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ABSTRACT 
Bayesian Knowledge Tracing (BKT) is a common way of 
determining student knowledge of skills in adaptive educational 
systems and cognitive tutors. The basic BKT is a Hidden Markov 
Model (HMM) that models student knowledge based on five 
parameters: prior, learn rate, forget, guess, and slip. Expectation 
Maximization (EM) is often used to learn these parameters from 
training data. However, EM is a time-consuming process, and is 
prone to converging to erroneous, implausible local optima 
depending on the initial values of the BKT parameters. In this 
paper we address these two problems by using spectral learning to 
learn a Predictive State Representation (PSR) that represents the 
BKT HMM. We then use a heuristic to extract the BKT 
parameters from the learned PSR using basic matrix operations. 
The spectral learning method is based on an approximate 
factorization of the estimated covariance of windows from 
students’ sequences of correct and incorrect responses; it is fast, 
local-optimum-free, and statistically consistent. In the past few 
years, spectral techniques have been used on real-world problems 
involving latent variables in dynamical systems, computer vision, 
and natural language processing. Our results suggest that the 
parameters learned by the spectral algorithm can replace the 
parameters learned by EM; the results of our study show that the 
spectral algorithm can improve knowledge tracing parameter-
fitting time significantly while maintaining the same prediction 
accuracy, or help to improve accuracy while still keeping 
parameter-fitting time equivalent to EM. 
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1. INTRODUCTION 
Hidden Markov Models and extensions have been one of the most 
popular techniques for modeling complex patterns of behavior, 
especially patterns that extend over time. In the case of BKT, the 
model estimates the probability of a student knowing a particular 
skill (latent variable) based on the student’s past history of incorrect 
and correct attempts at that skill. This probability is the key value 
used by many cognitive tutors to determine when the student has 
reached mastery in a skill (also called a Knowledge Component, or 
KC) [17]. In an adaptive educational system, this probability can be 
used to recommend personalized learning activities based on the 
detailed representation of student knowledge in different topics.  

In practice, there is a two-step process for inferring student 
knowledge. In the first step, an HMM is learned for each topic or 
skill within a tutoring system based on the history of students’ 
interaction with the system. The output of this step is a set of 
parameters (basic parameters of BKT: prior, learn rate, forget, 
guess, and slip), which is used in the second step to estimate the 
mastery level of each student. A popular method for the first step, 
learning parameters from training data, is Expectation 
Maximization (EM). However, EM is a time consuming process, 
and previous studies [2,3,11,14] have shown that it can converge 
to erroneous learned parameters, depending on their initial values. 
To address these problems, we propose an alternate method: first 
we use a spectral learning method [4] to learn a Predictive State 
Representation [15] of the BKT HMM directly from the observed 
history of students’ interaction. Then we use a heuristic to extract 
the parameters of BKT directly from the PSR. Our results show 
that the learned PSR captures the essential features of the training 
data, allowing a computationally efficient and practically effective 
prediction of BKT parameters. In particular, we decreased the 
time spent on learning the parameters of BKT by almost 30 times 
on average compared to EM, while keeping the mean accuracy 
and RMSE of predicting students’ performance on the next 
question statistically the same.  Furthermore, by initializing EM 
with our extracted parameters, we can obtain improvements in 
accuracy and RMSE. 

This paper is organized as follows: Section 2 provides a background 
on BKT parameter learning and spectral learning of the parameters 
in PSRs. Section 3 describes our methodology and setting. In 
Section 4 we present the detailed results of our experiments and 
compare the BKT model with our model from several points of 
view. We provide analysis and justification of the results in Section 
5. Finally, Section 6 is conclusion and future work. 

2. BACKGROUND 
In BKT we are interested in a sequence of student answers to a 
series of exercises on different skills (KCs) in a tutoring system 
[6]. BKT treats each skill separately, and attempts to model each 
skill-specific sequence using a binary model of the student’s latent 
cognitive state (the skill is learned or unlearned). Treating state as 
Markovian, we therefore have five parameters to explain student 
mastery in each skill: probabilities for initial knowledge, 
knowledge acquisition, forget, guess, and slip. However, in 
standard BKT [6], it is typical to neglect the possibility of 
forgetting, leaving four free parameters. 

