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Abstract

Mixed integer linear programming (MILP) is
a powerful representation often used to for-
mulate decision-making problems under uncer-
tainty. However, it lacks a natural mechanism to
reason about objects, classes of objects, and rela-
tions. First-order logic (FOL), on the other hand,
excels at reasoning about classes of objects, but
lacks a rich representation of uncertainty. While
representing propositional logic in MILP has
been extensively explored, no theory exists yet
for fully combining FOL with MILP. We pro-
pose a new representation, called first-order pro-
gramming or FOP, which subsumes both FOL
and MILP. We establish formal methods for rea-
soning about first order programs, including a
sound and complete lifted inference procedure
for integer first order programs. Since FOP can
offer exponential savings in representation and
proof size compared to FOL, and since represen-
tations and proofs are never significantly longer
in FOP than in FOL, we anticipate that inference
in FOP will be more tractable than inference in
FOL for corresponding problems.

1 INTRODUCTION

Mixed integer linear programming has established itself as
a successful formalism for decision-making under uncer-
tainty in operation research and cooperative control, and
has attracted attention more recently in Al and machine
learning. For example, in OR, a common approach to
solving multi-stage planning problems under uncertainty
is stochastic programming with recourse (e.g., [Powell,
1996]); or, in Al, we can use MILPs for planning [Vossen
et al., 1999] or to reason about uncertainty due to the ac-
tions of other agents in a nonzero-sum game [Sandholm
et al., 2005]; or, in ML, we can use MILPs for MAP infer-
ence in graphical models (e.g., [Roth and Yih, 2005]); or, in
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cooperative control, we can use MILPs for task allocation
under uncertainty [Alighanbari and How, 2005].

Many decision problems naturally contain objects, classes
of objects, and relations among them. In such problems,
there are many benefits to reasoning about entire classes of
objects at once—so-called lifted reasoning. One benefit is
representational: it is much simpler to state a single lifted
constraint such as “all cars must follow the speed limit”
than to state the constraint for each car separately. An-
other is computational: if we can derive a conclusion for
all class members at once, then we don’t need to derive it
separately for each individual object. Lifted inference may
incur some initial overhead, but its cost is independent of
the number of objects involved, even when this number is
infinite. A final benefit is statistical: if we can share param-
eters among members of a class, we can often reduce the
number of parameters we need to estimate, increasing the
level of accuracy we can attain for a given amount of data.

Unfortunately, MILPs lack an inherent mechanism to rea-
son about classes of objects and relations. One might try to
add this capability to MILPs using a “wrapper” or “com-
piler” such as AMPL [Fourer et al., 2002]: for example, to
express a constraint that holds for all objects in a class, we
can generate one copy of this constraint for every known
object. However, in addition to losing the computational
benefits of lifting, such a mechanism does not allow for
reasoning when the number of objects is unknown or infi-
nite, as is the case for example in entity resolution.

First-order logic, on the other hand, is designed for lifted
representation and reasoning: it uses unary predicates to
refer to classes of objects, higher-arity predicates to refer
to relations, and quantifiers to state properties that apply to
many objects or tuples of objects at once. And, unifica-
tion and resolution work on quantified statements directly,
allowing us to reason efficiently about entire classes of ob-
jects. Unfortunately, FOL lacks a rich representation of un-
certainty: in FOL, an atom’s truth value is either perfectly
known or completely unknown.

To take advantage of the benefits of both languages, we



introduce a new representation, first-order programming,
which subsumes both first order logic and mixed integer
linear programming. FOP has syntax and semantics simi-
lar to FOL, but includes real and integer-valued predicates,
analogous to MILP variables. We establish formal meth-
ods for reasoning in FOP, including a sound and complete
lifted inference procedure for the integer fragment of FOP.
(Our inference procedure works for mixed-integer FOP as
well, but provides only weaker guarantees in this case.)
To derive our procedure, we lift the well-known Gomory
cutting plane algorithm; other families of cuts for MILPs
could also lead to useful inference rules, but we focus on
Gomory cuts for concreteness.

