. If M = nf · S′ then nf [s] · S′[s] · S is a
pattern by Lemma 4.4.5 on each term in S′[s]. The case S = () is also handled
by Lemma 4.4.5.
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If M = X[t] · S′ then we need to show that S . S′[s] . (t ◦ s) is a pattern
substitution. This follows from Lemma 4.4.4 and S.((S′ . t)◦s) = S.S′[s] .(t◦s).

If S = N ;S′ and M = λM ′ then

(λM ′)[s] · (N ;S′) = M ′[1II . (s ◦ ↑)][N I . id] · S′ = M ′[N I . s] · S′

which is a pattern by the induction hypothesis.
The two projection and pair cases are trivial and the two remaining cases

are similar to the one above.

Theorem 4.4.7. The pattern fragment is stable under logic variable instantia-
tion. I.e. for any patterns M and N , [X ← N ]M is a pattern.

Proof. By induction on M and Lemma 4.4.6.

Theorem 4.4.8. The pattern fragment is stable under inversion of substitu-
tions.

1. If s is a pattern substitution and M [s] is a pattern then M is a pattern.

2. If s is a pattern substitution and t ◦ s is a pattern substitution then t is a
pattern substitution.

Proof. The proof is by mutual induction on M and t using Lemma 4.4.3. The
interesting case is the substitution case. Let t = bg11 . . . b

gq
q . ↑p and s = af11 . . .

a
fp
p . ↑n.

t ◦ s = b1[s]g1 . . . bq[s]
gq . ↑n

The term bj [s] is a variable and bj is therefore also a variable. Since b1[s], . . . , bq[s]
are distinct variables then b1, . . . , bq are also distinct variables. Additionally,

there can be no linear-changing variables in t, since bj = if implies afii = kff

and thus gj 6= f implies a linear-changing variable in t ◦ s in the same posi-
tion.

4.4.3 Inversion of substitutions

Next, we define the inverse of a pattern substitution. The name is justified by
Theorem 4.4.11 below.

Definition 4.4.9. Let s = af11 . . . a
fp
p . ↑n be a pattern substitution. We define

its inverse to be s−1 = eg11 . . . egnn . ↑p where e
gj
j = ififi when ai = jfi and ej

is undefined otherwise. The undefined extensions e
gj
j are flagged intuitionistic,

affine, or linear in s−1 depending on the jth assumption in the codomain of s.

Notice first that the definition is well defined: the ais are distinct and less
than or equal to n. For the undefined ej one can think of an arbitrary term of
the right type, e.g. a freshly created logic variable.

Second, we see that inversion is stable under η, thereby allowing us to com-
pute inverses based on η-short short-hands for the actual canonical forms. This

is the case, since s = af11 . . . a
fp
p . ↑n and s′ = af11 . . . a

fp
p . (n+ 1)ff . ↑n+1 implies

s−1 = eg11 . . . egnn . ↑p and s′−1 = eg11 . . . egnn . (p+ 1)ff . ↑p+1, which are equal.
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In the following we will refer to affine weakening on contexts Γ �aff Γ′, which
was defined in chapter 3 as

Γ �aff Γ′ ≡ ∃Γ′′. Γ = Γ′′ on Γ′ ∧ nolin(Γ′′)

Recall that affine weakening is reflexive and transitive, as it merely amounts to
changing some number of As into UAs.

Lemma 4.4.10. For a pattern substitution Γ2 ` s : Γ′ there exists a Γ1 with
Γ2 �aff Γ1 such that Γ1 ` s : Γ′ and the inverse is well-typed with Γ′ ` s−1 : Γ1.

Proof. Let s = af11 . . .a
fp
p .↑n. Then Γ2 = ·, Bl

2
n
n , . . . , B

l21
1 and Γ′ = ·, Al

′
p
p , . . . , A

l′1
1 .

Intuitively we are going to take Γ1 to be the smallest possible such that s is
still well-typed, i.e. we are going to make all the affine assumptions that are not

used in s unavailable. More formally we are going to set Γ1 = ·, Bl
1
n
n , . . . , B

l11
1

where l1j = l2j when l2j ∈ {I,L,UL,UA}. When l2j = A the l1j will be defined
below.

Consider each extension afii = jfifi in s. Note that we have Ai = Bj . If
l′i = f where f is either I or L then we have fi = f and l2j = l1j = f . In the case

where l′i = UL then fi = L and l2j = l1j are either equal to UL or L, but since
all the variables in s are distinct it has to be UL. If l′i = A then fi = A and
l2j = A, and in this case we set l1j = A. Finally, if l′j = UA then fi = A and l2j
is either UA or A. If l2j = UA then l1j is also equal to UA, and if l2j = A then

we can set l1j = UA since j does not occur anywhere else in s. This means that

for all defined extensions ej = ifi in s−1 we have l′i = l1j .

The remaining B
l2j
j s for which there are no ai = jfi are all shifted away by the

↑n part of s. Therefore none of them can be linear, and if any of them are affine,
i.e. have l2j = A, we set l1j = UA. This means that all the undefined extensions

in s−1 correspond to intuitionistic, used linear, or used affine assumptions in
Γ1, and we see that s−1 indeed is well-typed with Γ′ ` s−1 : Γ1.

Theorem 4.4.11. Given a pattern substitution Γ ` s : Γ′, we have Γ′ ` s◦s−1 :
Γ′ and s ◦ s−1 = id.

Proof. Let s = af11 . . . a
fp
p . ↑n. Since ai = jfi then the jth extension in s−1 is

equal to ifi , and thus ai[s
−1] = ifi for all i.

We have the usual definition of occurrence, rigid occurrence, and flexible
occurrence written as ∈, ∈rig, and ∈flex respectively. These relations are only
defined for canonical forms in which all logic variables are of base type (lowering
will achieve this). Occurrence is defined as ∈ = ∈rig ∪ ∈flex. Rigid occurrence
and flexible occurrence are defined as follows, where we write ∈o for either rigid
or flexible occurrence.

n ∈rig n
f

n ∈rig s

n ∈flex X[s]

ai = nf

n ∈rig a
f1
1 . . . afpp . ↑m

n ∈o Mi

n ∈o 〈M1,M2〉

n+ 1 ∈o M

n ∈o λ̂M

n+ 1 ∈o M

n ∈o λ̊M

n+ 1 ∈o M

n ∈o λM
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n ∈o M

n ∈o fstM

n ∈o M

n ∈o sndM

n ∈o Mi

n ∈o M1 ̂M2

n ∈o Mi

n ∈o M1 @M2

n ∈o Mi

n ∈o M1 M2

If n ∈flex M then the definition implies that there exists some logic variable

X[af11 . . . a
fp
p . ↑m] in M beneath k lambdas such that (n + k)fi = ai. In this

case we say that n occurs in the ith argument of X.

Lemma 4.4.12. Linearity implies occurrence.

1. Let Γ ` s : Γ′ be a pattern substitution and the nth assumption in Γ be
linear. Then n occurs in s.

2. Let Γ ` M : A be a pattern and let the nth assumption in Γ be linear.
Then n occurs in M .

Proof. If s = af1f11 . . . a
fpfp
p . ↑m then we must have n = ai for some ai since a

linear assumption cannot be shifted away. The second case is by induction on
M .

Definition 4.4.13. Given the typing of a substitution Γ ` s : Γ′ we will call it
strong if there exists no Γ′′ 6= Γ′ such that Γ′′ �aff Γ′ and Γ ` s : Γ′′.

For a pattern substitution ·, Blnn , . . . , B
l1
1 ` a

f1
1 . . . a

fp
p . ↑n : ·, Al

′
p
p , . . . , A

l′1
1

we see that it is strong if and only if for each affine variable ai = jA we have
l′i = UA implies lj = UA.

Consider the split of a strong pattern substitution Γ ` s : Γ′ over a context
split Γ′ = Γ′1 on Γ′2 into Γ1 ` s : Γ′1 and Γ2 ` s : Γ′2 with Γ = Γ1 on Γ2. For any
used affine assumption in Γ′1 the assumption is either affine or used affine in Γ′

and Γ′2. If it is used affine then the corresponding assumption is also used affine
in Γ and thereby Γ1. If it is affine then the corresponding assumption has to
be affine in Γ2 and is thereby used affine in Γ1. This means that Γ1 ` s : Γ′1 is
strong and by symmetry so is Γ2 ` s : Γ′2.

Theorem 4.4.14. Let Γ ` s : Γ′ be a pattern substitution and Γ ` M : A be a
term in which all logic variables are of base type.

1. If there exists a term Γ′ `M ′ : A such that M = M ′[s] then every variable
occurring in M also occurs in s.

2. If the typing Γ ` s : Γ′ is strong and every variable occurring in M also
occurs in s then there exists a term Γ′ `M ′ : A such that M = M ′[s].

Proof. Part 1 is by induction on the normal form of M ′.
Part 2 is by induction on M where we as remarked above note that context

splits preserve a strong typing of s. It is also easy to see that a strong typing of
s implies a strong typing of 1ff . (s ◦ ↑) when going beneath a lambda-binder.

For the base case M = nf we get that n ∈ s implies that the nth assumption
in Γ corresponds to an assumption, say the mth, in Γ′. Now, we can take
M ′ = mf , and since s is strong, availability of the nth assumption in Γ implies
availability of the mth assumption in Γ′ and thus that M ′ is well-typed. The
base case M = X[t] is similar, when noting that the shift at the end of s is equal
to the shift at the end of t, since they are both equal to the length of Γ.

Theorem 4.4.14 states that occurrence is a conservative approximation of the
set of variables occurring in any instantiation of a term, i.e. if n ∈ [X ← N ]M
then n ∈M . The opposite is not necessarily true.
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4.5 Pattern unification

4.5.1 Unification problem

A unification problem P is a conjunction of unification equations, and a solution
to a unification problem is an instantiation of the logic variables such that all
equations are satisfied. Such a collection of logic variable instantiations will be
written as θ and we say that θ solves P . In this section we describe an algorithm
that returns “no” if no such solution exists or a most general unifier otherwise,
i.e. a solution that all other solutions are refinements of.

More formally, we write Γ ` M1
.
= M2 : A for a unification equation or

simply M1
.
= M2 with the implicit understanding that both terms have the

same type in the same context. Unification equations are symmetric and we
will implicitly switch from M1

.
= M2 to M2

.
= M1 when needed. Unification

problems are given by the following grammar, where T is the solved unification
problem and F is the unification problem with no solutions.

P ::= T | F | P ∧ (Γ `M1
.
= M2 : A)

For convenience we generalize unification equations to spines and write S1
.
= S2

as a short-hand for the argumentwise conjunction of unification equations (see
Decomposition in section 4.5.2).

4.5.2 Unification algorithm

The unification algorithm consists of a set of transformation rules of the form
P 7→ P ′. We will see that the repeated application of these rules to any pat-
tern unification problem will eventually terminate resulting in either F, which
indicates that the original problem has no solution, or T, which indicates that
all equations have been solved and that a most general unifier has been found.
In this case the most general unifier is a mapping from logic variables to their
instantiations as computed during the execution of the algorithm.1

The unification algorithm is given in Figure 4.4 and each rule is explained in
detail below. For convenience we write the decomposition of a term M into one
of its subterms N and the surrounding term with a hole M ′L·M as M = M ′LNM.

Decomposition

Consider a unification equation Γ ` M1
.
= M2 : A and assume that A is not a

base type.
If A = B ( C then we must have M1 = λ̂M ′1 and M2 = λ̂M ′2. In this case

M1 is equal to M2 under some θ if and only if M ′1 is equal to M ′2 under θ and
we therefore apply dec-lam-l. The other non-base type cases for A are similar
and give rise to dec-lam-a, dec-lam-i, and dec-pair.

If A is a base type then M1 = H1 ·S1 and M2 = H2 ·S2 where H1 and H2 are
either variables or logic variables. The case of logic variables is handled below.
We therefore have nf · S1

.
= mf ′ · S2. If n 6= m then no θ can make the two

1The instantiated logic variables could be represented explicitly in the unification problem,
but we have chosen to represent them implicitly in order to get a cleaner presentation of the
algorithm.
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dec-lam-l P ∧ λ̂M1
.
= λ̂M2 7→ P ∧M1

.
= M2

dec-lam-a P ∧ λ̊M1
.
= λ̊M2 7→ P ∧M1

.
= M2

dec-lam-i P ∧ λM1
.
= λM2 7→ P ∧M1

.
= M2

dec-pair P ∧ 〈M1, N1〉
.
= 〈M2, N2〉 7→ P ∧M1

.
= M2 ∧N1

.
= N2

dec-atomic-eq P ∧ nf · S1
.
= nf · S2 7→ P ∧ S1

.
= S2

dec-atomic-neq P ∧ nf · S1
.
= mf ′ · S2 7→ F

if n 6= m

lower-lolli P 7→ [X ← λ̂Y [id]]P
if AX = A ( B and Y is a fresh logic variable with AY = B
and ΓY = ΓX , A

L

lower-affarr P 7→ [X ← λ̊Y [id]]P
if AX = A −@ B and Y is a fresh logic variable with AY = B
and ΓY = ΓX , A

A

lower-arr P 7→ [X ← λY [id]]P
if AX = A → B and Y is a fresh logic variable with AY = B
and ΓY = ΓX , A

I

lower-and P 7→ [X ← 〈Y [id], Z[id]〉]P
if AX = A & B and Y and Z are fresh logic variables with
AY = A, AZ = B, ΓY = ΓX , and ΓZ = ΓX

occurs-check P ∧X[s]
.
= nf · SLX[t]M 7→ F

pruning-fail P ∧X[s]
.
= M 7→ F

if n /∈ s and n ∈rig M

pruning P ∧X[s]
.
= M 7→ [Y ← Z[w]](P ∧X[s]

.
= M)

if n /∈ s, n occurs flexibly in M in the ith argument of the logic
variable Y , w = weaken(ΓY ; i), and Z is a fresh logic variable
with AZ = AY and ΓZ = ΓY ÷ i

ctx-pruning P 7→ [X ← Y [w]]P

if ΓX = ·, Alpp , . . . , Al11 with ln ∈ {UA,UL}, w = weaken(ΓX ;n),
and Y is a fresh logic variable with AY = AX and ΓY = ΓX ÷n

instantiation P ∧X[s]
.
= M 7→ [X ←M [s−1]]P

if X does not occur in M , ΓX contains no used affine assump-
tions, and n ∈M implies n ∈ s

intersection-eq P ∧X[s]
.
= X[s] 7→ P

intersection-fail P ∧X[s]
.
= X[t] 7→ F

if s 6= t and s ∩ t does not exist

intersection P ∧X[s]
.
= X[t] 7→ [X ← Y [s ∩ t]]P

if s 6= t, s∩t exists, and Y is a fresh logic variable with AY = AX
and ΓY equal to the domain of the weakening substitution s∩ t

Figure 4.4: Pattern unification rules
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equal and we can therefore apply dec-atomic-neq. If n = m then the spines
must unify and we apply dec-atomic-eq where P ∧ S1

.
= S2 is defined as:

P ∧ ()
.
= () = P

P ∧ (M1;S1)
.
= (M2;S2) = P ∧M1

.
= M2 ∧ S1

.
= S2

P ∧ (M1̊;S1)
.
= (M2̊;S2) = P ∧M1

.
= M2 ∧ S1

.
= S2

P ∧ (M1 ;̂ S1)
.
= (M2 ;̂ S2) = P ∧M1

.
= M2 ∧ S1

.
= S2

P ∧ (fst;S1)
.
= (fst;S2) = P ∧ S1

.
= S2

P ∧ (snd;S1)
.
= (snd;S2) = P ∧ S1

.
= S2

P ∧ (fst;S1)
.
= (snd;S2) = F

P ∧ (snd;S1)
.
= (fst;S2) = F

No other cases can occur because n = m trivially imply that they have the same
type.