The main benefit of the BKT model is that it monitors changes in 
student knowledge state during practice. Each time a student 
answers a question, the model updates its estimate of whether the 
student knows the skill based on the student’s answer (the HMM 
observation). However, the typical parameter estimation algorithm 
for BKT, EM, is prone to converging to erroneous local optima 
depending on initialization. On the other hand, in the past few 
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years, researchers have introduced a generalization of HMMs 
called Predictive State Representations (PSRs) [16] that can be 
extracted from the data using spectral learning methods [8]. The 
new learning algorithm uses efficient matrix algebra techniques, 
which avoid the local optima problems of EM (or any other 
algorithms based on maximizing data likelihood over the HMM 
parameter space) and run in a fraction of the time of EM. In this 
section we first review the EM parameter learning of BKT and 
then provide a brief background on spectral learning of PSRs. 

2.1 EM Parameter Learning of BKT 
The main problem with BKT parameter learning by EM is the 
initial values. The EM algorithm is an iterative process. In each 
iteration, we first estimate the distributions over students’ latent 
knowledge states, and then update the BKT parameters to try to 
improve the expected log-likelihood of the training data given our 
latent state distribution estimates. As mentioned before, the 
iterative nature of EM means that it is prone to getting stuck in 
local optima. To remedy this problem, researchers often use 
multiple runs of EM from different starting points; however, the 
multiple runs can be time-consuming.  Calculating the log 
likelihood of the model in each iteration also involves going 
through all the training data, which further exacerbates the 
runtime problem, especially with large data sets. 

There are number of studies that try to handle the problems of EM 
parameter learning by different approaches. In basic BKT [6], the 
authors tried to solve the problem by imposing a plausible range 
of values for each parameter—for example setting the maximum 
value for the guess parameter to be 0.30. Similar approaches have 
been applied by [2] and [4]. Another study [12] tried to address 
the local optimum problem by modifying the structure of BKT 
and using information from multiple skills to estimate each 
student's prior in particular skills. The same group made an effort 
[13] to improve BKT by clustering students based on their 
performance and using different models for students in different 
clusters.  

Beck & Chang [3] discussed another fundamental problem, called 
identifiability, with learning BKT parameters by maximum 
likelihood. In their work, they showed that different sets of BKT 
parameters could lead to identical predictions of student 
performance. There is still one set that is more plausible based on 
expert knowledge, but the other set with identical fit tends to 
predict that the students are more likely to answer a question 
wrong when they mastered the skill. They recommend the same 
approach of constraining the values of the parameters into a 
plausible range based on the domain knowledge. While these 
studies elucidated the problem of identifiability and gave rules of 
thumb to follow in order to arrive at plausible parameters, these 
rules are often specific to a particular domain and do not 
necessarily generalize. Moreover, constraining EM to move inside 
a pre-known parameter space is not trivial, and in many cases the 
optimizer ends up exceeding its iteration threshold walking along 
the boundaries of the parameter space without converging to the 
maximum likelihood value. 

Pardos & Heffernan [11] suggested running a grid search over the 
EM parameter initialization space of BKT to try to find which 
initial values led to good or bad learned parameters. They 
analyzed the learned parameters and tried to find boundaries for 
the initial values not based on plausibility but based on the exact 
error. They showed that choosing initial guess and slip values that 
summed up to less than one tends to lead EM to converge toward 
the expert-preferred parameter set.  

2.2 Spectral Learning of PSRs 
A Predictive State Representation (PSR) [10] is a compact and 
complete description of a dynamical system. A PSR can be 
estimated from a matrix of conditional probabilities of future 
events (tests or characteristic events) given past events (histories 
or indicative events).   If the true probability matrix is generated 
from a PSR or an HMM, then it will have low rank; so, spectral 
methods can approximate a PSR well from empirical estimates of 
the probabilities [4,5,8,15].  (In practice we estimate a similarity 
transform of the PSR parameters, known as a Transformed PSR [15].)  

