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Abstract

Recently, a number of researchers have proposed
spectral algorithms for learning models of dynam-
ical systems—for example, Hidden Markov Models
(HMMs), Partially Observable Markov Decision Pro-
cesses (POMDPs), and Transformed Predictive State
Representations (TPSRs). These algorithms are attrac-
tive since they are statistically consistent and not sub-
ject to local optima. However, they are barch methods:
they need to store their entire training data set in mem-
ory at once and operate on it as a large matrix, and
so they cannot scale to extremely large data sets (ei-
ther many examples or many features per example). In
turn, this restriction limits their ability to learn accurate
models of complex systems. To overcome these lim-
itations, we propose a new online spectral algorithm,
which uses tricks such as incremental Singular Value
Decomposition (SVD) and random projections to scale
to much larger data sets and more complex systems than
previous methods. We demonstrate the new method on
an inertial measurement prediction task and a high-
bandwidth video mapping task and we illustrate desir-
able behaviors such as “closing the loop,” where the la-
tent state representation changes suddenly as the learner
recognizes that it has returned to a previously known
place.

Introduction

Many problems in machine learning and artificial intelli-
gence involve discrete-time partially observable nonlinear
dynamical systems. If the observations are discrete, then
Hidden Markov Models (HMMs) (Rabiner 1989) or, in the
controlled setting, Partially Observable Markov Decision
Processes (POMDPs) (Sondik 1971) can be used to rep-
resent belief as a discrete distribution over latent states.
Predictive State Representations (PSRs) (Littman, Sutton,
and Singh 2002), Transformed Predictive State Represen-
tations (TPSRs) (Rosencrantz, Gordon, and Thrun 2004,
Boots, Siddiqi, and Gordon 2010), and the closely related
Observable Operator Models (OOMs) (Jaeger 2000) are
generalizations of POMDPs that have attracted interest be-
cause they both have greater representational capacity than
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POMDPs and yield representations that are at least as com-
pact (Singh, James, and Rudary 2004). In contrast to the
latent-variable representations of POMDPs, predictive rep-
resentations like PSRs, TPSRs, and OOMs represent the
state of a dynamical system by tracking occurrence proba-
bilities of a set of future events (called fests or character-
istic events) conditioned on past events (called histories or
indicative events).

Recently, spectral algorithms have been increasingly used
to learn models of partially observable nonlinear dynami-
cal systems such as HMMs (Hsu, Kakade, and Zhang 2009;
Siddiqi, Boots, and Gordon 2010) and TPSRs (Rosencrantz,
Gordon, and Thrun 2004; Boots, Siddiqi, and Gordon 2010;
Boots and Gordon 2010). Most of these algorithms are sta-
tistically consistent, unlike the popular expectation maxi-
mization (EM) algorithm, which is subject to local optima.
Furthermore, spectral learning algorithms are easy to imple-
ment with a series of linear algebra operations. Despite these
attractive features, spectral algorithms have so far had an im-
portant drawback: they are batch methods (needing to store
their entire training data set in memory at once) instead of
online ones (with space complexity independent of the num-
ber of training examples and time complexity linear in the
number of training examples).

To remedy this drawback, we propose a fast, online spec-
tral algorithm for TPSRs. TPSRs subsume HMMs, PSRs,
and POMDPs (Singh, James, and Rudary 2004; Rosen-
crantz, Gordon, and Thrun 2004). In fact, previous spec-
tral learning algorithms for several types of HMMs (Hsu,
Kakade, and Zhang 2009; Siddiqi, Boots, and Gordon 2010;
Song et al. 2010) are more accurately described as TPSR
learning algorithms applied to HMMs. Therefore, our al-
gorithm also improves on past algorithms for these other
models. Our method leverages fast, low-rank modifications
of the thin singular value decomposition (Brand 2006), and
uses tricks such as random projections to scale to extremely
large numbers of examples and features per example. Con-
sequently, the new method can handle orders of magnitude
larger data sets than previous methods, and can therefore
scale to learn models of systems that are too complex for
previous methods.