We proceed as follows. We first define a syntax and se-
mantics for the FOP language, and give examples of prob-
lems represented in FOP. We then show how to transform
FOP sentences to a normal form. Working from the nor-
mal form, we describe our inference procedure and prove
its soundness and completeness. Finally, we discuss exten-
sions, outline future work, and conclude.

2 RELATED WORK

It is well understood that we can combine propositional
logic with integer programs, or translate one to the other.
For example, Hooker and Osrio [1999] give an overview
of the area and a general framework called mixed logi-
cal/linear programming. To handle the more general lan-
guage of FOL, we can Herbrandize a sentence and translate
it to a possibly-infinite MILP (cf. Sec. 5). Several authors
have used this line of reasoning to bring optimization tools
and theory to bear on FOL inference [Borkar et al., 2002,
Chandru and Hooker, 1999]; results include compactness
lemmas analogous to our Lemma 5.3 (but specialized to
FOL), as well as ways to organize the search for a finite
proof of infeasibility. Some of these search methods can be
thought of as lifted inference procedures for FOL. How-
ever, none of these works extend the semantics of FOL, an
essential contribution of FOP.

Eaves and Rothblum [1994] provide a syntax and seman-
tics for mathematical programs with FOL-like quantifiers
and connectives, called linear problems. However, the
quantifiers are defined over assignments of numeric val-
ues to variables, not over assignments of objects as in FOL
and FOP. Therefore, linear problems cannot reason about
classes of objects, and do not generalize FOL. (In fact,
Eaves and Rothblum show that linear problems are decid-
able in finite time, which implies that the language of linear
problems is strictly less expressive than FOL.)

Relational probabilistic languages (RPLs), such as plate
models, probabilistic entity-relationship models [Hecker-
man et al., 2007], Markov logic networks [Richardson
and Domingos, 2006], IBAL [Pfeffer, 2001], ICL [Poole,
2008], and BLOG [Milch et al., 2005], combine proba-

bilistic and logical representations, and allow us to rea-
son about uncertain statements about classes of objects.
Hence, the goals of RPLs are in many ways similar to the
goal of FOP. However, the focus of FOP is different from
the focus of RPLs: while FOP is designed to capture un-
certainty through nondeterministic choice and optimization
(as in FOL and MILPs), RPLs are designed to capture un-
certainty through marginalization and factorization (as in
graphical models). Since FOP is Turing-complete, as are
many RPLs, it is technically possible to translate any pro-
gram from either type of representation to the other. But,
for any given reasoning problem, we expect that the dif-
ference in representation styles means that either sort of
language may lead to a much more natural and compact
representation than the other.

Additionally, some RPLs do not provide semantics for un-
known or infinite numbers of objects. (Exceptions include
BLOG [Milch et al., 2005], which allows unknown num-
bers of objects; ICL [Poole, 2008], which allows unknown
or infinite numbers of objects; and the work of Singla and
Domingos [2007], which extends Markov logic to infinite
domains, but makes strong assumptions in order to guar-
antee well-defined probability distributions.) Lifted infer-
ence algorithms have been proposed for RPLs, but many
work only when the number of objects is finite and known;
e.g., the work of Braz et al. [2005] on lifted variable elim-
ination requires a known set of objects, and lifted belief
propagation [Singla and Domingos, 2008] was described
in terms of finite MLNSs, leaving infinite domains explicitly
for future work. In contrast, full lifted inference for first-
order logic is well understood (see, e.g., Russell and Norvig
[2003]), and our inference procedure for FOP parallels the
well-known resolution procedure for FOL.