We use in particular the spectral algorithm of Boots & Gordon [5] 
[4]. They applied their method in several applications and 
compared the results with competing approaches. In particular, 
they tested the algorithm by learning a model of a high-
dimensional vision-based task, and showed that the learned PSR 
captures the essential features of the environment effectively, 
allowing accurate prediction with a small number of parameters. 
Our work uses their published code.1 

3. METHODOLOGY 
We propose replacing the parameter-learning step of BKT with a 
spectral method. In particular, we use spectral learning to discover a 
PSR from a small number of sufficient statistics of the observed 
sequences of student interactions. We then use a heuristic to extract 
an HMM that approximates the learned PSR and read the BKT 
parameters off of this extracted HMM. We can finally use these 
parameters directly to estimate student mastery levels, and evaluate 
prediction accuracy with our method compared to the standard 
EM/MLE method of BKT parameter fitting. We call the above 
method “spectral knowledge tracing” or SKT. We also evaluated 
using the learned parameters as initial values for EM in order to get 
closer to the global optimum. Due to the fact that spectral method 
does not attempt to maximize likelihood, and also some noise in the 
translation of the PSR to BKT parameters, the returned BKT 
parameters are close to the global maximum, but further 
improvement is available with a few EM iterations. The rest of the 
section presents a short description of the data along with a brief 
summary of our student model and analysis procedure. 

3.1 Data Description 
Our data comes from an online self-assessment tool QuizJET for 
Java programming. This tool is a part of an adaptive educational 
system JavaGuide [7] that keeps detailed track of students’ 
interaction to provide adaptive navigation support. The system 
presents and evaluates parameterized questions to students 
(programming question templates filled in with random parameters); 
students can try different versions of the same question several 
times until they acquire the knowledge to answer them correctly or 
give up. There are a total of 99 question templates, categorized into 
21 topics, with a maximum of 6 question templates within a topic.  

We consider each topic as a KC and each question template as a 
Step toward mastery of the KC. Based on the definition of BKT and 
KC [6,17] we are only considering the first attempt of each student 
on each question template, assuming that if a student tried a 
question template several times until success, they will answer the 
next question within the topic correctly on the first attempt. This 
mapping is more coarse-grained than the original definition of KC 
since we are not dealing the data from an intelligent tutoring system. 
However, the question templates are designed in such a way that 
answering all of them correctly will result in mastery of the topic.  

                                                                    
1 http://www.cs.cmu.edu/~ggordon/spectral-learning/ 



 

 
Figure 1: Student view of a question template for the skill 

“Do-While-Loops”. 
Figure 1 shows a student view of an example question template.  
The student can select a topic from the left pane to expand the 
question templates under each topic. Then s/he can try answering 
any of the questions under the topic repeatedly whether s/he 
answers it right or wrong. The system has been in use in the 
introductory programming classes at the School of Information 
Sciences, University of Pittsburgh for more than four years. In our 
study we use data for 9 semesters from Spring 2008 to Fall 2012. 
Table 1 shows the distribution of records over the semesters. 

Table 1: distribution of the records over the semesters. 

Semester #Students #Topics (Templates) 
tried 

#Records 

Spring 2008 15 18 (75) 427 

Fall 2008 21 21 (96) 1003 

Spring 2009 20 21 (99) 1138 

Spring 2010 21 21 (99) 750 

Fall 2010 18 19 (91) 657 

Spring 2011 31 20 (95) 1585 

Fall 2011 14 17 (81) 456 

Spring 2012 41 19 (95) 2486 

Fall 2012 41 21 (99) 2017 

Total 222 21 (99) 10519 

The system had no major structural changes since 2008, but the 
enclosing adaptive system used some engagement techniques in 
order to motivate more students to use the system. This is the 
main reason the number of records is higher in the Spring and Fall 
semesters of 2012.  