Experiments show that our online spectral learning al-
gorithm does a good job recovering the parameters of a
nonlinear dynamical system in two partially observable do-



mains. In our first experiment we empirically demonstrate
that our online spectral learning algorithm is unbiased by
recovering the parameters of a small but difficult synthetic
Reduced-Rank HMM. In our second experiment we demon-
strate the performance of the new method on a difficult,
high-bandwidth video understanding task.

Predictive State Representations

We take a Predictive State Representation (PSR) (Littman,
Sutton, and Singh 2002) view of non-linear dynamical sys-
tems. A PSR is a compact description of a dynamical system
that represents state as a set of predictions of observable ex-
periments or fests. Specifically, a test is an ordered sequence
of action-observation pairs ¢ = [a{,0f,...a},o}] that can
be executed and observed at a given time. If the observations
produced by the dynamical system match those specified by
the test, the test is said to have succeeded. The prediction for
¢, P[¢® | do(q?)], is the probability of seeing observations
q° = [0,...,0}], given that we intervene (Pearl 2000) to
take the actions ¢ = [a{,...,a}]. The key idea behind a
PSR is that, if we know the expected outcomes of all pos-
sible tests, then we know everything there is to know about
state.

A history is an ordered sequence of action-observation
pairs h = [af, o, ... al,o}] that has been executed and
observed prior to a given time. We write Q(h) for the pre-
diction vector of success probabilities for a set of tests
Q = {¢;} given a history h.

Formally a PSR consists of the tuple (A, O, Q,. %, m).
A is the set of possible actions, and O is the set of possible
observations. Q is a core set of tests, i.e., a set such that
Q(h) is a sufficient statistic for predicting all tests: the
prediction for any test 7 is a function of Q(h). .F is
the set of functions f, which embody these predictions:
P[7O | h,do(74)] = f-(Q(h)). Finally, m; = Q(e) is the
initial prediction vector.

We restrict ourselves to linear PSRs, in which all predic-
tion functions are linear: f,(Q(h)) = rT Q(h) for some vec-
tor r, € RIQI. A core set Q for a linear PSR is said to be
minimal if the tests in Q are linearly independent (Jaeger
2000; Singh, James, and Rudary 2004), i.e., no one test’s
prediction is a linear function of the other tests’ predic-
tions. Note that the restriction to linear prediction functions
is only a restriction to linear relationships between condi-
tional probabilities of tests; linear PSRs can still represent
systems with nonlinear dynamics.

Since Q(h) is a sufficient statistic for all test predictions,
it is a state for our PSR: i.e., we can remember just Q(h)
instead of h itself. After action a and observation o, we can
update Q(h) recursively: if we write M, for the matrix with

rows r]_for 7 € Q, then we can use Bayes’ Rule to show:
Moo Q(h) Moo Q(h)
hao) = = 1
Qhao) = BioTh. do(a)] ~ miMo(m
where m., is defined by m! Q(h) = 1 (Vh).
Transformed PSRs

Transformed PSRs (TPSRs) (Rosencrantz, Gordon, and
Thrun 2004; Boots, Siddiqi, and Gordon 2010) are a gen-

eralization of PSRs: for any invertible matrix J, if the pa-
rameters m1, M., and m represent a PSR, then the trans-
formed parameters by = Jmi, Bao = JMgoJ !, and
boo = J "Moo represent an equivalent TPSR. In addition to
the initial TPSR state b;, we define normalized conditional
internal states by, which we can update similarly to Eq. 1:

Baol;tbl _ Batotbt
bl—oBaol:t bl B b—cL—oBatOt bt

bip1 = (2)
Pairs .J~1.J cancel during the update, showing that predic-
tions are equivalent as claimed:

Prfo. | do(al:t)]:mIOMa(,lztml
=m] J M, T Jmy
=b! Buo,,b1 3)

By choosing the invertible transform .J appropriately (see
the next subsection), we can think of TPSRs as maintain-
ing a small number of sufficient statistics which are linear
combinations of predictions for a (potentially very large)
core set of tests. This view leads to the main benefit of
TPSRs over regular PSRs: given a core set of tests, we
can find low dimensional parameters using spectral meth-
ods and regression instead of combinatorial search. In this
respect, TPSRs are closely related to the transformed repre-
sentations of LDSs and HMMs found by subspace identifi-
cation (Van Overschee and De Moor 1996; Katayama 2005;
Soatto and Chiuso 2001; Hsu, Kakade, and Zhang 2009).
Furthermore, to make it practical to work with data gathered
from complex real-world systems, we can learn from finite-
dimensional features of the past and future, rather than an
extremely large or even infinite core set of tests (see Sec-
tion “Batch Learning of TPSRs,” below). Additional details
regarding the relationship between TPSRs and PSRs can be
found in (Boots, Siddiqi, and Gordon 2010).