Lowering

When a logic variable occurs in a unification problem in the form X[s] ·S with a
non-empty spine, we know that AX cannot be a base type. And since canonical
forms of non-base type have unique head constructors, we can safely instantiate
X to that particular constructor. This is accomplished by the rules lower-*.
Therefore we can assume that all logic variables are of base type.

Occurs check

Consider a unification equation of the form X[s]
.
= M . If X also occurs in the

right-hand side then either M = nf · SLX[t]M or M = X[t]. The latter case
is handled below in the Intersection section. In the former case we have the
equation X[s]

.
= nf ·SLX[t]M. Since a pattern substitution t applied to any term

can never alter the shape of the term but only rename variables, this equation
has no solutions, and we can apply occurs-check.

Pruning

When we have X[s]
.
= M then Theorem 4.4.14 tells us that under some θ solving

the equation, variables that do not occur in s cannot occur in M . Assume that
n /∈ s and n ∈ M . If n ∈rig M then no instantiation of logic variables can
get rid of the occurrence and we apply pruning-fail. If on the other hand
n ∈flex M then the occurrence is in the ith argument of some logic variable Y .
This means, however, that no instantiation of Y in a solution can contain i. By
Lemma 4.4.12 we know that n cannot refer to a linear assumption in the context
in which X[s] and M are typed and therefore the ith assumption in ΓY cannot
be linear.2 Let w be the weakening substitution weaken(ΓY ; i) where weaken is
defined as:

weaken(Γ, Al; 1) = ↑ if l 6= L
weaken(Γ, AI; i+ 1) = 1II . weaken(Γ; i) ◦ ↑
weaken(Γ, Al; i+ 1) = 1AA . weaken(Γ; i) ◦ ↑ if l ∈ {A,UA}
weaken(Γ, Al; i+ 1) = 1LL . weaken(Γ; i) ◦ ↑ if l ∈ {L,UL}

2Notice that this argument relies on the fact that Y is under a pattern substitution and
thus has no linear-changing extensions.
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Define Γ÷ i to be the context Γ with the ith assumption removed. We see that
Γ ` weaken(Γ; i) : Γ ÷ i. Furthermore, this is a strong typing. Since the ith
assumption in ΓY is not linear then w = weaken(ΓY ; i) does indeed exist.

Theorem 4.4.14 tells us that Y has to be instantiated to something on the
form M ′[w] and we can therefore apply pruning.

Context pruning

If a logic variable X is declared in context ΓX = ·, Alpp , . . . , Al11 with ln ∈
{UA,UL}, we know that n cannot occur in a well-typed instantiation of X.
Therefore, by Theorem 4.4.14, X has to be instantiated to something on the
form M [weaken(ΓX ;n)] and we can therefore apply ctx-pruning.

Note that pruning the context of X in this way in the case of X[s]
.
= M may

allow further pruning in M . Additionally, repeated applications of this step will
ensure that no used affine assumptions occur in the context of logic variables.
Therefore all typings of the associated substitutions are strong.

Instantiation

Consider the unification equation X[s]
.
= M where all used affine assumptions

have been pruned from ΓX and the typing of s therefore is strong. If all n ∈M
also occur in s then Theorem 4.4.14 tells us thatM is equal toM ′[s] for someM ′.
By Theorem 4.4.11 we know that M ′ is equal to M [s−1] and we can therefore
instantiate X by the rule instantiation provided that X does not occur in M .

Intersection

The final case is when we have X[s]
.
= X[t]. If s = t then the equation will be

trivially satisfied no matter what term X might be instantiated to, so we can
simply remove the equation by the rule intersection-eq.

Consider an instantiation of X to some M . If for all n ∈ M we have
n[s] = n[t] then the equation is clearly satisfied. If on the other hand there
is some n ∈ M such that n[s] 6= n[t] then the two sides of the equation will
not be equal. Therefore any variable n for which n[s] 6= n[t] cannot occur in
an instantiation of X. If such an n is linear then Lemma 4.4.12 tells us that n
has to occur in all instantiations and we can conclude that there is no solution
and apply intersection-fail. Otherwise, any instantiation of X has to be on
the form M ′[s∩ t] for some M ′ where s∩ t is defined as the following weakening
substitution:

Mf . s ∩Mf . t = 1ff . (s ∩ t) ◦ ↑
nff . s ∩mff . t = (s ∩ t) ◦ ↑ if n 6= m and f ∈ {I,A}
↑n ∩ ↑n = id

Note that s ∩ t exists exactly when n[s] = n[t] for all linear n. The domain of
s ∩ t is seen to be ΓX with those assumptions removed for which n[s] 6= n[t].

This step is summarized by the rule intersection.

4.5.3 Correctness

Correctness of the unification algorithm has three parts: preservation, progress,
and termination.
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Theorem 4.5.1. The unification algorithm solves all pattern unification prob-
lems correctly.

1. If P 7→ P ′ then the set of solutions to P is equal to the set of solutions to
P ′.

2. If P has unsolved equations (i.e. P is not equal to F or T) then there exists
a P ′ such that P 7→ P ′.

3. The unification algorithm terminates.

Proof. The discussion above in section 4.5.2 proves preservation of solutions (1)
and progress (2). For termination (3) we will consider the lexicographic ordering
of

1. The total size of all types of all logic variables occurring in the unification
problem.

2. The total size of all contexts of the logic variables occurring in the unifi-
cation problem.

3. The total size of all terms in the unification problem.

We see that the decomposition rules dec-* decrease (3) while keeping (1) and
(2) constant. The lowering rules lower-* and instantiation decrease (1). The
intersection-eq rule decreases (3) while keeping (1) and (2) constant. The
pruning, ctx-pruning, and intersection rules decrease (2) while keeping (1)
constant.

4.6 Linearity pruning

Within the pattern fragment we know that most general unifiers exist and we
have a decidable algorithm for finding them. For practical applications, how-
ever, it is often necessary to relax the pattern restriction and accept that the
algorithm sometimes returns left-over unification problems. Reed [Ree09], for
example, describes the dynamic intuitionistic pattern fragment that postpones
any unification equation as constraints that cannot be solved immediately.

In this section we will relax the restriction of pattern substitutions from Def-
inition 4.4.1 to linear-changing pattern substitutions permitting linear-changing
extensions, greatly expanding the applicability of our unification algorithm. If
a unification equation involving linear-changing pattern substitutions cannot be
resolved with a most general unifier, it is simply postponed as a constraint. In-
stead of just returning T or F, the unification algorithm using linearity pruning
may thus fail with leftover constraints.

4.6.1 Revisiting variable occurrence

In order to handle linear-changing extensions in substitutions we first need to
revisit the notion of variable occurrence that was defined in section 4.4.3. So
far, occurrences have been divided into two categories; rigid and flexible. We
will need to make further distinctions into a total of 12 categories.
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pruning-fail P ∧X[s]
.
= M 7→ F

if n /∈ s and either n ∈rig M or n ∈flex,L M

pruning P ∧X[s]
.
= M 7→ [Y ← Z[w]](P ∧X[s]

.
= M)

if n /∈ s, n occurs flexibly in M in the ith argument of the
logic variable Y , w = weaken(ΓY ; i) exists, and Z is a fresh logic
variable with AZ = AY and ΓZ = ΓY ÷ i

Figure 4.5: Modified pruning rules

We say that an occurrence is in an intuitionistic position in a term if the
term can be written as MLnf · S · (N ;S′)M such that the occurrence is within
N . If an occurrence is not in an intuitionistic position and the term can be
written as MLnf · S · (N̊ ;S′)M such that the occurrence is within N we say that
it is in an affine position. If an occurrence is neither in an intuitionistic position
nor in an affine position we say that it is in a linear position. This means that
intuitionistic positions are precisely those positions in a term in which top-level
affine and linear assumptions are not available. Similarly, affine positions are
those in which top-level affine assumptions are available but the linear are not.
Finally, linear positions are those where all top-level assumptions are available.

When an n occurs flexibly in a term M , i.e. it occurs in the ith argument of
some logic variable X, there are five possibilities for the ith assumption in ΓX ;
it can be intuitionistic, affine, used affine, linear, or used linear. We say that n
occurs in an intuitionistic argument if the ith assumption in ΓX is intuitionistic,
we say that it occurs in an affine argument if the ith assumption in ΓX is affine,
and we say that it occurs in a linear argument if the ith assumption in ΓX
is linear. We will write this as n ∈flex,I M , n ∈flex,A M , and n ∈flex,L M ,
respectively. Occurrences where the ith assumption in ΓX is either used affine
or used linear are not relevant, since context pruning will have removed them
(see rule ctx-pruning in Figure 4.4).

This gives a total of 12 categories of occurrence, since any occurrence is either
in an intuitionistic, affine, or linear position and it is either a rigid occurrence
or a flexible occurrence in an intuitionistic, affine, or linear argument.

If we at any time are forced to prune a variable occurring in a linear argument
we can simply fail, since the reason for pruning implies that the variable cannot
occur in the given place but the linear typing tells us that it will. Consider the
case X[s]

.
= M with n /∈ s and n ∈M . Since we have widened the fragment we

are considering to include linear-changing pattern substitutions it is now possible
that n ∈flex,L M . This was previously impossible since if every substitution is
a pattern then n ∈flex,L M implies that n is linear which in turn implies n ∈ s.
The pruning and pruning-fail rules therefore has to be modified slightly in
this case as shown in Figure 4.5.

4.6.2 Linear-changing pattern substitutions

Definition 4.6.1. A linear-changing pattern substitution s is called a linear-
changing identity substitution if it is on the form:

1f1f
′
1 . 2f2f

′
2 . . . nfnf

′
n . ↑n
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or equivalently that it is η-equivalent to id except for some number of linear-
changing extensions.

Theorem 4.6.2. Linear-changing identity substitutions are injective.
Given M , M ′, and a linear-changing identity substitution s, then M [s] =

M ′[s] implies M = M ′.

Proof. The substitution s simply changes the linearity flags in M and M ′ from
L to A or I or from A to I on those variables that are linear-changing in s and
it is therefore trivially injective.

Theorem 4.6.3. A linear-changing pattern substitution can be decomposed into
a pattern substitution and a linear-changing identity substitution.

If s is a linear-changing pattern substitution then there exists a pattern sub-
stitution s′ and a linear-changing identity substitution t such that s = s′ ◦ t.

Proof. Take s′ to be s with all linear-changing extensions AL and IL changed to
linear extensions and all linear-changing extensions IA changed to affine exten-
sions and t to be a linear-changing identity substitution with the corresponding
linear-changing extensions.

Theorem 4.6.4. Let s be a linear-changing identity substitution with exactly
one linear-changing extension nff

′
and M be some term.

1. If the linear-changing extension is ff ′ = IL then there exists an M ′ such
that M = M ′[s] if and only if the following five properties hold:

(a) n occurs in M .

(b) There are no occurrences of n in intuitionistic or affine positions in
M .

(c) For all subterms 〈M1,M2〉 of M under k lambdas n+k occurs in M1

if and only if it occurs in M2.

(d) For all subterms M1 ̂M2 of M under k lambdas n+ k occurs in at
most one of M1 and M2.

(e) All flexible occurrences of n in M are in linear arguments.

2. If the linear-changing extension is ff ′ = IA then there exists an M ′ such
that M = M ′[s] if and only if the following three properties hold:

(a) There are no occurrences of n in intuitionistic positions in M .

(b) For all subterms M1 ̂M2 and M1 @M2 of M under k lambdas n+k
occurs in at most one of M1 and M2.

(c) All flexible occurrences of n in M are in linear or affine arguments.

3. If the linear-changing extension is ff ′ = AL then there exists an M ′ such
that M = M ′[s] if and only if the following four properties hold:

(a) n occurs in M .

(b) There are no occurrences of n in affine positions in M .

(c) For all subterms 〈M1,M2〉 of M under k lambdas n+k occurs in M1

if and only if it occurs in M2.
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(d) All flexible occurrences of n in M are in linear arguments.

Proof. By induction on M noting that each of the three sets of properties are
precisely the occurrence requirements for, respectively, linear variables, affine
variables, and linear variables known to adhere to the affine occurrence require-
ments.

Theorem 4.6.4 tells us when there exists an M ′ such that M = M ′[s] for a
linear-changing identity substitution s with a single linear-changing extension.
As a corollary we get the conditions when s is a general linear-changing iden-
tity substitution. The existence of M ′ is equivalent to the conjunction of the
requirements for each linear-changing extension, since we can decompose any
linear-changing identity substitution s with k linear-changing extensions into
s = s1 ◦ s2 ◦ · · · ◦ sk where each si is a linear-changing identity substitution with
exactly one linear-changing extension.

4.6.3 Linearity pruning

Consider the following unification equation where s is a linear-changing pattern
substitution:

Γ ` X[s]
.
= M : B

We cannot invert s directly but we can decompose it by Theorem 4.6.3 into a
pattern substitution s′ and a linear-changing identity substitution t changing
the problem to:

Γ ` X[s′][t]
.
= M : B

In this case we perform a number of pruning steps on the right-hand side since
in any solution the M must adhere to the requirements in Theorem 4.6.4. We
will consider each linear-changing extension nff

′
in t individually.

The entire algorithm is given in Figures 4.6 and 4.7 and each rule is explained
below.

Since many of the rules rely on pruning, we extend our language of unification
problems with the constraint prune(n;M) to simplify the presentation. This
constraint states that n cannot occur in M in a solution. If this is already the
case then the rule prune-finish removes it. If n occurs either rigidly or flexibly
in a linear argument in M then no instantiation of logic variables can get rid
of the occurrence, and therefore there are no solutions. The rule prune-fail
covers this case. If there are flexible occurrences in either intuitionistic or affine
arguments then we can safely prune them away with the rule prune.