3 DEFINITION OF FOP

3.1 SYNTAX

The syntax of FOP parallels that of FOL. Terms are expres-
sions representing objects; formulas are those representing
values. However, where there are only two values in FOL
(true and false), values in FOP are bounded reals or inte-
gers.! Just as FOL has the constant literals T and F', FOP
has scalars, which are literals with predefined real values.
Like FOL, FOP contains functions that map objects to ob-
jects, and predicates that map objects to numeric values.
An atom is a predicate applied to a tuple of objects. A liz-
eral is a scalar multiple of an atom.

A FOP formula is a string of literals combined using opera-
tors and quantifiers, as recursively defined in Fig. 1. Quan-
tifiers for FOP are supremum and infimum, analoguous to

"Boundedness is crucial to the completeness of our inference
procedure; however, there is no limit on how large the bounds can
be, so this requirement presents little practical concern.



3 and V in FOL repectively. A variable with a matching
quantifier is bound, while one without a matching quanti-
fier is unbound or free. Binary addition, subtraction, min,
and max are allowed between formulas. Scalar multiplica-
tion, i.e., multiplication of formulas by scalars, is allowed,
but multiplication of two general formulas is not, in order to
maintain linearity. Operators have the usual precedence or-
der: scalar multiplication (including negation), binary op-
erators {+, —}, A, V, then quantifiers. As usual, a ground
term is a term containing no unbound variables, and a sen-
tence is a formula containing no unbound variables.

FOP has two constructs analogous to FOL clauses, a sum-
clause (a sum of literals), and a max-clause (a maximum of
literals). We use clause to refer to either one, when clear
from context. A superclause is a maximum of sum-clauses;
FOL has no corresponding construct.

3.2 Relationship to FOL and MILP

We give a formal semantics for FOP below, in Sec. 3.3. For
now, we informally say that a model in FOP is analogous to
a model in FOL: a list of the objects in our world and a ta-
ble of values for each function and predicate. Given a FOP
sentence and model, we can evaluate the sentence by look-
ing up its objects, functions, and predicates in the model,
then combining the results using the standard definitions of
operators like VV and +. A sentence’s value is the number
to which it evaluates under the best (maximizing) model.

With this definition, the relationship between FOL and FOP
is simple: we can translate any FOL sentence to FOP, pre-
serving its value under all models, and therefore preserving
its satisfiability (its maximal value under any model). Ta-
ble 1 shows two possible translations. While Trans. A is
more direct, Trans. B allows us to identify our lifted Go-
mory cuts (Sec. 5) as a direct generalization of FOL reso-
lution (see Gordon et al. [2009]).

As an example, consider the following sentence in FOL:

(bird(z) = flies(z)) A (eagle(y) = bird(y)) A
(eagle(z) = eagle(father(z))) A  eagle(Stanley)

which can be written in FOP (using Trans. B and some fur-
ther manipulations) as follows:

(flies(z) — bird(z)) A (bird(y) — eagle(y)) A
(eagle(father(z)) — eagle(z)) A (eagle(Stanley) — 1)

In the above sentences, we have used the convention that
free variables are implicitly quantified, using V (in FOL) or
/\ (in FOP)—e.g., the first conjunct in the FOP sentence
can be read as /\ z. (flies(x) — bird(z)). The FOP sentence
is incomplete unless we specify the ranges of the predicates
(flies, bird, and eagle); in this case, all take values in {0, 1}.

It is easy to see that every satisfying model for the FOL
sentence corresponds to a model which makes the FOP sen-
tence nonnegative. In FOL, we may ask whether, given our

Figure 1 Definition of FOP Terms and Formulas

Operators, Quantifiers:

1. Negation —, scalar multiplication *
2. Binary addition +, subtraction —, max V, min A
3. Quantifiers: inf A, sup \/

Terms: A term represents an object.

1. A variable representing objects
2. A function applied to 0 or more objects: fun(ty,...,¢t,,)

Atoms: An atom evaluates to a number.
1. A scalar, a real-valued constant
2. A predicate applied to 0 or more terms: pred(%1,...,t5,).
Each predicate is annotated with its range, a bounded
interval of R or Z.