Relating TPSRs and PSRs For some PSR, let Q be a
minimal core set of tests. Then, let 7 be a (larger) core set of
tests, and let H be a mutually exclusive and exhaustive par-
tition of the set of all possible histories. (Elements of H are
called indicative events (Jaeger 2000).) And, let AO be the
set of all possible action-observation pairs. Define ¢ (h) for
h € H to be a vector of indicative features, i.e., features of
history, and define ¢ (a, 0) to be a vector of features of a
present action and observation. Finally, define ¢” (h) to be a
vector of characteristic features: that is, each entry of ¢” (h)
is a linear combination of some set of test predictions.

For purposes of gathering data, we assume that we can
sample from a sufficiently diverse distribution w over his-
tories. Note that this assumption means that we cannot es-
timate m; (equivalently, b;), since we typically don’t have
samples of trajectories starting from m;. Instead, we will
estimate m., an arbitary feasible state. If we only have m.,,
initial probability estimates will be approximate, but the dif-
ference will disappear over time as our process mixes. We
will also assume that we execute a known exploration policy
from each sampled history; with this assumption, it is pos-
sible to construct unbiased samples of ¢” (h) by importance
weighting (Bowling et al. 2006; Boots and Gordon 2010).



When our algorithms below call for samples of ¢7 (h), we
use this importance weighting trick to provide them.

We define ®7, ®*, and A as matrices of character-
istic, indicative, and present features respectively, with first
dimension equal to the number of features and second di-
mension equal to |#|. An entry of ®* is the expectation
of one of the indicative features given the occurrence of
one of the indicative events and the exploration policy; an
entry of ®7 is the expectation of one of our characteristic
features given one of the indicative events; and an entry of
®AC is the expectation of one of the present features given
one of the indicative events and the exploration policy. We
also define ¢ = ]P[ ], D = diag(v)), R € RITIXI9l as the
matrix with rows 1, S € RISIXIHI a5 the expected state

E[Q|H], and M as a |Q\ |AO| x |Q| third-order tensor
x | Q)| slice, My, of M is the transition matrix for
a particular action-observation pair).

Given the above notation, we define several covariance
and “trivariance” matrices which are related to the param-
eters of the PSR. In several of the following equations we
use tensor-matrix multiplication X, also known as a mode-
v product: %, multiplies the second dimension of a matrix
with the vth mode of a tensor.

(2] =E[¢](h)]
— iy = My (4a)
[£40,40)i,; =E[¢7*°(a,0) - $7'°(a,0)]
— Y040 =PACDPACT (4b)
[E7m)i; =B8] (r9) - ¢74(h) | do(r™)]
— D7y =0T RSDOMT (4¢)
(£7, 40 #ik =E[9] (79) - 6 () - $7°° (a0) | do(74, a)]

= Y7401 =M x1 (2T R) x5 (4°D) x5 (2" DST)
(4d)

Now, if we are given an additional matrix U such that
UT®7 R is invertible, we can use Equations 4a—d to define
a TPSR whose parameters are only a similarity transform
away from the original PSR parameters.

b, =U"Sr e = (U@ R)m, (52)
b = pp(UTSr3)t =mi (U@ R)™! (5b)
Bao = X7 40H
x1 UT x5 @4°T (S 40 40) 7" X3 (ET20)1
=(UT®"R)M,,(UT®" R)! (5¢)

Batch Learning of TPSRs

The identities in Equation Sa—c yield a straightforward
learning algorithm (Boots, Siddiqi, and Gordon 2010):

we build empirical estimates fi3;, X 40,40, 27,2, and
)ET, Ao, of the matrices defined in Equation 4. Once we
have constructed iT,H, we can compute U as the matrix
of n leading left singular vectors of 27—,7{. Finally, we plug
the estimated covariances and U into Equation 5 to compute

estimated PSR parameters. One of the advantages of sub-
space identification is that the complexity of the model can
be tuned by selecting the number of singular vectors in U, at
the risk of losing prediction quality.

