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In real-world planning problems, we must reason not
only about our own goals, but about the goals of
other agents with which we may interact. Often these
other agents’ goals are neither completely aligned with
our own nor directly opposed to them. Instead there
are opportunities for cooperation: by joining forces, a
group of agents can achieve higher utility for all of its
members than the members could achieve by them-
selves. But, in order to cooperate, the agents must
negotiate a mutually acceptable plan from among the
many possible ones; and, each agent must trust that
the others will follow their parts of the deal.

Research from multi-agent planning has often avoided
the problem of making sure that all agents have an
incentive to follow a proposed joint plan. Game theo-
retic algorithms, on the other hand, often don’t scale
to large planning problems. In this paper we attempt
to bridge the gap between these two lines of research.

We model the multi-agent planning problem as a
general-sum stochastic game, and we present an effi-
cient algorithm for computing and selecting subgame-
perfect Nash equilibria in such games. (These equilib-
ria guarantee that every deviation from the plan is de-
terred by the threat of a suitable punishment, and ev-
ery threatened punishment is believable.) We demon-
strate our algorithm on a two-agent robotic planning
problem, and show that it selects a nearly Pareto-
dominant equilibrium in which both players achieve
substantially more than they could achieve individu-
ally. To our knowledge, this is the first multi-agent
planning algorithm which can achieve this level of per-
formance in a game of this size.

There are two problems which make game-theoretic
planning difficult: finding equilibria can be hard; and
having found some equilibria, the agents must agree
on one of them or risk miscoordination. To address
these problems, we present an efficient algorithm for
computing some of the subgame-perfect equilibria of
a stochastic game, and we describe a negotiation pro-
tocol which gives the agents an incentive to agree on
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Figure 1. Equilibria of a Rubinstein game with γ = 0.8.
Shaded area shows feasible value vectors (U1(x), U2(x)) for
outcomes x. Right-hand circle corresponds to equilibrium
when player 1 moves first, left-hand circle, when player 2
moves first. Nash point is indicated by 3.

(and then follow) a mutually profitable equilibrium.
In more detail, we propose the following strategy: first
use our planning algorithm to compute equilibria, then
reveal some of these equilibria to the other agents, then
repeat until no agent wants to reveal more, and finally
use our negotiation protocol to decide among the re-
vealed equilibria.

Our planning algorithm performs dynamic program-
ming on a set-based value function: for P players,
V (s) ⊂ R

P is the set of payoff vectors which we can
achieve using some equilibrium policy that we have
found so far. We represent V (s) by sampling points
on its convex hull. This representation is conservative,
i.e., guarantees that we find a subset of the true V ∗(s).
Based on the sampled points we can efficiently com-
pute one-step backups by checking which joint actions
are enforceable in an equilibrium.

Our negotiation protocol is based on a multi-player
version of Rubinstein’s bargaining game, illustrated
for two players in Fig. 1. Players take turns propos-
ing divisions of the fruits of cooperation. Each agent
can accept the proposal, which fixes her own level of
reward and removes her from further play, or can re-
ject and propose a different division of what remains.
Until the players agree, the protocol ends with a small
probability ε after each step and the remaining players
get no share of the benefit of cooperation; the fear of
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Figure 2. Achieved value compared to approximation ac-
curacy. Solid line: approximate convex hull of value vector
set for sstart. Dash-dot line: predicted value of negotiated
plan for increasing number of samples of hull. Dashed line:
actual value in simulation.

this outcome forces players to make reasonable offers.
In fact, we can prove that rational agents will immedi-
ately offer each other the Nash bargaining point, which
maximizes the product of their utility gains.

Both our planning and negotiation results depend on
all agents knowing a distinguished equilibrium, the dis-

agreement point. In theory it is difficult to select a
good disagreement point, but in practice the choice
is often obvious. For example, in our experiments we
used “stay put,” which earns (0, 0) in most states.

We tested our value iteration procedure on a simple
robot game that lends itself to cooperative strategies.
Two players together control a two-wheeled robot,
with each player picking the speed of one wheel. Each
player wants to cycle through a different list of goals.
The world state is (x, y, θ, goalindex

1
, goalindex

2
); we

discretized the problem into 9 joint actions and about
25,000 joint states. Fig. 3 shows an example: each
player wants to alternate between opposite corners.
The players must choose between the selfish paths
which visit only two goals and the cooperative path
which visits all four goals and is only slightly longer.

Fig. 2 shows the negotiation problem if both agents
have the same computational power, ranging from
minutes to hours of wall clock time on a desktop work-
station. Fig. 4 shows what happens when we allow
the players different amounts of computation. Because
the agent with a slower computer doesn’t know about
some of the best equilibria, the faster agent can influ-
ence negotiation by revealing only some of the equilib-
ria she knows about, and can alter the outcome signif-
icantly in her favor. But, revealing too few equilibria
leads to an outcome that is worse for both agents.
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Figure 3. Simulated execution traces for negotiated poli-
cies. Top: with 2 points per state in the convex hull, our
algorithm settles on a mostly-selfish path. Bottom: with
32 points per state, we find the cooperative path. Steps
where either player achieved a goal are marked with ×.
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Figure 4. Negotiation between agents with different com-
putational abilities. Solid line: Pareto frontier computed
by fast agent; dash-dot line: slow agent’s frontier; ⊗ mark:
outcome of bargaining if fast agent reveals all she knows;
× marks: outcomes if fast agent hides some information.