Position-based pruning

The variable n cannot occur in any intuitionistic position. Furthermore, if
f ′ = L then n also cannot occur in affine positions. These occurrences can
therefore be pruned away with the rules int-pos and aff-pos.

Pruning at multiplicative context splits

We will now consider all linear applications M1 ̂M2 and all affine applications
M1 @ M2 in the term M and compare occurrences in M1 and M2, as these
positions are where the context is split multiplicatively.
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int-pos P ∧X[s]
.
= M 7→ P ∧X[s]

.
= M ∧ prune(n+ k;N)

if nff
′

is a linear-changing extension in s and n occurs in an
intuitionistic position in M in the subterm N under k lambdas

aff-pos P ∧X[s]
.
= M 7→ P ∧X[s]

.
= M ∧ prune(n+ k;N)

if nfL is a linear-changing extension in s and n occurs in an
affine position in M in the subterm N under k lambdas

prune-fail P ∧ prune(n;M) 7→ F
if n ∈rig M or n ∈flex,L M

prune P ∧ prune(n;M) 7→ [Y ← Z[w]](P ∧ prune(n;M))
if n occurs in the ith argument of the logic variable Y in M , the
argument is either intuitionistic or affine, w = weaken(ΓY ; i),
and Z is a fresh logic variable with AZ = AY and ΓZ = ΓY ÷ i

prune-finish P ∧ prune(n;M) 7→ P
if n /∈M

multiplicative P ∧X[s]
.
= M 7→ P ∧X[s]

.
= M ∧ prune(n+ k;M2)

if nIf
′

is a linear-changing extension in s, n + k occurs either
rigidly or flexibly in a linear argument in M1, and n+ k occurs
in M2, where either M1 ̂M2, M2 ̂M1, M1 @M2, or M2 @M1

is a subterm of M beneath k lambdas

additive P ∧X[s]
.
= M 7→ P ∧X[s]

.
= M ∧ prune(n+ k;M2)

if nfL is a linear-changing extension in s, n + k /∈ M1, and
n + k ∈ M2, where 〈M1,M2〉 or 〈M2,M1〉 is a subterm of M
beneath k lambdas

int-strengthen P ∧X[s]
.
= M 7→ [Y ← Z[t]](P ∧X[s]

.
= M)

if nIf
′

is a linear-changing extension in s, n occurs flexibly in
M in the ith argument of the logic variable Y , the argument is
intuitionistic, t = linweaken(i; IA), and Z is a fresh logic variable
with AZ = AY and ΓZ = strengthen(ΓY ; i; IA)

aff-strengthen P ∧X[s]
.
= M 7→ [Y ← Z[t]](P ∧X[s]

.
= M)

if nAL is a linear-changing extension in s, n occurs flexibly in
M in the ith argument of the logic variable Y , the argument is
affine, t = linweaken(i; AL), and Z is a fresh logic variable with
AZ = AY and ΓZ = strengthen(ΓY ; i; AL)

no-occur P ∧X[s]
.
= M 7→ F

if nfL is a linear-changing extension in s and n /∈M

Figure 4.6: Linearity pruning
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int-aff-invert P ∧X[s]
.
= M 7→ P ∧X[s′]

.
= M ′

if nIf
′

is a linear-changing extension in s, there are no occur-
rences of n in intuitionistic positions in M , for all subterms
M1 ̂ M2 and M1 @ M2 of M under k lambdas n + k occurs
in at most one of M1 and M2, and all flexible occurrences of n
in M are in linear or affine arguments; s′ and M ′ are given by
s = s′ ◦ t and M = M ′[t] where t = linweaken(n; IA)

aff-lin-invert P ∧X[s]
.
= M 7→ P ∧X[s′]

.
= M ′

if nAL is a linear-changing extension in s, n occurs in M , there
are no occurrences of n in affine positions in M , for all subterms
〈M1,M2〉 of M under k lambdas n+ k occurs in M1 if and only
if it occurs in M2, and all flexible occurrences of n in M are
in linear arguments; s′ and M ′ are given by s = s′ ◦ t and
M = M ′[t] where t = linweaken(n; AL)

Figure 4.7: Linearity pruning

For any multiplicative context split the variable should only occur in one
of the branches by Theorem 4.6.4. A multiplicative split with rigid or linear
argument occurrences in one of the branches therefore allows us to prune any
occurrences in the other branch with the rule multiplicative, and if this is
impossible due to rigid or linear argument occurrences in both branches, we
conclude that there is no solution by following up with prune-fail.

We can restrict the multiplicative rule to the case where f = I, since
ff ′ = AL implies that n already occurs in at most one of the branches at each
multiplicative split.

Pruning at additive context splits

Similarly, we consider all pairs 〈M1,M2〉 in the term M , i.e. the places where
the context is split additively.

If f ′ = L then the variable n must occur in either both branches of the
additive split or in none of them. An additive split without occurrences in one
of the branches therefore allows us to prune any occurrences in the other branch,
which is done in the additive rule.

Strengthening intuitionistic variables

Consider the case when f = I, i.e. n is intuitionistic, and consider some flexible
occurrence of n in an intuitionistic argument, say the ith, of some logic variable
Y in M . If f ′ = L then we do not necessarily know whether this particular
occurrence should be pruned away or strengthened to a linear occurrence, but
in either case, and also if f ′ = A, we can safely strengthen the ith assumption
of Y from intuitionistic to affine. Let t = linweaken(ΓY ; i; IA) and Z be a fresh
logic variable with AZ = AY and ΓZ = strengthen(ΓY ; i; IA), where linweaken
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and strengthen are defined as follows:

linweaken(Γ, Af ; 1; ff ′) = 1ff
′

linweaken(Γ, AI; i+ 1; ff ′) = 1II . linweaken(Γ; i; ff ′) ◦ ↑
linweaken(Γ, Al; i+ 1; ff ′) = 1AA . linweaken(Γ; i; ff ′) ◦ ↑ if l ∈ {A,UA}
linweaken(Γ, Al; i+ 1; ff ′) = 1LL . linweaken(Γ; i; ff ′) ◦ ↑ if l ∈ {L,UL}

strengthen(Γ, Af ; 1; ff ′) = Γ, Af
′

strengthen(Γ, Al; i+ 1; ff ′) = strengthen(Γ; i; ff ′), Al

Note that Γ ` linweaken(Γ; i; ff ′) : strengthen(Γ; i; ff ′) when the ith assumption
in Γ is Af and ff ′ is either IA, IL, or AL. When referring to linweaken we will
sometimes leave out the context and simply write linweaken(i; ff ′) as Γ can be
inferred from the codomain of the substitution.

We can now instantiate Y to Z[t] as shown in the int-strengthen rule.
When we cannot apply this rule anymore, and we furthermore cannot apply

any of the pruning steps described above, then either M satisfies the three
conditions of part 2 of Theorem 4.6.4 or else there is some subterm M1 ̂M2 or
M1 @M2 with flexible occurrences in both M1 and M2. In the latter case there
is really not much we can do.3 In the former case, we can write the equation
X[s]

.
= M as X[s′][t]

.
= M ′[t] where t = linweaken(n; IA). Since t is injective

this equation simplifies to X[s′]
.
= M ′, which corresponds to changing every

occurrence of nI to nA. This is summarized by the rule int-aff-invert.

Strengthening affine variables

Consider now the case when ff ′ = AL, i.e. n is affine. Since we at this
point know that n occurs affinely but should occur linearly, no more prun-
ing will be necessary. This means that any flexible occurrence of n in an affine
argument, say the ith, of some logic variable Y in M can be strengthened
to a linear occurrence. Thus, as is summarized in the aff-strengthen rule
we instantiate Y to Z[t], where Z is a fresh logic variable with AZ = AY ,
ΓZ = strengthen(ΓY ; i; AL), and t = linweaken(ΓY ; i; AL).

Since we know that n is supposed to be linear then it should also occur. If
it does not, we can fail with the rule no-occur.

If none of the rules no-occur, aff-pos, additive, or aff-strengthen apply
then nAL satisfies the four properties of part 3 of Theorem 4.6.4 and we can
strengthen n from affine to linear using aff-lin-invert.

Example 4.1. As an example we sketch how the algorithm solves equation (4.2)
supposing that it has already been lowered.

F1[1IL . ↑] .= c ̂H1[1II . ↑] 7→ F1[1IL . ↑] .= c ̂H2[1IA . ↑]
7→ F1[1AL . ↑] .= c ̂H2[1AA . ↑]
7→ F1[1AL . ↑] .= c ̂H3[1AL . ↑]
7→ F1[1LL . ↑] .= c ̂H3[1LL . ↑]

The last equation is a pattern, which can be solved directly. Along the way we
got the instantiations H1 ← H2[1IA . ↑] and H2 ← H3[1AL . ↑].

3If we instead of a most general unifier were looking for the set of most general unifiers
then we could easily enumerate the different possible solutions by introducing a disjunction
and then either prune the variable from M1 or M2.

59



4.6. LINEARITY PRUNING

4.6.4 Correctness

The discussion above relies heavily on Theorem 4.6.4 and proves that the algo-
rithm preserves solutions. It is therefore easily possible to generalize part 1 of the
Correctness Theorem 4.5.1 to the version of the unification algorithm including
linearity pruning. Termination (part 3) also holds for the extended algorithm
with a slight elaboration of the termination ordering. When calculating the size
of a term we will order the linearity flags I > A > L because with this ordering,
the strengthening rules int-strengthen, aff-strengthen, int-aff-invert, and
aff-lin-invert decrease unification problems in size. Furthermore, we require
that every introduction of the prune(·; ·) constraint is followed by a sequence
of prune steps followed by a prune-fail or prune-finish step. When the in-
troduction and elimination of the prune(·; ·) constraint are seen together as one
step then the combined result always reduces the termination measure, since
prune(n;M) only is introduced if n occurs in M .

However, since the extended algorithm can get stuck on certain equations
with a “don’t know”, we have to accept that progress, as it is stated in part 2
of the theorem, no longer holds. In these cases we can simply report a set of
leftover constraints, each of which require strengthening of some intuitionistic
variable that occurs flexibly in multiple parts of the right-hand side.

4.6.5 Algorithmic linearity pruning

Now we demonstrate how linearity pruning can be implemented in a bottom-up
manner by giving an algorithmic version of the abstract algorithm from above
(Figures 4.6 and 4.7).

The algorithmic linearity pruning is trivially sound with respect to the ab-
stract linearity pruning, as every step is derived directly from the non-deter-
ministic linearity pruning rules. We conjecture that completeness also holds for
all practical purposes. However, since we are considering the logic variables in a
bottom-up manner instead of globally, it is possible to construct corner cases, in
which the abstract algorithm gives an answer while the concrete implementation
gives a “don’t know”. If this turns out to be an issue in practice, then one can
simply rerun the algorithm as long as the answer is “don’t know” and as long
as progress is being made (i.e. variables are being pruned). This will achieve
completeness with respect to the non-deterministic algorithm, since termination
holds.

The implementation-ready algorithm is shown in Figures 4.8, 4.9, and 4.10.
We use a call-by-value pseudo-code with pattern matching in the style of SML
and keep it mostly pure except for four specific side-effects, which make the
presentation a lot easier. The four side-effects are failure, instantiation of logic
variables, creation of logic variables, and a single flag called postpone, which
can be set and read.

Failure is treated as an exception, i.e. whenever we reach a Fail we abort
the entire computation. Instantiation of logic variables is a global effect, which
instantiates all occurrences in the entire unification problem. Creation of new
logic variables with type A and context Γ is written new(A, Γ).

An important notion in the implementation is abstracted occurrences. They
are defined as follows:

α ::= 0 | R | F(1) | F(2)
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lininvert(X[af11 . af22 . . . a
fi−1

i−1 . nff
′
. s]

.
= M) = (where f 6= f ′)

let (α, M ′) = linprune(nff
′
, M)

let (R, false) = add(ff ′, R, α)
if postpone is set then cannot find a most general unifier

else if ff ′=IL then lininvert(X[af11 . af22 . . . a
fi−1

i−1 . nAL . s]
.
= M ′)

else lininvert(X[af11 . af22 . . . a
fi−1

i−1 . nf
′f ′ . s]

.
= M ′)

lininvert(X[s]
.
= M) = (where s is a pattern substitution)

solve(X[s]
.
= M)

prune(n, M) =

if n ∈rig M or n ∈flex,L M then Fail

while n ∈M do

take X such that n occurs in the ith argument of X in M
let Y = new(AX, ΓX ÷ i)
instantiate X := Y [weaken(ΓX ; i)]

mult(0, α) = α
mult(α, 0) = α
mult(R, R) = Fail

mult(F(_), F(_)) = F(2)
mult(R, F(_)) = R
mult(F(_), R) = R

add(_, 0, 0) = (0, false)

add(ff ′, α, 0) = add(ff ′, 0, α)
add(IA, 0, R) = (R, false)

add(fL, 0, R) = Fail

add(IA, 0, F(n)) = (F(n), false)

add(IL, 0, F(_)) = (0, true)

add(_, R, R) = (R, false)

add(ff ′, α, R) = add(ff ′, R, α)
add(If ′, R, F(1)) = (R, false)

add(If ′, R, F(2)) = set postpone; (R, false)

add(If ′, F(1), F(1)) = (F(1), false)

add(If ′, F(_), F(_)) = (F(2), false)

Figure 4.8: Linearity pruning algorithm
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linprune(nIf, nI) = (R, nA)
linprune(nAL, nA) = (R, nL)
linprune(nff

′
, mf ′′) = (0, mf ′′)

linprune(nff
′
, 〈M,N〉) =

let (α1, M ′) = linprune(nff
′
, M)

let (α2, N ′) = linprune(nff
′
, N)

let (α, p) = add(ff ′, α1, α2)

if p then prune(n, 〈M ′, N ′〉)
(α, 〈M ′, N ′〉)

linprune(nff
′
, fstM) = (α, fstM ′)

where (α, M ′) = linprune(nff
′
, M)

linprune(nff
′
, sndM) = (α, sndM ′)

where (α, M ′) = linprune(nff
′
, M)

linprune(nff
′
, M N) =

let (α, M ′) = linprune(nff
′
, M)

prune(n, N)

(α, M ′ N)

linprune(nfL, M @N) =

let (α, M ′) = linprune(nfL, M)

prune(n, N)