As we include more data in our averages, the law of large
numbers guarantees that our estimates converge to the true
matrices (1, X 40,40, 27,34, and X7 40,2. So by conti-
nuity of the formulas above, if our system is truly a PSR
of finite rank, our estimates b., b, and B,, converge,
with probability 1, to the true parameters up to a linear
transform—that is, our learning algorithm is consistent.!

An Efficient Batch Learning Algorithm

Unfortunately, it is difficult to implement the naive algo-
rithm in practice. For example, if there are a large number
of features of tests or features of histories, we may not be
able even to store the the tensor in Equation 4d. Therefore,
we need to use a more efficient algorithm, one that does not
explicitly build the tensor X7 40 .

The key idea is to compute a set of smaller-sized interme-
diate quantities from realizations of characteristic features
¢T, indicative features gb"‘, and present features ¢AO, and
then compute TPSR parameters from these quantities. In
particular, we compute a subset of the empirical estimates

from above: fiy, ZA@ A0 and 27— 2. From ET # We com-
pute the rank-n singular value decomposition U S VT,
Then, instead of computing ZT A0, We use the above ma-

trices to compute a smaller tensor B AO 277 AOH X1

UT X3 (ZT #)1 directly. To get the final desired parame-
ter Bao (Equation 5), we simply compute B,, = B AO X2

#9(a0)T (X 40,.40)"*. The tensor BAO has much lower
dimensionality than 277 A0,#, With first and third modes
being no greater than n dimensions (the length of the la-
tent state vector b;). Therefore, we save substantially on both
memory and runtime by avoiding construction of the larger
tensor.

In more detail, we begin by estimating (3;, the unnormal-
ized? empirical expectation (over histories sampled from w)
of the indicative feature vector: if ¢}t is the feature vector
for the tth history,

w

fin =Y o (6a)
t=1

Next, we estimate 2;‘}9 A0 the inverse of the unnormalized
empirical expectation of the product of present features:

w

-1
SA0.40 = (Z ¢z“%z“0> (6b)

t=1

Next, each element of our estimate ¥7 ; is an unnormal-
ized empirical expectation of the product of one indicative

!Continuity holds if we fix U; a similar but more involved ar-
gument works if we estimate U as well.

2We can get away with using unnormalized empirical expecta-
tions in Equation 6a—d since the normalizations would just cancel
when we compute the TPSR parameters in Equation 7a—c.



feature and one characteristic feature, if we sample a his-
tory from w and then follow an appropriate sequence of ac-

tions. We can compute all elements of 3 4, from a single
sample of trajectories if we sample histories from w, fol-
low an appropriate exploratory policy, and then importance-

weight each sample (Bowling et al. 2006): [f)Tg.L]ZJ is
Sy At¢£¢ﬁ, where )\; is an importance weight.

Next we compute USVT, the rank-n thin singular value
decomposition of EA]T,H:

(U,5,V) =SVD (Z w;’aﬁ‘) (6¢)
t=1

The left singular vectors U are directly needed, e. g inEq. 5.

The right singular vectors V and singular values S can also
be used to make computation of the other TPSR parameters
more efficient: recall from Equation 4d that each element

of X7 40,24 1s a weighted unnormalized empirical expecta-
tion of the product of one indicative feature, one character-
istic feature, and one present feature. To efficiently construct
the tensor B 4, we combine Equation 4d with Equation 5c
while making use of the singular value decomposition of

DDy TR
Bao = Ew:& (ﬁTdoZ) ® (¢74°) ® <§‘1I7T¢t”) (6d)
t=1

where ® indicates tensor (outer) product. The idea here is
to build the lower-dimensional B Ao directly, by making use
of the tall thin matrices U and XA/, without first building the
high-dimensional 27—, AOH-

Using these matrices we can efficiently compute estimates
of the TPSR parameters in Equation 5:

b, = SVTe (7a)
bl =g, V5! (7b)
an = gAO X2 (¢AO(GO)T ’ i;l%’),AO) (70)

This learning algorithm works well when the number of fea-
tures of tests, histories, and action-observation pairs is rel-
atively small, and in cases where data is collected in batch.
These restrictions can be limiting for many real-world data
sets. In practice, the number of features may need to be quite
large in order to accurately estimate the parameters of the
TPSR. Additionally, we are often interested in estimating
TPSRs from massive datasets, updating TPSR parameters
given a new batch of data, or learning TPSRs online from a
data stream. Below we develop several computationally ef-
ficient extensions to overcome these practical obstacles to
learning in real-world situations.