Formulas (Statements): A formula is an expression that
evaluates to a number, and is defined recursively:

1. Any atom is a formula.

2. If f is a formula and c is a scalar, then the following
are formulas: —f, f xc,cx f

3. If f, g are formulas, then so are the following: f + g,
=9 Vg fAg.

4. If f is aformula and z is a variable, then the following
are formulas: A z. f,\ z. f

Table 1: Two possible translations of FOL to FOP

| FOL [ Trans. A| Trans.B |
T 1 1
F -1 0
PAQ| PAQ PAQ
PvQ | PVvQ |1A(P+Q)
-P -P 1-P
Ve. P | Az. P Nz P
. P | \Va. P \Vz. P

assumptions, we can conclude flies(father(Stanley)), and
use resolution to show that Stanley’s father flies. In FOP,
we can use our lifted Gomory cut procedure to show that
our assumptions imply flies(father(Stanley)) > 1.

Table 1 shows that it is never necessary to expand repre-
sentation size when going from FOL to FOP. In fact, the
reverse is true: we can sometimes achieve an exponentially
smaller representation. For example, to describe the prop-
erty “p(z) for at least k of a given n objects” in FOL, we
need an exponentially-long formula: one such formula is
the disjunction of (}) clauses, each of which tests p(x)
for one subset of k& objects (e.g., p(z1) A ... A p(xg)). In
FOP, on the other hand, we can describe the same property
with a formula of length linear in n: if p(z) € {0, 1}, then
p(z1) + p(z2) + ... + p(x,) — k has value > 0 exactly
when p(x) = 1 for at least k of z1, ..., 2.

Similarly, we can translate MILPs to FOP. To determine
the feasibility of a MILP, we translate each of its constraints



into a sum-clause, and conjoin all of these clauses (using
A). For example, consider the MILP schema

max x S.t.
T, > 2$S(i) Viel 3.D
x; € {0,1,...,8} Viel

Here I is an unspecified finite index set and S : [ — [ is
an unspecified function. We instantiate the schema to get
an ordinary MILP by fixing I and S; for example, if we
set I = {1,2,3,4} and S(i) = min(i + 1,4), an optimal
solution is (1, x2,z3,24) = (8,4,2,0).

We can translate the constraints from (3.1) to the FOP sen-
tence (x(i) —2x*x(S(7))), where x is a one-argument predi-
cate with range {0, 1,. .., 8}. We can also translate the ob-
jective [Gordon et al., 2009], or simply test whether there
is a solution of value ¢ by adding the clause (2(1) — ¢).

Just like the MILP schema, our FOP sentence doesn’t spec-
ify the function S or the index set I. As we did above, we
can specify S and I before inference. But, we have another
choice: we can leave S and I unspecified or only partly
specified, and ask our FOP inference algorithm to discover
values for S and /. We can also ask our FOP inference
algorithm to tell us facts about z, S, and I which must be
true in any solution of (3.1); see Sec. 5.4 for an example.

Just as for FOL, translating a MILP or MILP schema to
FOP cannot increase representation size. On the other
hand, it can be impossible to translate a FOP sentence to
a MILP or MILP schema, since MILPs and MILP schemas
are not Turing-complete, while FOP includes FOL.

As indicated by the above example, FOP variables and
MILP variables do not correspond to one another. A MILP
variable corresponds to a FOP ground atom. A FOP vari-
able, on the other hand, can be thought of as an index into
a family of related MILP variables, since a FOP expression
like z(i) — 2 * x(S(7)) expresses a whole family of con-
straints x; > 2z S(i)> One for each object i could refer to.