(α, M ′ @N)

linprune(nIA, M @N) =

let (α1, M ′) = linprune(nIA, M)

let (α2, N ′) = linprune(nIA, N)

if α1=F(_) and α2=R then prune(n, M ′)
if α1=R and α2=F(_) then prune(n, N ′)
(mult(α1, α2), M ′ @N ′)

linprune(nff
′
, M ̂N) =

let (α1, M ′) = linprune(nff
′
, M)

let (α2, N ′) = linprune(nff
′
, N)

if α1=F(_) and α2=R then prune(n, M ′)
if α1=R and α2=F(_) then prune(n, N ′)
(mult(α1, α2), M ′ ̂N ′)

linprune(nff
′
, λM) = (α, λM ′)

where (α, M ′) = linprune((n+ 1)ff
′
, M)

linprune(nff
′
, λ̊M) = (α, λ̊M ′)

where (α, M ′) = linprune((n+ 1)ff
′
, M)

linprune(nff
′
, λ̂M) = (α, λ̂M ′)

where (α, M ′) = linprune((n+ 1)ff
′
, M)

Figure 4.9: Linearity pruning algorithm

62



4.6. LINEARITY PRUNING

linprune(nIf
′
, X[af11 . af22 . . . a

fi−1

i−1 . nII . s]) =

let Y = new(AX, strengthen(ΓX ; i; IA))
instantiate X := Y [linweaken(i; IA)]

(F(1), Y [af11 . af22 . . . a
fi−1

i−1 . nAA . s])

linprune(nIf
′
, X[af11 . af22 . . . a

fi−1

i−1 . nIA . s]) =

(F(1), X[af11 . af22 . . . a
fi−1

i−1 . nAA . s])

linprune(nIf
′
, X[af11 .af22 . . .a

fi−1

i−1 .n
IL .s]) = (R, X[af11 .af22 . . .a

fi−1

i−1 .n
AL .s])

linprune(nAL, X[af11 . af22 . . . a
fi−1

i−1 . nAA . s]) =

let Y = new(AX, strengthen(ΓX ; i; AL))
instantiate X := Y [linweaken(i; AL)]

(R, Y [af11 . af22 . . . a
fi−1

i−1 . nLL . s])

linprune(nAL, X[af11 .a
f2
2 . . .a

fi−1

i−1 .n
AL .s]) = (R, X[af11 .a

f2
2 . . .a

fi−1

i−1 .n
LL .s])

linprune(nff
′
, X[s]) = (0, X[s]) (where n /∈ s)

Figure 4.10: Linearity pruning algorithm

The meaning of 0 is no occurrence, R (read: Rigid occurrence) means an oc-
currence that cannot be pruned away, and F(n) means one or more occurrences
all of which are flexible and can be pruned away. Furthermore F(1) (read: One
Flexible occurrence4) means that the occurrences are uniquely positioned and
can be strengthened from intuitionistic to affine, while F(2) (read: Two or more
Flexible occurrences) means that there are flexible occurrences in both branches
of some multiplicative split in the term.

The implementation is split into five functions: lininvert, prune, mult,
add, and linprune.

The functions mult and add combine abstracted occurrences; mult simply
calculates the combined occurrence at a multiplicative split, while add calculates
the combined occurrence at an additive split and returns a boolean indicating
whether the occurrences should be pruned away.

The function prune(n, M) prunes away all occurrences of n in M . The
pseudo-code implementation of this is quite vague, since it can be done similarly
to the regular pruning in e.g. intuitionistic pattern unification.5

The function lininvert is a top-level loop that goes through all the linear-
changing extensions and linprune is doing the actual work of traversing the
term. The final call to solve represents the return to the ordinary pattern
unification algorithm.

The invariant of linprune(nff
′
, M) is that n needs to be strengthened

from f to f ′ in M . The return value (α, M ′) is the strengthened term M ′ and
the resulting abstracted occurrence of n in M ′. If ff ′ = IL then n will only
be strengthened from I to A in M ′ and another traversal is needed to complete

4F(1) can refer to multiple occurrences in case of additive context splits, but the intuition
of a single occurrence is nice.

5By using a technique of lazily evaluated hereditary substitutions and a special term de-
noted “undefined” to represent variables that need to be pruned (as it is done in e.g. Twelf and
Celf), all the calls to prune(n, M) can be executed in constant time and the actual pruning
can then be done with a single traversal of the term. This avoids a potential exponential
blow-up.
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4.6. LINEARITY PRUNING

the strengthening to L. Since a linear occurrence cannot be pruned away and
linprune(nAL, M) strengthens n to be linear then the return value will never
be F(n) in this case. If linprune returns an α 6= F(2) and the postpone flag is
not set then M ′ is well-typed in the context where n has been strengthened to f ′.
If the return value is α = F(2) then M ′ is well-typed under the condition that n
is pruned away, since it contains several flexible occurrences (just strengthened
from intuitionistic to affine) spread across at least one multiplicative context
split. And if an F(2) occurrence is encountered in a position where it should
not necessarily be pruned, i.e. at an additive split next to an R occurrence or
at the top-level (which is represented as the final call to add(ff ′, R, α) in
lininvert), then we set the postpone flag, which indicates that if we cannot
fail we have to answer “don’t know”.

The top-level call to add(ff ′, R, α) in lininvert serves to check the re-
turned α. This is because the top-level requirement about n being available in
the context is equivalent to the availability requirement next to a rigid occur-
rence in an additive split.
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Chapter 5

The CLF Type Theory

5.1 Summary

In this chapter we present the CLF type theory. We recall the original version
as it was introduced in [CPWW02a] (section 5.2) and discuss its redesign (sec-
tion 5.3). Then we present our version of CLF (section 5.4). Finally, we extend
it with logic variables and redices (section 5.5).

5.2 The original CLF type theory

The CLF type theory is defined in [CPWW02a]. It expands the dependently
typed logical framework LF by linear types; it includes the additive fragment
directly and restricts the multiplicative fragment to occur within a monadic
type constructor {S}. The syntax of CLF is given below for easy reference.

A,B ::= A( B | Πx:A.B | A & B | > | {S} | P Asynchronous types

P ::= a | P N Atomic type constructors

S ::= S1 ⊗ S2 | 1 | ∃x:A.S | A Synchronous types

N ::= λ̂x.N | λx.N | 〈N1, N2〉 | 〈〉 | {E} | R Normal objects

R ::= c | x | R ̂N | R N | π1R | π2R Atomic objects

E ::= let {p} = R in E |M Expressions

M ::= M1 ⊗M2 | 1 | [N,M ] | N Monadic objects

p ::= p1 ⊗ p2 | 1 | [x, p] | x Patterns

Additionally two important constructs are defined as syntactic sugar. The in-
tuitionistic function space is defined as A → B ≡ Πx:A.B where x does not
occur in B, and the exponential of linear logic is defined as !A ≡ ∃x:A. 1.

The equational theory of CLF is α-, β-, and η-equality along with a permu-
tative conversion called let-floating:1(

let {p1} = R1 in let {p2} = R2 in E
)
≡
(
let {p2} = R2 in let {p1} = R1 in E

)
1We will assume tacit α-renaming throughout this chapter.
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5.3. REDESIGNING THE CLF TYPE THEORY

This equality is of course subject to the side-condition that the bindings are
independent: p1 and p2 must bind disjoint sets of variables, no variable bound
by p1 can appear free in R2, and vice versa.

5.3 Redesigning the CLF type theory

5.3.1 Affine types and >
During the design of a unification algorithm for CLF it became clear that > was
problematic. Due to the complexity and undecidability of general higher-order
unification, it was desirable to come up with a pattern unification algorithm
building on the previous success for LF [Mil91, DHKP98]. Two of the corner-
stones of pattern unification are decomposition and invertible substitutions. We
will demonstrate how > breaks both of these notions.

Consider the following equation in some linear type theory with > (e.g. CLF)

c ̂ 〈〉 ̂ (G ̂ x) = c ̂ 〈〉 ̂ (d ̂H)

where c and d are constants, G and H are ground logic variables, and x is a
linear variable. A natural approach to such an equation is to decompose it into
the two equations 〈〉 = 〈〉 and G ̂ x = d ̂ H. But now the second equation
is not well-typed no matter how we split the context. This seems to indicate
that the original equation has no solution, but because of > we actually have a
solution (in fact a most general unifier):

G = λ̂x. d ̂ (H ′ ̂ 〈〉)
H = H ′ ̂ 〈〉

This means that simple decomposition of equations is not sound when the type
theory contains >.

Now let us consider the identity substitution on the context containing a
single linear variable x. This substitution is clearly invertible, since it is its own
inverse. We write this substitution as x/x and its typing as x̂:A ` x/x : x̂:A.
If A = > then the substitution is η-equivalent to 〈〉/x. If we imagine this
substitution occurring inside a larger term in which 〈〉 occurs somewhere else
as well, e.g. c ̂ G[〈〉/x] ̂ 〈〉, then the typing that contains x̂:> ` 〈〉/x : x̂:> is
equivalent to another typing in which our identity substitution is typed in an
empty context. I.e. we can push the linear resource x̂:> to the other 〈〉. Now
the typing looks like · ` 〈〉/x : x̂:> and there exists no substitution s with the
typing x̂:> ` s : ·, i.e. we have lost the existence of an inverse substitution.
This means that the existence of inverse substitutions is not preserved by the
equivalence relation on typings induced by >.

Therefore we decided to redesign CLF into a version without >. But this
means that we have to reconsider any development in CLF using >.

We conjecture that most uses of > can be replaced by using affine resources
appropriately. Considering our suite of CLF examples [CPWW02b, WCPW08]
this has so far been the case. This is because all the uses of > that we have
encountered have been to allow weakening for some of the linear resources, and
in fact this was already remarked in [WCPW08]. In these cases specifying the
linear resources that we expect to weaken as affine resources instead is actually
more accurate and thus suites the purpose better.
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5.3. REDESIGNING THE CLF TYPE THEORY

We will consider one such example (the complete example can be found
in [CPWW02b]):

Example 5.1 (MiniML with references encoded in CLF). Destination pass-
ing style is a useful CLF representation technique for uniformly specifying the
semantics of a wide range of programming language constructs, such as lazy
evaluation, concurrency, and references.

Destinations can be thought of as a kind of locations, and they are used to
link together an expression to be evaluated and the continuation waiting for the
result, thus avoiding the explicit representation of continuations or evaluation
contexts. In [CPWW02b] destinations are represented by an empty type dest

and can thus only be constructed as parameters during evaluation. The type
exp represents the encoding of MiniML syntax. For instance, we might have
lambdas and applications encoded as the constructors lam : (exp→ exp)→ exp

and app : exp→ exp→ exp.
Two type families, eval : exp→ dest→ type and return : exp→ dest→

type, are used to represent the semantics. A linear assumption of type eval E D
represents the instruction to evaluate the expression E, and a linear assumption
of type return V D represents a completed evaluation with return value V .
The D is the destination that links the two. The semantics is then encoded as
linear implications from evals to returns.

References are encoded by representing each cell as a linear resource in the
context, which can then be overwritten simply by consuming it and recreating
it with the new value. An entire evaluation run is represented by the type
Πd:dest. eval E d( {return V d⊗>}. Reading this from left to right, we
first introduce a destination d and then introduce the instruction to evaluate E
at destination d. The computation is then finished with result V when we reach
a return at the same destination d. Here the > is necessary to consume all the
reference cells, which invariably are going to be left over.

This use of > feels a bit like a hack, but with the original CLF type theory
it was necessary. If we reconsider the development in a type theory with affine
types instead of > we find that reference cells can be represented much more
naturally as affine resources, because this allows us to weaken them away when
they are no longer needed (essentially garbage-collect them), thus removing the
need for >.

Replacing > by an affine implication changes the asynchronous types to:

A,B ::= A( B | A −@ B | Πx:A.B | A & B | {S} | P

We will also need to extend the synchronous types to accommodate affine re-
sources, i.e. include the affine modality S ::= . . . | @A. This leads to a disparity
between the affine and intuitionistic modalities with one being included directly
and the other being defined as syntactic sugar. We see this as an incentive to
also include the intuitionistic modality directly, and we will return to this below.

5.3.2 Linear and dependent implication from a focused
perspective

The development of focused linear logic [And92, LM07] has led to a better
understanding of the CLF type theory. It has led to a change in terminology;
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asynchronous types are called negative types and synchronous types are called
positive types. The inclusions of positive and negative types in each other are
called up- and down-shifts. The CLF monad corresponds to the up-shift in
focused linear logic and the silent inclusion S ::= . . . | A is the down-shift.
We will in the following make this silent inclusion more explicit by writing the
down-shift operator explicitly, i.e. S ::= . . . | ↓A.

Focusing has also led to the discovery that the A( B is really an instance
of S ( B with the positive S restricted to ↓A. This restriction of ( is in the
light of focusing a bit arbitrary and does not really gain us anything. We will
therefore remove it.

Now we can express the affine implication neatly as A −@ B ≡ @A ( B.
Similarly we should have A → B ≡ !A ( B, but this just makes our syntactic
sugar definition of !A seem increasingly more clumsy. We will therefore include
!A directly and abandon the previous identity !A ≡ ∃x:A. 1.

These choices give rise to new questions. Usually linear logic and dependent
types are studied independently, each of them having different definitions of
the intuitionistic implication. Putting them together we get !A ( B ≡ A →
B ≡ Πx:A.B. Both linear implication and Π are more general than intuitionistic
implication, but neither is more general than the other. This raises the question
of whether there is a more general construct that can express both ( and Π.
The answer is indeed yes; a general pattern binding Π that is only allowed to
be dependent in the intuitionistic parts of the pattern generalizes both ( and
Π. This new Π is written Π̂p:S.B, and we have the following identities:

Π̂!x:!A.B ≡ Πx:A.B

Π̂p:S.B ≡ S ( B if intuitionistic variables in p do not occur in B

Π̂!x:!A.B ≡ A→ B if x does not occur in B

Π̂@x:@A.B ≡ A −@ B

In the latter case we do not need any side condition on the occurrence of x,
since by definition only intuitionistic variables in p are allowed to occur in B
in Π̂p:S.B. Similarly, Π̂↓x:↓A.B ≡ ↓A ( B holds without any side condition.
Now all of (, →, −@, and Π are simply syntactic sugar with the expected
equalities: !A( B ≡ A→ B ≡ Πx:A.B and @A( B ≡ A −@ B.