Iterative Updates to TPSR Parameters

We first attack the problem of updating existing TPSR pa-
rameters given a batch of new information. Next, we look at
the special case of updating TPSR parameters in an online
setting (batch size 1), and develop additional optimizations
for this situation.

Batch Updates We first present an algorithm for updat-
ing existing TPSR parameters given a new batch of charac-
teristic features ¢/, indicative features ¢’ , and present
features ¢7:Q. Naively, we can just store empirical esti-
mates and update them from each new batch of data: jiyy +

Zt 1 newt E«AO AO + d)newd)new ’ ET H + ¢new¢new ’

and ZT Ao+ D ¢newt ® (bnewt ® Qﬁnewt Then, after
each batch, we can apply Equation 5a—c to learn new TPSR

parameters b*, boo, and B,w

This naive algorithm is very inefficient: it requires stor-
ing each of the matrices in Equation 4a—d, updating these
matrices given new information, and recomputing the TPSR
parameters. However, as we have seen, it is also possible
to write the TPSR parameters (Equation 7a—c) in terms of a
set of lower-dimensional memory-efficient matrices and ten-
sors (Equation 6a—d), made possible by the singular value
decomposition of X7 3,. The key idea is to update these
lower-dimensional matrices directly, instead of the naive up-
dates suggested above, by taking advantage of numerical
algorithms for updating singular value decompositions ef-
ficiently (Brand 2006).

We begin by simply implementing the additive update to
the vector fiy.

w

(e = i+ > O (8)
t=1

The inverse empirical covariance of present features remains
computationally expensive to update. If the new batch of
data is large, and updates infrequent, then we can maintain
the empirical covariance 5 A0, A0 separately from the in-

verse. We update 5 A0, A0, and after each update, we invert
the matrix.

~ —1
Z;\}Q,Aonew (EAO Ao + ¢new¢new ) (Sb)

If we are updating frequently with smaller batches of data,
we can instead use a low-rank update via the Sherman-
Morrison formula. See Equation 9a for details.

The main computatlonal savmgs come from using incre-
mental SVD to update U S V and B Ao directly. The incre-
mental update for U S V is much more efficient than the
naive additive update When the number of new data points
is much smaller than the nuIAnber of features in ¢7 and ¢™.
The incremental update for B 4 saves time and space when
the number of features in ¢7 and ¢’ is much larger than the
latent dimension n.

Our goal is therefore to compute the updated SVD,

(Tews Suews Vaew) = SVD (S0 + 6, Aol )

where A is a diagonal matrix of importance weights A =
diag()1.:). We will derive the incremental SVD update in
two steps. First, if the new data ¢/ and ¢t lies entirely

within the column spaces of Uand V respectively, then we
can find Snew by prOJectmg both the new and old data onto
the subspaces defined by U and V, and diagonalizing the

IIBW new



resulting small (n X n) matrix:

~

(@, Suows V) = SVD (U7 (S + bl A1, ") V)
= SVD (§+ (076 AV T6I,)T)

We can then compute Unew = UUT and Vnew = VVT the

rotations of U and V induced by the new data.
If the new data does not lie entirely within the column

space of U and ‘A/, we can update the SVD efficiently (and
optionally approximately) following Brand (2006). The idea
is to split the new data into a part within the column span

of ﬁ and ‘A/ and a remainder, and use this decomposition to
construct a small matrix to diagonalize as above.
Let C' and D be orthonormal bases for the component of

the column space of ¢/ orthogonal to U and the compo-
nent of the column space of ¢’ orthogonal to V:

new

C = orth ((I UUT)d)new)
D = orth ((I vV neW)