3.2 Student Model 
A time-homogeneous, discrete Hidden Markov Model (HMM) is 
a probability distribution on random variables {(𝑥! , ℎ!)}!∈ℕ such 
that, conditioned on (xt,ht), all variables before t are independent 
of all those after t. The standard parameterization is the triple 
(𝑇,𝑂,𝜋) where: 

𝑇 ∈ ℝ!×!,                              𝑇!"   = Pr ℎ! = 𝑖 ℎ!!! = 𝑗  

𝑂 ∈ ℝ!×!,                         𝑂!" = Pr  [𝑥! = 𝑖|ℎ! = 𝑗] 

𝜋 ∈ ℝ!,       𝜋! = Pr  [ℎ! = 𝑗] 

𝑂 is a mapping from hidden states to output predictions, and 𝑇 is a 
mapping between hidden states. Considering our conditional 
independence properties, 𝑇, 𝑂, and 𝜋 fully characterize the probability 
distribution of any sequence of states and observations [8]. Since the 
hidden states ℎ! are not directly observable from the training data, one 
often uses heuristics like EM to find ℎ!, 𝑇, 𝑂 and 𝜋 that maximize 
the likelihood of the samples and the current estimates. In the BKT 
setting, 𝑇 is a 2×2 stochastic matrix, so it has two hidden parameters 
P(learn) and P(forget). O is also a 2×2 stochastic matrix, so it also 
has two hidden parameters P(guess) and P(slip).  And, 𝜋 is a length-
2 probability distribution, so it has one hidden parameter P(init). 

Our main contribution is to try extracting these matrices from a 
learned PSR, giving us the benefit of significantly decreasing 
training time and avoiding local optima. The details of the spectral 
algorithm for learning the PSR from the sequence of action-
observation pairs are beyond the scope of this paper and can be 
found in [4]. The algorithm gets a sequence of students’ first 
answers to different question templates within a topic, and builds 
a PSR using spectral learning.  The key parameters of this 
particular implementation are window sizes used in creating state 
estimates; we set these to 𝑛!"#$ = 10 and 𝑛!"# = 6. The outputs 
of the PSR learner are: first, the estimated PSR parameters ℎ!, 𝐴!, 
and 𝐴!, and second a set of (noisy) state estimates ℎ!, each of 
which represents a particular time point in the input sequence. We 
actually added dummy observations before the beginning and after 
the end of each observation sequence, in order to make the best use 
of our limited sample size; this means we get four matrices 𝐴! from 
the PSR learner, corresponding to the two original observations plus 
the two dummy observations.  We simply ignore the dummy 
observations when converting to an HMM.  

Nominally, the PSR parameters are related to the HMM parameters 
by the equations 𝜋 = ℎ!, 𝑇 =   𝐴! + 𝐴!, 𝑂! = 𝐴!𝑇!!.  (Here 𝑂! is 
the diagonal matrix with the 𝑖th column of 𝑂 on its diagonal.)  
However, there is an ambiguity in PSR parameterization: for any 
invertible matrix 𝑆, we can replace each state ℎ! by 𝑆ℎ!, as long as 
we replace 𝐴! by 𝑆𝐴!𝑆!! for 𝑖 = 1,2.  When we use the modified 
parameters to compute likelihoods, each pair 𝑆!!𝑆 cancels, leaving 
the predictions of the PSR unchanged.  So, we have to choose the 
right transformation  𝑆 to be able to find parameters 𝑇 and 𝑂 that 
satisfy the conditions of BKT (each element should be a probability 
between 0 and 1, and columns should sum to 1).  

To pick the transformation matrix 𝑆, we designed a heuristic that 
looks at the state estimates ℎ!: we attempt to guess which points 
in the learned state space correspond to the unit vectors (1,0) and 
(0,1) in the desired transformation of the learned state space. (We 
call these the “transformation points.”) Given the transformation 
points, the matrix 𝑆 is determined. Our heuristic runs in time 
linear in the length of the input sequence of correct/incorrect 
observations. Figure 2 shows an overview of the transformation 
process and Figure 3 shows the details of the heuristic. 