5.3.3 Dependent pairs and tensor

Looking at the positive types we can compare our two pair-constructs. When x
does not occur in S then ∃x:A.S and !A⊗S are very similar. We can generalize
the dependent and multiplicative pair into one common construct similar to how
we generalized dependent and linear implication in the previous section. The
new pair-construct is written ∃̂p:S1. S2 and again only intuitionistic variables in
p are allowed to occur in S2. Our two previous pair-constructs are now syntactic
sugar with the following identities:

∃̂!x:!A.S ≡ ∃x:A.S

∃̂p:S1. S2 ≡ S1 ⊗ S2 if intuitionistic variables in p does not occur in S2

This gives us the following equality: ∃x:A.S ≡ !A⊗ S if x does not occur in S.
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5.4 CLF version 2

Now we present the reworked type theory in its entirety. We will use A− and
A+ for negative and positive types instead of A and S. Additionally, the pre-
sentation is changed to use spine notation.

We present the type theory using canonical forms and hereditary substitu-
tions, and thus the only equalities left to check in the typing rules is the ones
arising from let-floating.

5.4.1 Syntax

K ::= type | Πx:A−.K Kinds

A− ::= Π̂p:A+. A− | A−1 & A−2 | {A+} | a · T Negative types

A+ ::= ∃̂p:A+
1 . A

+
2 | ↓A− | !A− | @A− | 1 Positive types

T ::= N ;T | () Type spines

M ::= 〈〈M1,M2〉〉 | ↓N | !N | @N | 1 Monadic objects

N ::= λ̂p.N | 〈N1, N2〉 | {E} | H · S Normal objects

H ::= x | c Heads

S ::= M ;S | π1;S | π2;S | () Spines

E ::= let {p} = H · S in E |M Expressions

p ::= 〈〈p1, p2〉〉 | ↓x | !x | @x | 1 Patterns

Γ,Φ,∆ ::= Γ, x:A− | · Contexts

Σ ::= Σ, a:K | Σ, c:A− | · Signatures

5.4.2 Judgments

The typing rules are shown in Figures 5.1 and 5.2. The judgments make use
of three contexts; an intuitionistic context Γ, an affine context Φ, and a linear
context ∆. The affine and the linear contexts are considered unordered, whereas
the intuitionistic context is ordered. As usual, we assume that all variable names
are distinct.

Square brackets to the left of the turnstile denote an assumption in left focus.
There is a global signature Σ, which is constant throughout all the rules

(except of course the signature validity rules). Σ gives kinds and types for type
and term constants. We write a:K ∈ Σ and c:A− ∈ Σ for signature lookups.

The substitutions that occur in the judgments are hereditary, which means
that the only equality we need to check is let-floating. This is seen as the premise
T ≡ T ′ in the rule for H · S.

The definition of hereditary substitution, [N/x]B , and type erasure, bAc, is
given below in section 5.4.3.

Notice that when patterns are bound in types the affine and linear parts are
thrown away, thus ensuring that any dependencies are only on the intuitionistic
parts.
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Signatures

` Σ : sig

` · : sig
` Σ : sig · `Σ K : kind

` Σ, a:K : sig

` Σ : sig · `Σ A− : type

` Σ, c:A− : sig

Kinds

Γ `Σ K : kind

Γ `Σ type : kind

Γ `Σ A− : type Γ, x:A− `Σ K : kind

Γ `Σ Πx:A−.K : kind

Types

Γ `Σ A− : type

Γ `Σ A+ : type Γ; ·; ·; p:A+ ` Γ′; Φ; ∆ Γ′ `Σ A− : type

Γ `Σ Π̂p:A+. A− : type

Γ `Σ A+ : type

Γ `Σ {A+} : type

Γ `Σ A−1 : type Γ `Σ A−2 : type

Γ `Σ A−1 & A−2 : type

a:K ∈ Σ Γ; [K] `Σ T : type

Γ `Σ a · T : type

Γ `Σ A+ : type

Γ `Σ A+
1 : type Γ; ·; ·; p:A+ ` Γ′; Φ; ∆ Γ′ `Σ A+

2 : type

Γ `Σ ∃̂p:A+
1 . A

+
2 : type

Γ `Σ A− : type

Γ `Σ ↓A− : type

Γ `Σ A− : type

Γ `Σ !A− : type

Γ `Σ A− : type

Γ `Σ @A− : type Γ `Σ 1 : type

Type spines

Γ; [K] `Σ T : type

Γ; [type] `Σ () : type

Γ; ·; · `Σ N ⇐ A− Γ; [K[N/x]bA−c] `Σ T : type

Γ; [Πx:A−.K] `Σ N ;T : type

Patterns

Γ; Φ; ∆; p:A+ ` Γ′; Φ′; ∆′

Γ; Φ; ∆; p1:A+
1 ` Γ′; Φ′; ∆′ Γ′; Φ′; ∆′; p2:A+

2 ` Γ′′; Φ′′; ∆′′

Γ; Φ; ∆; 〈〈p1, p2〉〉:∃̂p1:A+
1 . A

+
2 ` Γ′′; Φ′′; ∆′′

Γ; Φ; ∆; ↓x:↓A− ` Γ; Φ; (∆, x:A−) Γ; Φ; ∆; !x:!A− ` (Γ, x:A−); Φ; ∆

Γ; Φ; ∆; @x:@A− ` Γ; (Φ, x:A−); ∆ Γ; Φ; ∆; 1:1 ` Γ; Φ; ∆

Figure 5.1: Revised CLF type theory
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Terms

Γ; Φ; ∆ `Σ N ⇐ A−

Γ; Φ; ∆; p:A+ ` Γ′; Φ′; ∆′ Γ′; Φ′; ∆′ `Σ N ⇐ A−

Γ; Φ; ∆ `Σ λ̂p.N ⇐ Π̂p:A+. A−

Γ; Φ; ∆ `Σ N1 ⇐ A−1 Γ; Φ; ∆ `Σ N2 ⇐ A−2

Γ; Φ; ∆ `Σ 〈N1, N2〉 ⇐ A−1 & A−2

Γ; Φ; ∆ `Σ E ⇐ A+

Γ; Φ; ∆ `Σ {E} ⇐ {A+}

Γ; Φ; ∆; [H] `Σ S ⇒ a · T ′ T ≡ T ′

Γ; Φ; ∆ `Σ H · S ⇐ a · T

Γ; Φ; ∆ `Σ M ⇐ A+

Γ; Φ1; ∆1 `Σ M1 ⇐ A+
1 Γ; Φ2; ∆2 `Σ M2 ⇐ A+

2 [M1/p]bA+
1 c

Γ; (Φ1,Φ2); (∆1,∆2) `Σ 〈〈M1,M2〉〉 ⇐ ∃̂p:A+
1 . A

+
2 Γ; Φ; · `Σ 1⇐ 1

Γ; Φ; ∆ `Σ N ⇐ A−

Γ; Φ; ∆ `Σ ↓N ⇐ ↓A−
Γ; ·; · `Σ N ⇐ A−

Γ; Φ; · `Σ !N ⇐ !A−
Γ; Φ; · `Σ N ⇐ A−

Γ; Φ; · `Σ @N ⇐ @A−

Γ; Φ; ∆ `Σ E ⇐ A+

Γ; Φ1; ∆1; [H] `Σ S ⇒ {A+
2 } Γ; Φ2; ∆2; p:A+

2 ` Γ′; Φ′; ∆′ Γ′; Φ′; ∆′ `Σ E ⇐ A+
1

Γ; (Φ1,Φ2); (∆1,∆2) `Σ let {p} = H · S in E ⇐ A+
1

Γ; Φ; ∆ `Σ M ⇐ A+

Γ; Φ; ∆ `Σ M ⇐ A+

Term spines

Γ; Φ; ∆; [H] `Σ S ⇒ A−

(Γ1, x:A−1 ,Γ2); Φ; ∆; [A−1 ] `Σ S ⇒ A−2

(Γ1, x:A−1 ,Γ2); Φ; ∆; [x] `Σ S ⇒ A−2

Γ; Φ; ∆; [A−1 ] `Σ S ⇒ A−2

Γ; (Φ, x:A−1 ); ∆; [x] `Σ S ⇒ A−2

Γ; Φ; ∆; [A−1 ] `Σ S ⇒ A−2

Γ; Φ; (∆, x:A−1 ); [x] `Σ S ⇒ A−2

c:A−1 ∈ Σ Γ; Φ; ∆; [A−1 ] `Σ S ⇒ A−2

Γ; Φ; ∆; [c] `Σ S ⇒ A−2

Γ; Φ; ∆; [A−1 ] `Σ S ⇒ A−2

Γ; Φ1; ∆1 `Σ M ⇐ A+ Γ; Φ2; ∆2; [A−1 [M/p]bA+c] `Σ S ⇒ A−2

Γ; (Φ1,Φ2); (∆1,∆2); [Π̂p:A+. A−1 ] `Σ (M ;S)⇒ A−2

Γ; Φ; ∆; [A−i ] `Σ S ⇒ A−3

Γ; Φ; ∆; [A−1 & A−2 ] `Σ πi;S ⇒ A−3 Γ; Φ; ·; [A−] `Σ ()⇒ A−

Figure 5.2: Revised CLF type theory
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Context Validity Assumption. Anything to the left of a turnstile is as-
sumed to be valid in the intuitionistic context. That is, for any x:A− occurring
in Φ or ∆ we assume Γ `Σ A− : type, and for any split of the intuitionistic
context Γ = Γ1, x:A−,Γ2 we assume Γ1 `Σ A− : type. Additionally, any kind
or type occurring in focus on the left, [K] or [A−], is assumed to be valid in Γ,
that is, Γ `Σ K : kind and Γ `Σ A− : type. Finally, any type occurring to the
right of a ⇐ is assumed to be valid in Γ.

When the rules in Figures 5.1 and 5.2 are read from bottom to top and subgoals
are checked from left to right, the type system works as a bidirectional type
checking algorithm. Judgments of the form · · · `Σ · ⇐ · checks that the term
has a given type, and judgments of the form · · · `Σ · ⇒ · infers a type. Notice
that if we assume ` Σ : sig then every rule preserves the Context Validity
Assumption.

5.4.3 Hereditary substitution

The hereditary substitution function is indexed by a simple type B, which main-
tains the type of the object being substituted. This type index can be left out,
but it allows one to easily check that hereditary substitution is indeed terminat-
ing. Also, it corresponds nicely to the type ascription needed for explicit redices
(see section 5.5.1 below).

The syntax of simple types and the erasure function is as follows:

B− ::= B+ ( B− | B−1 & B−2 | {B+} | a Negative types

B+ ::= B+
1 ⊗B

+
2 | ↓B− | !B− | @B− | 1 Positive types

bΠ̂p:A+. A−c = bA+c( bA−c b∃̂p:A+
1 . A

+
2 c = bA+

1 c ⊗ bA
+
2 c

bA−1 & A−2 c = bA−1 c & bA−2 c b↓A−c = ↓bA−c
b{A+}c = {bA+c} b!A−c = !bA−c
ba · T c = a b@A−c = @bA−c

b1c = 1

The head of a type with respect to a spine hd(B−, S) is given as:

hd(B+ ( B−,M ;S) = hd(B−, S)

hd(B−1 & B−2 , π1;S) = hd(B−1 , S)

hd(B−1 & B−2 , π2;S) = hd(B−2 , S)

hd(B−, ()) = B−

The complete definition of hereditary substitution is given in Figures 5.3
and 5.4. The side-condition that H 6= x should be read as H = y 6= x or H = c,
as section 5.5 below will expand the syntax of heads. In Figure 5.4 F denotes
an arbitrary syntactic class. Note, that the mutually recursive hereditary sub-
stitution functions are terminating by a lexicographic ordering of the type label
and the term.
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type[N/x]B− = type

(Πy:A−.K)[N/x]B− = Πy:A−[N/x]B− .K[N/x]B−

(Π̂p:A+. A−)[N/x]B− = Π̂p:A+[N/x]B− . A
−[N/x]B−

(A−1 & A−2 )[N/x]B− = A−1 [N/x]B− & A−2 [N/x]B−

{A+}[N/x]B− = {A+[N/x]B−}
(a · T )[N/x]B− = a · T [N/x]B−

(∃̂p:A+
1 . A

+
2 )[N/x]B− = ∃̂p:A+

1 [N/x]B− . A
+
2 [N/x]B−

(↓A−)[N/x]B− = ↓A−[N/x]B−

(!A−)[N/x]B− = !A−[N/x]B−

(@A−)[N/x]B− = @A−[N/x]B−

1[N/x]B− = 1

(N1;T )[N2/x]B− = N1[N2/x]B− ;T [N2/x]B−

()[N/x]B− = ()

〈〈M1,M2〉〉[N/x]B− = 〈〈M1[N/x]B− ,M2[N/x]B−〉〉
(↓N1)[N2/x]B− = ↓N1[N2/x]B−

(!N1)[N2/x]B− = !N1[N2/x]B−

(@N1)[N2/x]B− = @N1[N2/x]B−

1[N/x]B− = 1

(λ̂p.N1)[N2/x]B− = λ̂p.N1[N2/x]B−

〈N1, N2〉[N3/x]B− = 〈N1[N3/x]B− , N2[N3/x]B−〉
{E}[N/x]B− = {E[N/x]B−}
(H · S)[N/x]B− = H · S[N/x]B− if H 6= x

(x · S)[N/x]B− = RedexB−(N · S[N/x]B−)

(M ;S)[N/x]B− = M [N/x]B− ;S[N/x]B−

(π1;S)[N/x]B− = π1;S[N/x]B−

(π2;S)[N/x]B− = π2;S[N/x]B−

()[N/x]B− = ()

(let {p} = H · S in E)[N/x]B− = let {p} = H · S[N/x]B− in E[N/x]B−

if H 6= x

(let {p} = x · S in E)[N/x]B− = MRedexB+({p} = N ′ in E[N/x]B−)

where N ′ = RedexB−(N · S[N/x]B−) and {B+} = hd(B−, S)

Figure 5.3: Hereditary substitution
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F [〈〈M1,M2〉〉/〈〈p1, p2〉〉]B+
1 ⊗B

+
2

= F [M1/p1]B+
1

[M2/p2]B+
2

F [↓N/↓x]↓B− = F [N/x]B−

F [!N/!x]!B− = F [N/x]B−

F [@N/@x]@B− = F [N/x]B−

F [1/1]1 = F

RedexB+(B−(λ̂p.N ·M ;S) = RedexB−(N [M/p]B+ · S)

RedexB−1 &B−2
(〈N1, N2〉 · π1;S) = RedexB−1

(N1 · S)

RedexB−1 &B−2
(〈N1, N2〉 · π2;S) = RedexB−2

(N2 · S)

RedexB−(N · ()) = N

MRedexB+({p1} = {let {p2} = H · S in E1} in E2) =

let {p2} = H · S in MRedexB+({p1} = {E1} in E2)

MRedexB+({p} = {M} in E) = E[M/p]B+

Figure 5.4: Hereditary substitution

((N1 : A−) · S)[N2/x]B− = (N1[N2/x]B− : A−[N2/x]B−) · S[N2/x]B−

(let {p} = (N1 : A−) · S in E)[N2/x]B− =

let {p} = (N1[N2/x]B− : A−[N2/x]B−) · S[N2/x]B− in E[N2/x]B−

Figure 5.5: Hereditary substitution with redices

5.5 CLF with logic variables and redices

A calculus of canonical forms and hereditary substitutions as we have presented
in section 5.4 above is quite nice to work with from a theoretical perspective.
But when it comes to an actual implementation, it is nice to have a bit more
flexibility.