The dimension of C' and D is upper-bounded by the number
of data points in our new batch, or the number of features of
tests and histories, whichever is smaller. (If the dimension
is large, the orthogonalization step above (as well as other
steps below) may be too expensive; we can accommodate
this case by splitting a large batch of examples into several
smaller batches.) Let

_[S o T
K—[O 0} [ }%eww?few [V D],

and diagonalize K to get the update to S:
(U, Spew, V) = SVD (K) (8¢)

Finally, as above, U and V rotate the extended subspaces
[UC]and [V DI

ow = [UC]
View = [V D]

(8d)
(8e)

» S
y &
< )

Note that if there are components orthogonal to U and V' in
the new data (i.e., if C' and D are nonempty), the size of the
thin SVD will grow. So, during this step, we may choose to
tune the complexity of our estimated model by restricting the
dimensionality of the SVD. If we do so, we may lose infor-
mation compared to a batch SVD: if future data causes our
estimated leading singular vectors to change, the dropped
singular vectors may become relevant again. However, em-
pirically, this information loss can be minimal, especially if
we keep extra “buffer” singular vectors beyond what we ex-
pect to need.

Also note that the above updates do not necessarily pre-
serve orthonormality of Upey and Ve, due to discarded
nonzero singular values and the accumulation of numerical

errors. To correct for this, every few hundred iterations, we
re-orthonormalize using a QR decomposition and a SVD:

(Uq: Ur) = QR (Tne )
(Va.Vr) = QR ( new)
(Uor, Sor, Vor) = SVD (UR§neWVg )
Unew = UgUor
Vaew = VoVor
Shew = Sor

The updated SVD now gives us enough information to

compute the update to B A0- Let A be the diagonal tensor of
importance weights A; ;; = X\;(i € 1,2,... ) Using the

newly computed subspaces Unew, Snew, and Vnew, we can
compute an additive update from the new data.

ngnew - (ZT AOH +A Xy ¢new X2 ¢new X3 ¢new)
x1 UL, x3 Spd VI

new new " new

= Bupdate + Bnew (8f)

where Bypdate can be viewed as the projection of B 40 onto
the new subspace:

/B\update = iEAO,H X1 UnTew X
[Bs0 9] w (7L (7 o)
<5 (S Vi [ 75 01])

and gnew is the projection of the additive update onto the
new subspace:

gnew =Nxy (UrTcw¢ncw) X2 (¢ncw) (Sncwvnzw ncw)
Once the updated estimates in Equation 8a—f have been cal-
culated, we can compute the new TPSR parameters by Equa-
tion 7a—c.

Online updates In the online settmg (with ]ust one sam-

ple per batch), the updates to 5 A0,A0 and S are rank-1,
allowing some additional efficiencies. The inverse empiri-

cal covariance f];&j 4o can be updated directly using the
Sherman-Morrison formula:

S-1 A0 A0TG -1
Y 40.40%1 017 X 40,40
A0TH-1 AO
L+ o7 Y40, 4091
(9a)

Next we can compute the rank-1 update to the matrices U , S ,

and V. We can compute C' and D efficiently via a simpli-
fied Gram-Schmidt step (Brand 2006):

C=I-U0")¢T

a1 -
EAO,.A(’) - E.A(’),AO -

new

C=C/|C|
D=(I-VVT)g}
D =D/|D|



Finally, we can compute K by adding a rank-1 matrix to S

& T N
K:[g 8%[%}@@?[%],

We then compute the updated parameters using Eqgs. 8c—e.

Random Projections for High Dimensional
Feature Spaces

Despite their simplicity and wide applicability, HMMs,
POMDPs, and PSRs are limited in that they are usually re-
stricted to discrete observations, and the state is usually re-
stricted to have only moderate cardinality. In Section “Trans-
formed PSRs,” above, we described a feature-based repre-
sentation for TPSRs that relaxes this restriction. Recently,
Song et al. went a step further, and proposed a spectral
learning algorithm for HMMs with continuous observations
by representing distributions over these observations and
continuous latent states as embeddings in an infinite di-
mensional Hilbert space (Song et al. 2010). These Hilbert
Space Embeddings of HMMs (HSE-HMMs) use essentially
the same framework as other spectral learning algorithms
for HMMs and PSRs, but avoid working in the infinite-
dimensional Hilbert space by the well-known “kernel trick.”