 
Figure 2: Overview of the transformation scheme.  



 

 
Figure 3: Our heuristic to find the transformation points 

One slightly subtle point is that, due to noise in the parameter 
estimates, no matter how we choose the transformation 𝑆, the 
matrices 𝑂! = 𝐴!𝑇!! may not be diagonal.  In this case, we 
simply zero out the off-diagonal elements and renormalize. 

3.3 Analysis Procedure 
To evaluate our new parameter extraction method, we compared 
the results of our method with EM learning of BKT parameters as 
a baseline. We compare both runtime and the ability to predict 
students’ correct/incorrect answer to the next question; for the 
latter, we calculate both Root Mean Squared Error (RMSE) and 
prediction accuracy (percent correct). We hypothesize that our 
spectral method has better performance compared to EM in regard 
to the time spent on extracting the parameters, while keeping the 
same accuracy and RMSE of predicting the students’ answer to 
the next question. Since the parameters learned from the PSR are 
an approximation of the actual global best-fit set of BKT 
parameters, we also hypothesize that if we use the them as the 
initial parameters of EM, it will result in a better model in both 
accuracy and RMSE. 

4. RESULTS 
For the purpose of mimicking how the model may be trained and 
deployed in a real world scenario, we learn the model from the 
first semester data and test it on the second semester, learn the 
model from the first and second semester data and test it on the 
third semester, and so on. In total, we calculated results for 155 
topic-semester pairs. All analysis was conducted in Matlab on a 
laptop with a 2.4 GHz Intel® Core i5 CPU and 4 GB of RAM. 

4.1 EM Results 
In our experiments it took around 36 minutes for EM to fit the 
parameters, which is on average 15 seconds for each topic-
semester pair. In 2 out of 155 cases, EM failed to converge within 
the 200-iteration limit. The average accuracy of predicting a 
student’s answer to the next question using the parameters learned 
by EM is 0.650 with RMSE of 0.464.  Figure 4 shows the boxplot 
of the parameters learned by EM. The average values for prior, 
learn, forget, guess and slip are: 0.413, 0.162, 0.019, 0.431, 0.295. 

 
Figure 4: Boxplot of the parameters learned by EM 

 

4.2 SKT Results 
It took 1 minute 16 seconds in total for the spectral method to 
learn the parameters for all semesters and topics; that is almost 30 
times faster than EM. The average accuracy of predicting student 
answer to the next question is 0.664 and RMSE is 0.463. Figure 5 
shows the boxplot of the parameters learned by SKT. The average 
values for prior, learn, forget, guess and slip are: 0.526, 0.268, 
0.302, 0.397, 0.271. Note that these values are substantially 
different from those learned by EM, which means that the 
calculated student mastery levels will also be different. 
 

 
Figure 5: Boxplot of the parameters learned by spectral 

method 

4.3 SEM Results 
When we initialized EM with the spectrally learned parameters, 
the total time was 10 minutes and 40 seconds; that is still 
substantially faster than plain EM. As expected, the average 
accuracy of predicting a student’s answer to the next question 
increased to 0.706, and RMSE decreased to 0.422, better than 
both previous models. Figure 6 shows the boxplot of the refined 
parameters. The average values for prior, learn, forget, guess and 
slip are: 0.492, 0.381, 0.360, 0.391, 0.292. 
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Figure 6: Boxplot of the parameters learned SEM 

4.4 Comparison 
4.4.1 Time 
To get a better understanding of the time complexity of EM and 
SKT and their relation, we show a semilog plot of the times 
(Figure 7). We measure the elapsed time of parameter learning 
using the tic and toc functions of Matlab. Both methods have a 
similar growth rate as we increase the size of the training data: as 
we can see in the Figure, the slope of the fitted line for the EM 
time (green points) is almost the same as the slope of the fitted 
line for the SKT time (red points). We also tried locally weighted 
scatter plot smoothing (LOWESS) to compare the runtimes 
(Figure 8). 
 