5.5.1 Redices

We can add explicit redices by allowing normal objects to occur as heads:

H ::= · · · | N : A−

Notice that the explicit redex (N : A−) · S corresponds to the hereditarily eval-
uated implicit redex RedexbA−c(N · S).

We have added an explicit type ascription, since this allows us to incorporate
type checking of redices directly in the bidirectional type checking algorithm.
The typing rule is as follows:

Γ `Σ A−1 : type Γ; Φ1; ∆1 `Σ N ⇐ A−1 Γ; Φ2; ∆2; [A−1 ] `Σ S ⇒ A−2

Γ; (Φ1,Φ2); (∆1,∆2); [N : A−1 ] `Σ S ⇒ A−2
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RedexB−((H · S1) · S2) = H · (S1 ++ S2)

MRedexB+({p} = H · S in E) = let {p} = H · S in E

Figure 5.6: Hereditary substitution without the η-long restriction

(M ;S1) ++ S2 = M ; (S1 ++ S2)

(π1;S1) ++ S2 = π1; (S1 ++ S2)

(π2;S1) ++ S2 = π2; (S1 ++ S2)

() ++ S = S

Figure 5.7: Spine concatenation

It is important to notice that explicit redices and hereditarily evaluated implicit
redices are not at odds with each other; they can easily coexist in the same
type system. The required extension of the hereditary substitution definition is
shown in Figure 5.5.

Explicit redices relax the β-normal requirement of canonical forms. We can
also relax the requirement of terms being η-long by relaxing the typing rule of
H · S to allow arbitrary types:

Γ; Φ; ∆; [H] `Σ S ⇒ A−′ A− ≡ A−′

Γ; Φ; ∆ `Σ H · S ⇐ A−

The additional cases for hereditary substitution is shown in Figure 5.6; S1 ++S2

denotes the concatenation of two spines and is defined in Figure 5.7.
Now we can express the equational theory directly as a collection of equa-

tions. The equations for β correspond directly to the definition of hereditary
substitution.

We write p for the monadic object that is syntactically equal to the pattern p.
The rules of course have all the usual side-conditions about variables and

their scope.

Let-floating equality

let {p1} = H1 · S1 in let {p2} = H2 · S2 in E ≡
let {p2} = H2 · S2 in let {p1} = H1 · S1 in E

β-equality

(λ̂p.N : Π̂p:A+. A−) · (M ;S) ≡ (N [M/p]bA+c : A−[M/p]bA+c) · S

(N : A−) · () ≡ N

(〈N1, N2〉 : A−1 & A−2 ) · (π1;S) ≡ (N1 : A−1 ) · S

(〈N1, N2〉 : A−1 & A−2 ) · (π2;S) ≡ (N2 : A−2 ) · S
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(X[s] · S)[N/x]B− = X[s[N/x]B− ] · S[N/x]B−

(let {p} = X[s] · S in E)[N/x]B− =

let {p} = X[s[N/x]B− ] · S[N/x]B− in E[N/x]B−

· [N/x]B− = ·
(N1/y

f , s)[N2/x]B− = N1[N2/x]B−/y
f , s[N2/x]B− where f ∈ {I,A,L}

Figure 5.8: Hereditary substitution with logic variables

(H · S1 : A−) · S2 ≡ H · (S1 ++ S2)

let {p1} = {let {p2} = H · S in E1} : {A+} · () in E2 ≡
let {p2} = H · S in let {p1} = {E1} : {A+} · () in E2

let {p} = {M} : {A+} · () in E ≡ E[M/p]bA+c

η-equality
H · S ≡ λ̂p.H · (S ++ p; ())

H · S ≡ 〈H · (S ++ π1; ()), H · (S ++ π2; ())〉

H · S ≡ {let {p} = H · S in p}

5.5.2 Logic variables

Logic variables are also added by extending the syntax of heads:

H ::= · · · | X[s]

Logic variables have an associated substitution, which is just a list of single-
variable substitutions for intuitionistic, affine, and linear variables:

s ::= · | N/xI, s | N/xA, s | N/xL, s

A substitution can be considered unordered, except for the intuitionistic parts,
which must maintain their relative ordering. This is because the corresponding
intuitionistic context is also ordered.

The extension of hereditary substitution to CLF with logic variables is shown
in Figure 5.8.

We write s for the intuitionistic part of s:

· = · N/xI, s = N/xI, s N/xA, s = s N/xL, s = s

Erasure b·c is extended to contexts by pointwise application.
Let once again F denote an arbitrary syntactic class. The hereditary sub-

stitution of all the variables in a substitution s for their occurrences in F is
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X ::A−1 in (ΓX ; ΦX ; ∆X) ∈ Ψ

Γ; Φ1; ∆1 `Σ s⇐ ΓX ; ΦX ; ∆X Γ; Φ2; ∆2; [A−1 [s]bΓXc;·;·] `Σ S ⇒ A−2

Γ; (Φ1,Φ2); (∆1,∆2); [X[s]] `Σ S ⇒ A−2

x /∈ FV(Φ′) ∪ FV(∆′) Γ; ·; · `Σ N ⇐ A−[s]bΓ′c;·;· Γ; Φ; ∆ `Σ s⇐ Γ′; Φ′; ∆′

Γ; Φ; ∆ `Σ N/xI, s⇐ (Γ′, x:A−); Φ′; ∆′

Γ; Φ1; · `Σ N ⇐ A−[s]bΓ′c;·;· Γ; Φ2; ∆ `Σ s⇐ Γ′; Φ′; ∆′

Γ; (Φ1; Φ2); ∆ `Σ N/xA, s⇐ Γ′; (Φ′, x:A−); ∆′

Γ; Φ1; ∆1 `Σ N ⇐ A−[s]bΓ′c;·;· Γ; Φ2; ∆2 `Σ s⇐ Γ′; Φ′; ∆′

Γ; (Φ1; Φ2); (∆1; ∆2) `Σ N/xL, s⇐ Γ′; Φ′; (∆′, x:A−)

Γ; Φ; · `Σ · ⇐ ·; ·; ·

Figure 5.9: Logic variable and substitution typing

written F [s]Γ;Φ;∆
2 and defined as follows:

F [·]·;·;· = F

F [N/xI, s](Γ,x:B−);Φ;∆ = F [N/x]B− [s]Γ;Φ;∆

F [N/xA, s]Γ;(Φ,x:B−);∆ = F [N/x]B− [s]Γ;Φ;∆

F [N/xL, s]Γ;Φ;(∆,x:B−) = F [N/x]B− [s]Γ;Φ;∆

Each logic variable has a specific type and makes sense in a specific set of
contexts all of which is given by the contextual modal context Ψ [NPP08]:

Ψ ::= · | Ψ, (X ::A− in (Γ; Φ; ∆))

The contextual modal context Ψ could be added to all the typing judgments,
but we choose to keep it implicit, as it remains constant throughout all the rules.
Instead we simply write X ::A− in (Γ; Φ; ∆) ∈ Ψ for the lookup of X in Ψ.

We assume that Ψ is valid, i.e. that for any X :: A− in (Γ; Φ; ∆) ∈ Ψ the
context triple Γ; Φ; ∆ is valid in the sense specified in the Context Validity
Assumption and that Γ `Σ A− : type holds.

Hereditary instantiation of a logic variable X ::A− in (Γ; Φ; ∆) to a normal
object N with Γ; Φ; ∆ `Σ N ⇐ A− can be done by replacing all occurrences of
X[s] · S with RedexbA−c(N [s]bΓc;bΦc;b∆c · S).

The typing rules for logic variables and substitutions are given in Figure 5.9.
They are the same as we presented them in chapter 3, except that they have
been extended to dependent types and written in named form.

The requirement that x cannot be free in the types occurring in Φ′ and ∆′

in the typing of intuitionistic substitution extensions can easily be fulfilled, e.g.
by requiring that affine and linear extensions are typed first, and thus Φ′ and ∆′

would be empty and the requirement x /∈ FV(Φ′) ∪ FV(∆′) vacuously true. If
we are using de Bruijn indices the requirement also becomes trivially true, since

2The context triple in [s]Γ;Φ;∆ is the erased type of s just as B− is the erased type of N
in [N/x]B− .
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we would have a total ordering on the variables in context triples consistent
with the dependencies and the order of the substitution extensions.
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Chapter 6

Celf — an Implementation
of CLF

6.1 Introduction

Celf [SNS08, Clf] is to CLF [CPWW02a] what Elf [Pfe91] is to LF [HHP93],
hence the name. That is, Celf is an implementation of the CLF type theory
with a logic programming-based operational semantics. Many of the design
choices in Celf come from Twelf [PS99] and we will make several references to
the similarities below.

The system description of Celf [SNS08] describes version 1.x, which imple-
mented the original CLF type theory. As we described in chapter 5, we have
redesigned the type theory and extended it with affine types. The current Celf
is at the time of writing version 2.6.

In this chapter we will describe the interface and the implementation along
with the various theoretical contributions that support the implementation. The
goal is to allow other researchers a sufficient understanding of the implemen-
tation to make it possible to extend the Celf implementation with additional
capabilities, such as support for meta-theoretical reasoning.

Celf is implemented in Standard ML, and the source code is available for
download from http://www.twelf.org/~celf.

6.2 Core functionality

At its core Celf answers the following two questions:

1. Given a signature Σ, is it the case that ` Σ : sig?

2. Given a type A− mentioning perhaps some number of logic variables, does
there exist an instantiation θ of the logic variables and a term N such that
·; ·; · `Σ N ⇐ θ(A−)?

The latter question is given a partial answer in the following sense: The proof
search algorithm is a logic programming interpreter treating the signature Σ as
a logic program and the type A− as a query in that program. The semantics is
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based on Lollimon [LPPW05], an extension of Lolli [HM94], the linear sibling
of λ-Prolog, with the exception that Celf does not implement saturation.

6.3 Using Celf

6.3.1 Commandline

Celf is run from the commandline in the following way:

celf <options> <filename>

The commandline option -h prints the available commandline options and exits.
Otherwise Celf reads the specified file, parses it as a CLF signature, and executes
the given queries.

6.3.2 Grammar

The grammar is as follows:

Program ::= Decl | Decl Program

Decl ::= TypeConst | TermConst | TypeAbbrev | TermAbbrev | Query

TypeConst ::= Iden : Kind.

TermConst ::= Iden : NegType.

TypeAbbrev ::= Iden : type = NegType.

TermAbbrev ::= Iden : NegType = Term.

Query ::= #query NumOpt NumOpt NumOpt Number NegType.

NumOpt ::= * | Number

An identifier Iden is any non-empty sequence of letters, digits, and/or any of
the characters “-<>=/|_’*#+&~;$?” excluding a few keywords and symbols with
special meaning. Also, numbers are not identifiers. The distinguished keywords
and special symbols are “type”, “Pi”, “PI”, “#1”, “#2”, “Exists”, “EXISTS”,
“let”, “in”, “#query”, “-o”, “o-”, “:”, “.”, “_”, “&”, “{”, “}”, “*”, “\”, “<”,
“>”, “,”, “=”, “[”, “]”, “(”, “)”, “->”, “<-”, “@”, “!”, “-@”, and “@-”.

Identifiers starting with an uppercase letter are treated specially and should
therefore not be used as signature constants or abbreviations (see section 6.3.4
below).

Anything following a “%” is treated as a comment and ignored.
The syntax of kinds, types, and terms is that of the reworked CLF type

theory (see section 5.4). We show the ASCII encoding in Table 6.1.

6.3.3 Abbreviations and redices

Besides queries and signature declarations, Celf also supports type and term
abbreviations. These are simply expanded whenever they are encountered. This
can potentially introduce redices in terms, so as a consequence Celf supports
general redices and thus does not require terms to be in canonical form. The
extension to the type theory is described in section 5.5.1.

80



6.3. USING CELF

CLF Celf
Π Pi

Π̂ PI

t1 → t2 t1 -> t2 or t2 <- t1
t1 −@ t2 t1 -@ t2 or t2 @- t1
t1 ( t2 t1 -o t2 or t2 o- t1
∃ Exists

∃̂ EXISTS

⊗ *

t · t1; . . . ; tn; () t t1 . . . tn
↓t t
〈〈t1, t2〉〉 [t1, t2]

λ̂ \

π1 #1

π2 #2

Table 6.1: Syntax of CLF vs. Celf

6.3.4 Implicit parameters and type inference

As it is also the case in Twelf, Celf supports implicit parameters [Pie10]. In
type and term declarations any freely occurring names starting with uppercase
letters are treated as being implicitly Π-quantified. When checking a declara-
tion Celf will infer the type of all such parameters, and when using a type or
term constant Celf will automatically infer and apply implicit arguments to the
constant corresponding to the implicit Πs.

This design is known from Twelf to be very practical and reduce the amount
of typing immensely.

Freely occurring names starting with uppercase letters in queries are treated
differently. In queries such names stand for logic variables to which Celf should
find the most general instantiation during the proof search. This is also consis-
tent with the design of Twelf.

Celf also allows binders with or without type ascriptions; if the ascriptions
are missing Celf will infer the type. Additionally, terms can also be inferred; a
special term “_” (underscore1) is allowed, which will be automatically filled in
by unification during type inference.

If the types are sufficiently underspecified the inference algorithm will of
course fail. In this case the user can supply additional type information at
arbitrary positions in terms with the following type ascription construct:

Term ::= · · · | (Term :NegType )

6.3.5 Modality inference

Consider a simple signature for the representation of natural numbers:

nat : type.

z : nat.

1Not to be confused with (undefined) introduced below in section 6.4.6.
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s : nat -> nat.

With this signature the natural number 3 would be represented as

s !(s !(s !z))

since nat→ nat is equal to !nat ( nat, whereas in Twelf and LF it would be
written as

s (s (s z))

This can be a nuisance when porting Twelf signatures to Celf, but since the type
of the constructor s is known we can easily infer that the intuitionistic modalities
should be there. Therefore Celf allows the user to omit intuitionistic and affine
modalities in applications whenever the head of the term is a signature-defined
constant, in which case Celf will infer the missing modalities and insert them.