HSE-HMMs have been shown to perform well on several
real-world datasets, often beating the next best method by
a substantial margin. However, they scale poorly due to the
need to work with the kernel matrix, whose size is quadratic
in the number of training points.

We can overcome this scaling problem and learn TPSRs
that approximate HSE-HMMs using random features for
kernel machines (Rahimi and Recht 2007): we construct a
large but finite set of random features which let us approx-
imate a desired kernel using ordinary dot products. Rahimi
and Recht show how to approximate several popular kernels,
including radial basis function (RBF) kernels and Laplacian
kernels.) The benefit of random features is that we can use
fast linear methods that do not depend on the number of data
points to approximate the original kernel machine.

HSE-HMMs are no exception: using random features of
tests and histories, we can approximate a HSE-HMM with a
TPSR. If we combine random features with the above online
learning algorithm, we can approximate an HSE-HMM very
closely by using an extremely large number of random fea-
tures. Such a large set of features would overwhelm batch
spectral learning algorithms, but our online method allows
us to approximate an HSE-HMM very closely, and scale
HSE-HMMs to orders of magnitude larger training sets or
even to streaming datasets with an inexhaustible supply of
training data.

Experimental Results

We designed 3 sets of experiments to evaluate the statisti-
cal properties and practical potential of our online spectral
learning algorithm. In the first experiment we show the con-
vergence behavior of the algorithm. In the second experi-
ment we show how online spectral learning combined with
random projections can be used to learn a TPSR that closely
approximates the performance of a HSE-HMM. In the third

A. RR-HMM B. Convergence (log-log)
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Figure 1: A synthetic RR-HMM. (A.) The eigenvalues of the
true transition matrix. (B.) RMS error in the nonzero eigen-
values of the estimated transition matrix vs. number of train-
ing samples, averaged over 10 trials. The error steadily de-
creases, indicating that the TPSR model is becoming more
accurate, as we incorporate more training data.

experiment we demonstrate how this combination allows us
to model a high-bandwidth, high-dimensional video, where
the amount of training data would overwhelm a kernel-based
method like HSE-HMMs and the number of features would
overwhelm a TPSR batch learning algorithm.

A Synthetic Example

First we demonstrate the convergence behavior of our al-
gorithm on a difficult synthetic HMM from Siddiqi et
al. (2010). This HMM is 2-step observable, with 4 states, 2
observations, and a rank-3 transition matrix. (So, the HMM
is reduced rank (an “RR-HMM”) and features of multiple
observations are required to disambiguate state.) The transi-
tion matrix 7" and the observation matrix O are:

0.7829 0.1036 0.0399 0.0736
0.1036 0.4237 0.4262 0.0465
0.0399 0.4262 0.4380 0.0959
0.0736 0.0465 0.0959 0.7840

o-[40 4]

T =

01 0 1

We sample observations from the true model and then es-
timate the model using the algorithm of Section “Online up-
dates.” Since we only expect to recover the transition matrix
up toa similarity transform, we compare the eigenvalues of
B=3", B, in the learned model to the eigenvalues of the
transition matrix 7' of the true model. Fig. 1 shows that the
learned eigenvalues converge to the true ones as the amount
of data increases.

Slot Car Inertial Measurement

In a second experiment, we compare the online spectral al-
gorithm with random features to HSE-HMMs with Gaussian
RBF kernels. The setup consisted of a track and a miniature
car (1:32 scale) guided by a slot cut into the track (Song et
al. 2010). Figure 2(A) shows the car and the attached IMU
(an Intel Inertiadot), as well as the 14m track, which con-
tains elevation changes and banked curves. We collected the
estimated 3D acceleration and velocity of the car at 10Hz.
The data consisted of 3000 successive measurements while
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Figure 2: Slot car inertial measurement data. (A) The slot
car platform: the car and IMU (top) and the racetrack (bot-
tom). (B) Squared error for prediction with different esti-
mated models. Dash-dot shows the baseline of simply pre-
dicting the mean measurement on all frames.

the slot car circled the track controlled by a constant policy.
The goal was to learn a model of the noisy IMU data, and,
after filtering, to predict future readings.