 
Figure 7: Scatter plot of log(time) with a fitted line 

 

 
Figure 8: Regression of the Log(time) 

The LOWESS plot confirms our intuition that the EM time grows 
at least linearly compared to the SKT time. To test that hypothesis 
we tried linear regression on the log-log plot.  A 95% confidence 
interval for the intercept is [2.82, 3.18], which excludes an 
intercept of 0; a 95% interval for the slope is [.51, .70], which 
excludes a slope of 1. This can be interpreted as: the time spent 
learning parameters using EM is on average at least 𝑒!.!! ≈ 16.77 
times greater than the time spent learning the parameters using 
SKT, and the scaling behavior of EM is likely to be worse (the 
ratio gets higher as the data gets larger). 

4.4.2 Accuracy and RMSE 
Figure 9 and Figure 10 show the histogram of prediction accuracy 
and RMSE for the 3 models. By looking at the histograms, we can 
say that the results are approximately normally distributed with 
about the same variance, but different means.  

 
Figure 9: Histogram of Prediction Accuracy 
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Figure 10: Histogram of the Prediction average RMSE 

 
Regarding prediction accuracy, both of our methods significantly 
improved the prediction results (p=0.017 SKT vs. EM, p<<0.001 
SEM vs. EM, paired t-test, 153 degrees of freedom). Regarding 
RMSE, the spectrally learned parameters do not result in a 
significant improvement compared to BKT, but the combination 
of SKT with EM leads to a significantly better (lower) RMSE 
compared to BKT (p<<0.001, paired t-test, 153 dof). Table 2 
shows the summary of the results. Figure 11 and Figure 12 show 
the boxplot of the prediction accuracy and RMSE respectively. 
 

Table 2: Summary of the results 

Method Accuracy RMSE 

BKT 0.649 (baseline) 0.465 (baseline) 

SKT 0.664 (p=0.017) 0.464 (p=0.348) 

SEM 0.706 (p<<0.01) 0.422(p<<0.01) 

 
 

 
Figure 11: Boxplot of the accuracy 

 
Figure 12: Boxplot of the RMSE 

5. DISCUSSION 
Based on the results of our study, we found that the spectrally 
learned parameters can be used directly in the BKT setting, and 
decrease the time spent on learning parameters by a factor of 
almost 30 while keeping the same performance in regard to 
prediction accuracy and RMSE. On the other hand, if we use the 
spectrally learned parameters to initialize the BKT EM 
optimization, we can get significantly improved results and still 
have the advantage of shorter time spent on learning the 
parameters. 

In a setting with a huge number of students and lots of data over 
several semesters, e.g., an adaptive educational system, the 
spectrally learned parameters are more helpful in keeping the time 
spent on building the model for each topic tractable. However, in 
a more delicate environment, like a cognitive tutor, in which the 
parameters of BKT are the main basis of the system, we can use 
the combination method, SEM, and build a more accurate student 
model in order to predict mastery in different skills.  

6. CONCLUSION AND FUTURE WORK 
In this paper we presented a novel spectral method for learning 
the parameters of BKT directly from students’ sequences of 
correct/incorrect responses.  One direction for future work would 
be to compare our method (learn a PSR and extract HMM 
parameters) to recent algorithms for directly learning an HMM by 
spectral methods [1], and perhaps combine ideas from these 
methods with our heuristic. 

Another future direction is that, since spectral algorithms have 
recently been used to learn the parameters of different types of 
graphical models [9], the results of our study open a new direction 
for future research on learning complex latent variable models 
(variations of BKT) directly from student performance data. 

From a practical point of view, the results of our study will help 
us improve our adaptive educational system. Currently, JavaGuide 
uses a knowledge accumulation approach, based on the total 
number of correct answers, to estimate students’ mastery within 
each topic for adaptation purposes. The SEM model can be used 
to improve the system by providing a more accurate (in regard to 
predicting the student answer to the next question) estimate of 
student knowledge. 
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