6.3.6 Queries

In Twelf a query is supplied two optional numbers; the expected number of
solutions and the number of solutions to look for. In Celf a query has four
numerical arguments, three of which are optional.

The first argument gives a crude control over the forward-chaining proof
search by setting an upper limit on the number of consecutive such steps. If a
* is given then no bound is imposed.

The second argument is the expected number of solutions to the query. If
the number of solutions found differs from the given number Celf will report
that the query failed and terminate. If a * is given no such check is made.

The third argument sets a limit on the number of solutions to look for and
will stop the search when the specified number is found. If a * is given Celf will
instead search for all solutions.

The fourth argument is the number of times to execute the query. As the
forward-chaining involves non-deterministic committed choices running a query
multiple times can lead to different results. Celf will execute the query the given
number of times or, if the second argument is given, stop when the specified
expected number of solutions is found. In this case the query will only fail if
the expected number of solutions cannot be found in any of the runs.

Running Celf with the commandline option -hquery will print a summary
of the four query arguments and exit.

6.3.7 Double checking

The type checking part of Celf is fairly complicated; it involves type inference,
higher-order unification for linear and affine types including linearity pruning,
implicit parameter inference, normalization, and implicit Π-quantification.

In order to allow the user a higher level of trust in the correctness of this pro-
cedure a double checking feature is supported similar to how double checking
in Twelf works. When a declaration is completely normalized and every un-
specified type is inferred then the simple bidirectional type checking algorithm
presented in section 5.4 can be used to check the declaration. This algorithm is
implemented separately in Celf without any reference to e.g. higher-order uni-
fication. If Celf is run with the commandline option -d every declaration is
double checked in this way.
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6.4 Implementation

Celf is a complicated piece of software, and its implementation draws on many
different theoretical contributions. In this section we present some of the theo-
retical background specific to the implementation, which is not already present
in chapters 2 through 5.

6.4.1 Resource management

The type system specified in section 5.4 and 5.5 includes non-deterministic splits
of both the linear and the affine context. In order to implement this efficiently,
both for type checking, type inference, and proof search, a linear resource man-
agement system is used. This means that the judgments are transformed to use
an input and an output context in order to allow lazy context splitting.

For e.g. normal objects we write Γ; (ΦI .ΦO); (∆I .∆O) `IOΣ N ⇐ A− where
ΦI and ∆I are given and ΦO and ∆O are synthesized as the subsets of ΦI and
∆I , respectively, that do not occur in N . Thus, we have that this judgment is
equivalent to Γ; (ΦI − Φ′O); (∆I −∆O) `Σ N ⇐ A− where Φ′O ⊆ ΦO.

With this setup, the context splits can be determined lazily by threading
the contexts through the premises of the typing rules. The rule for pairs, which
include a context split, e.g. becomes:

Γ; (ΦI . ΦM ); (∆I .∆M ) `IOΣ M1 ⇐ A+
1

Γ; (ΦM . ΦO); (∆M .∆O) `IOΣ M2 ⇐ A+
2 [M1/p]bA+

1 c

Γ; (ΦI . ΦO); (∆I .∆O) `IOΣ 〈〈M1,M2〉〉 ⇐ ∃̂p:A+
1 . A

+
2

A detailed account of linear resource management can be found in [CHP00]
and the extension to affine types is straightforward.

6.4.2 Explicit substitutions through recursion schemes

Chapter 3 introduced the explicit substitution calculus that is the main data
structure in the implementation of Celf. A natural comparison is the implemen-
tation of Twelf, which is based on λσ. In Twelf closures are all over the source
code; every single place an object is manipulated it occurs as a closure with an
associated substitution. This has been the source of several hard-to-find bugs
in Twelf — usually in the form of a forgotten change from s to 1 . s ◦ ↑ when
going beneath a binder.

In Celf Wang and Murphy’s recursion schemes [WM02] are used — among
other things — to isolate the treatment of explicit substitutions to a single mod-
ule. This means that the rest of the code can treat closures and substitutions
as if they were being eagerly and hereditarily evaluated, while in reality they
are evaluated lazily allowing maximal composition of substitutions in nested
closures. This leaves evaluation order unspecified in terms of whether substitu-
tions are composed or not, but this is sound due to our strong normalization
result (chapter 2).

This approach has other benefits as well, such as automatically generated
maps and folds for all the syntax datatypes and support for different views on
the syntax.
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signature TYP = sig

(* abstract type t *)

type t

(* public datatype ’t F that reveals the

constructors of the type t *)

type ’t F

(* isomorphism t = t F *)

val inj : t F -> t

val prj : t -> t F

(* Fmap (fn x => x) == (fn x => x)

Fmap (f o g) == (Fmap f) o (Fmap g) *)

val Fmap : (’t1 -> ’t2) -> ’t1 F -> ’t2 F

end

Figure 6.1: Abstract recursion signature

The basic idea is to have an abstract type t and a public datatype ’t F,
which is the idealized representation of the abstract type t except all recursive
instances of t have been replaced by a type variable ’t. This means that the
type t is isomorphic to t F. Figure 6.1 shows the basic ML signature where
inj and prj represents the isomorphism. The function Fmap corresponds to the
action of F on morphisms when viewing F as a categorical functor.2

From this signature we can e.g. define a general fold function in the following
way:

fun fold f x = f (Fmap (fold f) (prj x))

The type of fold is (’a F -> ’a) -> t -> ’a.
Looking at the implementation of Celf, we can consider, e.g., the represen-

tation of spines:

datatype ’sp spineF

= Nil

| LApp of monadObj * ’sp

| ProjLeft of ’sp

| ProjRight of ’sp

This definition implements TYP with t = spine and F = spineF where spine is
an abstract type. Conceptually, we can think of spine, inj, and prj as being
defined in the following way:

datatype spine = FixSpine of spine spineF

fun inj s = FixSpine s

fun prj (FixSpine s) = s

The main parts of the codebase can now work with spines using pattern match-
ing on the constructors defined by spineF by means of prj and inj or by using
the function fold defined above.

However, the underlying definition of the abstract type spine is really:

2In general, concrete polymorphic ML datatypes built from sums and products can natu-
rally be viewed as categorical functors T n → T , where T is the category of ML types and n
is the number of free type variables in the datatype declaration.
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signature TYP2 = sig

type a

type t

type (’a, ’t) F

val inj : (a, t) F -> t

val prj : t -> (a, t) F

val Fmap : (’a1 -> ’a2) * (’t1 -> ’t2)

-> (’a1, ’t1) F -> (’a2, ’t2) F

end

Figure 6.2: Abstract recursion signature with one additional type parameter

datatype spine

= FixSpine of spine spineF

| SClos of spine * subst

The additional constructor SClos represents a delayed hereditary substitution,
which is never seen directly, as it is handled by the implementation of prj.

This scheme allows us to implement lazily evaluated hereditary substitutions
that allow maximal composition, and still confine the handling of substitutions
to a single module.

Further benefits come from the fact that the spineF datatype is simply one
view on the underlying datastructure, and we can easily define several others.
The Celf implementation, e.g., has a canonical forms view, which automatically
reduces any redices written by the user by means of lazily evaluated hereditary
substitutions.

Taking this one step further (and beyond what is presented as the general
scheme in [WM02]), we generalize the signature TYP to mention whatever other
types t contain. The ML signature with one additional type is given in Fig-
ure 6.2.3 For the type spine we can implement this generalized signature with
a = monadObj, t = spine, and F = spineFF where spineFF is given by:

datatype (’m, ’sp) spineFF

= Nil

| LApp of ’m * ’sp

| ProjLeft of ’sp

| ProjRight of ’sp

This generalized signature TYP2 allows us to define a general map function that
traverses the structure of t and applies a function to every a:

fun map f x = inj (Fmap (f, map f) (prj x))

The type of map is (a -> a) -> t -> t. In the case of spine the function map

gets the type (monadObj -> monadObj) -> spine -> spine and thus applies
a given function to every monadic object in the spine.

3The Celf source code also defines signatures TYP3 and TYP4, which, similarly to TYP2,
generalize TYP to an F with three and four type variables, respectively.

85



6.4. IMPLEMENTATION

6.4.3 Contexts

In chapter 5 we presented the CLF type theory with a triple of contexts, two of
which were unordered in order to give a more flexible presentation. In chapters 3
and 4 we instead used a single context corresponding to the triple of contexts
with an additional total order on all the variables. In the implementation we
use de Bruijn indices and thus the latter representation.

To store the context we use Chris Okasaki’s purely functional random-access
lists [Oka95], which improves lookup and update of the ith element in an n-
element list to O(min{i, log n}) while keeping head, cons, and tail O(1).

6.4.4 Type inference

In order to do general type inference, Celf splits the process in two stages.
First a Hindley-Milner inference algorithm is applied to obtain approximate

types, i.e. simple types, for every term. This relies on unification of simple types
and is well understood.

Then the full bidirectional type checking algorithm is used to check depen-
dent types. This relies on unification of dependent types, but since the simple
types are known at this point it reduces to unification of terms, which we will
describe below in section 6.4.6.

This structuring is similar to the Twelf implementation.

6.4.5 Proof search

The implementation of the proof search algorithm is structured around a suc-
cess continuation with backtracking being the default case. At each choice point
every choice is tried and then backtracked. Solutions are considered the excep-
tional case and are not collected explicitly; instead, whenever a solution is found
the success continuation is applied to it before backtracking.

The proof search also employs a slight extension of the resource management
system for the linear context. An extra must-occur context is carried around
as a subcontext of the linear context. This additional context specifies that
the mentioned variables cannot occur in any other position, i.e. the current
position is not part of a multiplicative context split in which the other half
might consume the linear resources. This allows the proof search algorithm
to fail and backtrack earlier and thus improve its termination behavior. This
extension is also described in [CHP00]

The specification of the proof search behavior is given in [LPPW05], with
the exception that Celf does not implement saturation.

6.4.6 Unification

Unification plays a central role in both type inference and proof search. In chap-
ter 4 we introduced a pattern unification algorithm for a type system closely
related to CLF. We also gave an extension to linear-changing pattern substitu-
tions by linearity pruning.

In order to apply this unification algorithm we first relax the pattern re-
quirement beyond linear-changing pattern substitutions. Any unification prob-
lem outside the pattern fragment, which cannot be brought inside the pattern
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fragment by linearity pruning, is postponed until further instantiations from
other unification equations put it back in the pattern fragment. This extension
to a unification constraint simplification system is called the dynamic pattern
fragment and described in detail in the intuitionistic case in [Ree09].

The extension to the dynamic pattern fragment has some subtle conse-
quences for pruning and the occurs check, which were initially overlooked in
the presentation in [DHKP98], but these have subsequently been addressed and
handled by Reed [Ree09].

Besides the extension to the dynamic fragment, we also need to extend the
algorithm, which already covers linear and affine types, to cover the entire CLF
type theory. This involves two things. First, the mere existence of the equality
theory of CLF has a slight impact on the unification algorithm from chapter 4
(the intersection case changes a bit). Second, we need to compare and unify
expression objects. We return to both of these issues below, but first we will
consider the implementation of pruning in the dynamic pattern fragment.

Pruning by means of undefined terms

Consider the unification problem X[s]
.
= N where s is a pattern substitution

and N is not X[t] for some t. In this case we need to perform some number of
pruning steps, an occurs check, and finally compute N [s−1]. To implement this
efficiently we do all of this in a single traversal of N .

The key implementation tool is the introduction of a special term called
undefined, which is used in the undefined extensions of the inverse s−1 (see
Definition 4.4.9). Thus, any in N [s−1] corresponds to a variable in N not oc-
curring in s, which therefore needs to be pruned. Now we simply form, evaluate,
and traverse N [s−1] looking for and X.

As explained in [Ree09] the occurs check consists of a few cases: Any oc-
currence of X[t] where t is a (possibly linear-changing) pattern substitution can
be replaced by as it corresponds to a variable that should be pruned. Any
occurrence of X in a strongly rigid position indicates that there is no possible
solution, where a strongly rigid position is a position not within an argument
to a logic variable, nor within an argument to an ordinary variable. Any occur-
rence of X[t] where t is not a (linear-changing) pattern substitution in a position
that is not strongly rigid means that the equation is postponed as a constraint.

If we encounter an in a rigid position inN [s−1], we can fail. If we encounter
a Y [t ◦ s−1] where Y :: AY in ΓY and t ◦ s−1 is a (potentially linear-changing)
pattern substitution except for some occurrences of , we can form the weaken-
ing substitution w = weakens(t◦s−1; ΓY ) that prunes all the necessary variables
with the following generalization of weaken(·; ·) (see Pruning in section 4.5.2) to
multiple variables.

weakens(↑n; Γ) = id

weakens(nf
′f . s; Γ, Af ) = 1ff . weakens(s; Γ) ◦ ↑

weakens( f . s; Γ, Af ) = weakens(s; Γ) ◦ ↑ if f ∈ {I,A}

Thus, all the necessary pruning is done by instantiating Y ← Z[w], and if
weakens(t ◦ s−1; ΓY ) does not exist we have an in a linear argument of Y and
can fail.

If we encounter Y [t ◦ s−1] where t is not a pattern substitution, we can still
traverse t◦ s−1 looking for and X. We cannot, however, perform any pruning
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at this point, since for e.g. Y [. . . Z[. . . . . .] . . .] we do not know whether it is
Y or Z which should project the away, or if it perhaps should be neither, in
case some other argument to e.g. Y can project the away.

We represent an occurring outside a substitution as a raised exception,
since any encountered generally needs to be propagated to the top of the
term in which it is encountered. However, when traversing a term in a flexible
position this is no longer the case, and we must take care not to propagate an

too far. Consider e.g. the terms λ̂!x. c · ! ; () and λ̂!x. x · ! ; (). The first
is equivalent to , whereas the second is not. The second term might e.g.
eventually be applied to an argument that projects away its first argument.
However, such a term might occur in a position where this is impossible, and
indeed c · (λ̂!x. x · ! ; ()); () is equivalent to .

Generally, for in flexible positions, we can only propagate an occurring in
a spine if the head is not a logic variable, nor a variable for which a logic variable
can potentially be substituted. Also we can only propagate an occurring in
one branch of an additive pair if the pair is not the argument of a logic variable,
nor the argument of a variable for which a logic variable can potentially be
substituted.

If we, after our traversal of N [s−1], have made sure that X does not occur
and that we have no in rigid positions, we can instantiate X to N [s−1] even
if there are still remaining occurrences of in flexible positions. In that case
we just introduce an existential constraint for every logic variable Y [t] with an

nested in t. We can then later recheck these constraints to see whether the
nested occurrences of have been removed by instantiations or whether they
can be pruned away.