We trained a 20-dimensional HSE-HMM using the algo-
rithm of Song et al., with tests and histories consisting of
150 consecutive observations. We set the bandwidth param-
eter of the Gaussian RBF kernels with the “median trick,”
and the regularization (ridge) parameter was 10~%. For de-
tails see Song et al. (2010).

Next we trained a 20-dimensional TPSR with random
Fourier features to approximate the Gaussian RBF kernel.
We generated 25000 features for the tests and histories and
400 features for current observations, and then used the on-
line spectral algorithm to learn a model. Finally, to pro-
vide some context, we learned a 20-state discrete HMM
(with 400 levels of discretization for observations) using the
Baum-Welch EM algorithm run until convergence.

For each model, we performed filtering for different ex-
tents t; = 100, 101, ..., 250, then predicted an image which
was a further to = 1,2,...,100 steps in the future. The
squared error of this prediction in the IMU’s measurement
space was recorded, and averaged over all the different fil-
tering extents ¢; to obtain means which are plotted in Fig-
ure 2(B).

The results demonstrate that the online spectral learning
algorithm with a large number of random Fourier features
does an excellent job matching the performance of the HSE-
HMM, and suggest that the online spectral learning algo-
rithm is a viable alternative to HSE-HMMs when the amount
of training data grows large.

Modeling Video

Next we look at the problem of mapping from video: we col-
lected a sequence of 11,000 160 x 120 grayscale frames at
24 fps in an indoor environment (a camera circling a con-
ference room, occasionally switching directions; each full
circuit took about 400 frames). This data was collected by
hand, so the camera’s trajectory is quite noisy. The high
frame rate and complexity of the video mean that learning an
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Figure 3: Modeling video. (A.) Schematic of the camera’s
environment. (B.) The second and third dimension of the
learned belief space (the first dimension contains normaliza-
tion information). Points are colored red when the camera is
traveling clockwise and blue when traveling counterclock-
wise. The learned state space separates into two manifolds,
one for each direction, connected at points where the cam-
era changes direction. (The manifolds appear on top of one
another, but are separated in the fourth latent dimension.)
(C.) Loop closing: estimated historical camera positions af-
ter 100, 350, and 600 steps. Red star indicates current cam-
era position. The camera loops around the table, and the
learned map “snaps” to the correct topology when the cam-
era passes its initial position.

accurate model requires a very large dataset. Unfortunately,
a dataset of this magnitude makes learning an HSE-HMM
difficult or impossible: e.g., the similar but less complex ex-
ample of Song et al. used only 1500 frames.

Instead, we used random Fourier features and an online
TPSR to approximate a HSE-HMM with Gaussian RBF ker-
nels. We used tests and histories based on 400 sequential
frames from the video, generated 100,000 random features,
and learned a 50-dimensional TPSR. To duplicate this setup,
the batch TPSR algorithm would have to find the SVD of a
100,000 100,000 matrix; by contrast, we can efficiently up-
date our parameters by incorporating 100,000-element fea-
ture vectors one at a time and maintaining 50 x 50 and
50x 100,000 matrices.

Figure 3 shows our results. The final learned model does
a surprisingly good job at capturing the major features of
this environment, including both the continuous location
of the camera and the discrete direction of motion (either
clockwise or counterclockwise). Furthermore, the fact that
a general-purpose online algorithm learns these manifolds
is a powerful result: we are essentially performing simulta-
neous localization and mapping in a difficult loop closing
scenario, without any prior knowledge (even, say, that the
environment is three-dimensional, or whether the sensor is a
camera, a laser rangefinder, or something else).

Conclusion

We presented spectral learning algorithms for TPSR models
of partially-observable nonlinear dynamical systems. In par-
ticular, we showed how to update the parameters of a TPSR



given new batches of data, and built on these updates to de-
velop an efficient online spectral learning algorithm. We also
showed how to use random projections in conjunction with
TPSRs to efficiently approximate HSE-HMMs. The com-
bination of random projections and online updates allows
us to take advantage of powerful Hilbert space embeddings
while handling training data sets that are orders of magni-
tude larger than previous methods, and therefore, to learn
models that are too complex for previous methods.
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