Intersection in CLF unification

When going through the unification algorithm from chapter 4 all the reasoning
carries over to CLF except for the intersection rules. This is because the
canonical forms of CLF are unique only up to let-floating, and therefore there
exists objects that are equal under a permutation of variables, e.g. the following
term:

{let {1} = c · ↓x in let {1} = c · ↓y in 1} ≡
{let {1} = c · ↓y in let {1} = c · ↓x in 1}

Consider the case X[s]
.
= X[t] where s and t are pattern substitutions.

Even though we cannot apply intersection directly, we can still apply pruning
repeatedly for every variable occurring in s and not in t or vice versa. It is
important to notice that each pruning step X ← Y [w] might enable further
pruning as w ◦ s and w ◦ t have fewer variables occurring in them compared to s
and t. When no more pruning is possible, we can invert one of the substitutions
and simplify the equation to Z = Z[u] where u is a permutation with ΓZ ` u :
ΓZ . If u is the identity, we are done. If on the other hand u is a nontrivial
permutation, we cannot express the set of most general unifiers in a finite way
without additional assumptions about the signature, so in that case we will
postpone it as a constraint.

In the source code we represent pattern substitutions in the following way.
For every substitution extension nf

′f . s the combination of the two linearity
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flags f ′f have the following six possibilities: II, AA, LL, IL, IA, and AL.
There is, however, no point at which we need to distinguish the first three cases
to make algorithmic choices. Therefore we represent the six possibilities with
only four different constructors4:

datatype subMode = ID | INT4LIN | INT4AFF | AFF4LIN

The first constructor, ID, represents either II, AA, or LL, and the latter three
constructors represent the remaining three possibilities. Additionally, we rep-
resent undefined extensions f . s without their linearity flag f , as it is never
needed. These two representational choices simplify several parts of the code
that deal with substitutions.

With this representation we also get a nice commutation lemma for pattern
substitutions and linear-changing identity substitutions, due to the fact that re-
naming variables and changing linearity flags are mostly orthogonal operations.

Lemma 6.4.1. Let t be an arbitrary substitution, and let s be (the Celf source
code representation of) a pattern substitution with possible occurrences of .
Then there exists a linear-changing identity substitution i1 with t = i1 ◦ s if and
only if there exists a linear-changing identity substitution i2 with t = s ◦ i2.

Proof. The nth extension in t is either mf ′f or f , i.e. nf [t] is either mf ′ or .
We can decompose t into a linear-changing identity substitution and a pattern
substitution in either order, t = i1 ◦ s1 = s2 ◦ i2, where i1 and i2 are linear-
changing identity substitutions and s1 and s2 are pattern substitutions. In the
first case the nth extensions in s1 and s2 are mf ′f ′ and mff , respectively, and
in the second case they are f ′ and f , respectively. In both cases the Celf
source code representation is the same, since the flags match (we use the ID

constructor) and we do not need to represent the flag on an undefined extension
f . Thus, the source code representation of s1 and s2 are identical.

Considering the definition of weakens(·; ·) above we see that the context
argument is only used to check the well-typedness of the weakening substitution,
which is equivalent to not pruning linear variables. We can easily decouple the
computation of the weakening substitution and the validity check, thus writing
weakens(s) when we postpone the check against the context.

Consider the case X[s][i1]
.
= X[t][i2] where s and t are pattern substitutions

and i1 and i2 are linear-changing identity substitutions. By commutation of pat-
tern substitutions and linear-changing identity substitutions, the first pruning
step is w1 = weakens(s ◦ t−1). After instantiation and commutation the second
pruning step is w2 = weakens(w1 ◦ s ◦ t−1 ◦ w−1

1 ). We can continue computing
wn+1 = weakens(wn ◦ · · · ◦w1 ◦ s ◦ t−1 ◦w−1

1 ◦ · · · ◦w−1
n ) until wn+1 becomes the

identity and we have reached a fixed point w = wn◦· · ·◦w1. At this point we can
do all the pruning in one step as X ← Z[w] skipping all the intermediate logic
variable instantiations. Now we are left with Z[i] = Z[u][i′] for a permutation u
and two linear-changing identity substitutions i and i′. If, as above, u is a non-
trivial permutation we have to postpone the equation, but if u is the identity,
the domain and codomain of i and i′ are equal, which implies i = i′, and we
are done. Thus, we see that we can completely ignore linear-changing identity
substitutions in the implementation of the unification of X[s][i1]

.
= X[t][i2].

4The names INT4LIN, etc. are chosen as they signify substituting an intuitionistic variable
for a linear variable, etc.

89



6.4. IMPLEMENTATION

Unifying CLF expression objects

Pushing a substitution s under a single-variable binder changes s to 1ff . s ◦ ↑.
When we work with patterns, which potentially bind many variables, we need
to apply this repeatedly. Let #p denote the number of binders in a pattern p
and define Dn(s) as follows:5

D0(s) = s Dn+1(s) = Dn(1ff . s ◦ ↑)

Pushing a substitution s under a binder p thus changes s to D#p(s).
In the following we will leave out the end-of-spine () in most cases to increase

readability.
An expression generally takes the form

E = let {p1} = H1 · S1 in

let {p2} = H2 · S2 in

...

let {pn} = Hn · Sn in

M

It is instructive to consider what happens when such a sequence of let-bindings
is substituted for a logic variable occurring as the head in another let-binding.
If we have let {p} = X[s] in E′ and instantiate X to {E} we get

let {p1} = (H1 · S1)[s] in

let {p2} = (H2 · S2)[D#p1(s)] in

...

let {pn} = (Hn · Sn)[D#p1+···+#pn−1
(s)] in

E′[D#p(↑#p1+···+#pn)][M [D#p1+···+#pn(s)]/p]

I.e. a logic variable occurring as the head of a let-binding, such as in let {p} =
X in E′, can by instantiation turn into an arbitrary number of let-bindings —
including zero. Moreover, the variables bound in E′ by p can have arbitrary
terms substituted for them.

Now we consider the unification problem E1
.
= E2 between two expressions.

If the length of the let-sequence in both expressions is zero we have M1
.
= M2,

which we can simply decompose. If only one of them has length zero, the other
must consist entirely of logic variables as the head of every let-binding, which
consequently has to be instantiated to let-sequences of length zero.

Let let {p} = X[i1][s] in E
.
= M ′ where s is a pattern substitution and i1

is a linear-changing identity substitution. We would like to construct an M
matching p from fresh logic variables and instantiate X to {M}, but there is
a problem. If p is e.g. ↓y1 ⊗ ↓y2 then M = ↓Y1 ⊗ ↓Y2, but since we have a
multiplicative context split, we cannot compute the contexts of Y1 and Y2.

We can solve this problem by noticing that a unification constraint that is
postponed only because of unresolved linearity pruning represents an unresolved
context split.

5We do not need to know f as the two flags are equal and therefore represented by ID.
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Let X ::AX in ΓX and take i to be the linear-changing identity substitution
with I(ΓX) ` i : ΓX where I(Γ) is defined as follows:

I(·) = · I(Γ, AI) = I(Γ), AI I(Γ, AA) = I(Γ), AI I(Γ, AL) = I(Γ), AI

We leave I(Γ) undefined for used affine and used linear assumptions as we
assume that they have been pruned from X.

Since the domain of i equals the domain of i1 and i is the maximally linear-
changing identity substitution with domain ΓX , there exists a linear-changing
identity substitution i2 such that i = i1 ◦ i2. Now we construct M in the
context I(ΓX), and since this context has no linear or affine assumptions it can
be trivially split. This means that we can postpone the instantiation of X as
the equation X[i]

.
= {M}.

Take i′2 to be the linear-changing identity substitution such that i2◦s = s◦i′2
(see Lemma 6.4.1 above). Considering the original unification equation we apply
i′2 to both sides and get:

M ′[i′2]
.
= let {p} = X[i1][s][i′2] in E[D#p(i

′
2)]

= let {p} = X[i][s] in E
.
= let {p} = {M}[s] in E
= E[M [s]/p]

This means that we can continue solving the unification problem M ′[i′2]
.
=

E[M [s]/p] as if we had instantiated X. Eventually, the logic variables intro-
duced to form M are hopefully going to be instantiated, and linearity pruning
will be able to deal with the remaining X[i]

.
= {M}.

A few things require comments. The equality E[D#p(i
′
2)] = E might seem

counterintuitive. But i′2 is the identity on all variables except for a few linear
and affine variables that are going to occur in X, and therefore they do not occur
in E. Also, the trick of applying a substitution to both sides of the equation and
going from there is obviously sound, but it is also complete since i′2 is injective.

Now we are left with the case E1
.
= E2 where the let-sequences in E1 and

E2 both have non-zero lengths. Let E1 = let {p} = H · S in E′1 where H is not
a logic variable.

At this point we are going to introduce non-determinism. We non-determin-
istically choose a specific let-binding in E2 to unify with H · S. We let-float it
to the top of E2 such that E2 = let {p′} = H ′ · S′ in E′2 where {p′} = H ′ · S′ is
the chosen binding. If H ′ is not a logic variable we decompose the unification
problem into:

H · S .
= H ′ · S′ ∧ E′1

.
= E′2

If H ′ is a logic variable X[i][s] under a linear-changing identity substitution
i and a pattern substitution s, we instantiate X such that

X[i][s] = {let {p} = H · S in let {p′} = Y [s′] in p′}

where Y is a fresh logic variable and s′ = D#p(s) (this might induce a strength-
ening of Y due to linearity pruning with respect to i). The context of Y can
be calculated from the context of X by synthesizing the type of H · S. Our
unification problem is now reduced to:

E′1
.
= let {p′} = Y [s′] in E′2[D#p′(↑#p)]
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nat : type.

z : nat.

s : nat -> nat.

list : type.

nil : list.

cons : nat -> list -> list.

mset : type. % multisets represented as the type ’mset -> {1}’

cell : mset -> nat -> {1}.

same : list -> (mset -> {1}) -> type.

same_nil : same nil (\!m. {1}).

same_cons : same (cons N L) (\!m. {let {1} = cell m N in

let {1} = S !m in 1})

<- same L S.

#query * * * 1 same L

(\!m. {let {1} = cell m (s z) in let {1} = cell m z in 1}).

Figure 6.3: List and multiset encoding in Celf

This is slightly simplified, as we will not let-float the entire instantiation of X
to the top of E2, but only the part that is to unify with H · S, and leave the
newly created Y at the depth of X — otherwise we would cause an unnecessary
restriction on variable occurrences in Y .

A few things might happen to disrupt the steps outlined above. It might be
the case that H ·S cannot unify with H ′ ·S′, e.g. if the heads do not match up.
Or we might not be able to let-float due to dependencies on bound variables in
E2. In the latter case the dependencies might go away through instantiations if
the conflicting variables are bound in a let-binding with a logic variable as the
head. This means that many of our possible non-deterministic choices can be
disregarded by simple checks.

If the number of non-deterministic choices left is either one or zero, we
can continue with the remaining unification problem or fail, respectively. If
the number of choices is two or more we need to resolve the remaining non-
determinism in some way.6 We do this in two different ways. If we are doing
type reconstruction we are looking for most general unifiers and we therefore
postpone the constraint. If we are doing proof search, however, we will introduce
a backtracking point and try all the possibilities as illustrated by example 6.1
below.

Example 6.1. The Celf signature in Figure 6.3 shows an encoding of lists and
multisets of natural numbers. The relation same L M expresses that the list L

and the multiset M contain the same elements.
The output of the query is the following:

6In the special case where one of the choices has syntactically identical H ·S and H′ ·S′ and
#p = 0, this choice is at least as general as any other and we can commit to this particular
choice without loosing any solutions.
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Query (*, *, *, 1) same #L (\!m. {

let {1} = cell !m !(s !z) in

let {1} = cell !m !z in 1}).

Solution: same_cons !(same_cons !same_nil)

#L = cons !(s !z) !(cons !z !nil)

Solution: same_cons !(same_cons !same_nil)

#L = cons !z !(cons !(s !z) !nil)

The query asks for all permutations of {1, 0} and gets two results as expected,
due to the exhaustive exploration of the non-deterministic unification during
proof search as mentioned above.

We have now covered all cases for E1
.
= E2 except one. It might be that

both let-sequences begin with a logic variable. In the general case we postpone
the equation, but if {E1} can η-reduce to X[s] we can simply solve the equation
as X[s]

.
= {E2}. This can only be done in general if X does not occur as a head

in the let-sequence of E2. In the latter case we might be able to η-convert {E2}
to X[t] and solve it as an intersection problem.
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Chapter 7

Conclusion and Future
Work

In this thesis I have presented several theoretical results to support the imple-
mentation of substructural logical frameworks. I have proven strong normaliza-
tion for the explicit substitution calculus λσ, which can be used to implement
any λ-calculus-based system and is already used in Twelf and Celf. I have de-
signed a linear and affine type system for explicit substitutions, which solves
the problem of type-preservation for a type-oblivious reduction semantics, thus
enabling a simple and flexible implementation. And I have used this type sys-
tem to define the pattern fragment for higher-order unification in the presence of
linear and affine types along with a deterministic unification algorithm. Further-
more, I have extended the unification algorithm to the linear-changing pattern
fragment in order to bridge the gap to the intuitionistic pattern fragment.

I have then extended and implemented the substructural type theory and
logical framework CLF. I have named this implementation Celf. This imple-
mentation builds directly on top of all the theoretical results presented, and it
supports, among other things, intuitionistic, affine, and linear types, the repre-
sentation of concurrency and resources, implicit parameter and type inference,
proof search, and an advanced unification constraint simplification algorithm
for the dynamic affine and linear pattern fragment.

With the implementation of Celf, a natural next step could be to explore
the representation and validation of meta-theory, thus turning Celf into a full-
fledged proof assistant. There are two obvious directions this exploration could
take. The first is to develop a methodology for the encoding of meta-theoretical
proofs directly in the type theory in a way that supports automated verification
and to develop these verification algorithms. This approach would mimic the
philosophy of Twelf. The second alternative is to develop a meta-logic on top
of the type theory mimicking the approach taken by the proof assistant Abella.
Abella already provides the ∇ quantifier to lift variable binding to the meta-
logic, and it would have to be explored how such a quantifier could be extended
to lift affine and linear assumptions.
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[LPPW05] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins.
Monadic concurrent linear logic programming. In Pedro Bara-
hona and Amy P. Felty, editors, Proceedings of the 7th Interna-
tional ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 35–46, Lisbon, Portugal, 2005.
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Twelf — A Meta-Logical Framework for Deductive Systems. In
H. Ganzinger, editor, Proceedings of the 16th International Con-
ference on Automated Deduction (CADE-16), pages 202–206,
Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

[PS08] Adam Poswolksy and Carsten Schürmann. Practical Program-
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