3.3 SEMANTICS

A model M is a tuple (O, F, P), where O is a list of ob-
jects, F'is a table of function values, and P is a table of
predicate values. A valuation I (under M) is a mapping of
syntactic variables to model objects. We write M for the
set of possible models, and Z(M) for the set of possible
valuations under M. In the context of a model, each expres-
sion of FOP evaluates to a function mapping a valuation to
a value (a model object or a number). (We need to use a
function since in the inner stages of recursive evaluation
we do not yet know how free variables will be quantified.)
A ground expression then evaluates to a constant function,
mapping every valuation to the same object or real number.

In particular, in the context of a model M, a sentence S
evaluates to a constant function, mapping every valuation

to the same real number. We will abuse notation slightly
and write value(S, M) to mean this real number. Finally,
we define value(S) to be sup ;¢ o value(S, M).

We evaluate an expression under a model compositionally,
based on its outermost syntactic operation:

1. If the expression is a variable (say x), we return the
function which looks that variable up in a valuation:
Al. I(z). (Here and below, AI. [...] refers to a func-
tion taking a single argument I € Z(M), a valuation.)

2. Scalar constants evaluate to constant functions: e.g.,
the formula 3 evaluates to AI. 3.

3. If the outermost operation is an arithmetic operator,
we compose by ordinary arithmetic: e.g, for A + B,
if A evaluates to a function a : Z(M) — O and B
evaluates to a function b : Z(M) — O, then A + B
evaluates to M\I. a(I) + b(I). Negation, scalar multi-
plication, and binary —, A, and V are analogous.

4. If the outermost operation is application of a function
f, we first evaluate each argument expression, getting
argument functions a4, ..., ag, each in Z(M) — O.
We then return M. F(f,a1(I),...,ar(I)): given a
valuation I € Z(M), we find the value of each argu-
ment under I, then look up f and ay(I),...,ax(I) in
our function table F'. (Object constants are just zero-
argument functions, and so evaluate by simple lookup
in F', with no recursive evaluation of arguments.)

5. Similarly, for application of a predicate p, we we
first evaluate each argument expression, getting func-
tions aq,...,ax, each in Z(M) — O. We then re-
turn M. P(p,a1(I),...,ar(I)), which looks up p
and its arguments in the predicate table P. (Real or
integer-valued variables are just zero-argument predi-
cates, and therefore evaluate by simple lookup in P.)

6. The quantifier expression A x. ) works by taking an
infimum over model objects: write I[z — o] for the
valuation which is the same as I except that it maps
the variable x to the object o € O. Then, if @) eval-
vates to ¢ : Z(M) — R, then A z. Q evaluates to
M. inf,co q(I[t — o]). The quantifier expression
\/ z. @ is similar, substituting sup for inf.

Variable Substitution. We define a variable substitution
V' as a mapping from variables to terms, for example {z —
John,y — uncle(z)}. We write application of V' to an
expression .S as S/V, with the usual meaning that each free
variable in .S appearing in the domain of V' gets replaced by
the corresponding term. (Bound variables are unaffected.)
All variables appearing in the RHS of a substitution must
be distinct from all variables on the LHS. Note that the
process is purely syntactic: the result depends only on V'
and on whether a variable is syntactically bound in S.

Given an expression S, we can also define a variable sub-
stitution for S as a variable substitution whose range con-
tains only the object constants and functions mentioned in



S, along with the special constant nil if S contains no other
object constants. With this definition, V' will not introduce
new functions or constants into .S/V (except possibly nil).
Finally, given two substitutions V' and W, we write com-

position as V/W, so that S/(V/W) = (S/V)/W.
4 NORMAL FORMS

To facilitate analysis, we translate sentences into one of
two normal forms: min-normal form or reduced normal
form. Min-normal form preserves the value of a sentence
in all models, while reduced normal form preserves only
the sign of the value. In both forms, we move negation and
scalar multiplication inward, eliminate \/ quantifiers, and
rearrange binary operators to apply in the order A, V, +
(outermost to innermost). In reduced normal form, we also
eliminate V. Figs. 2 and 3 give translation procedures.

Our translation to min-normal form is analogous to the
well-known conjunctive normal form translation in FOL.
We could also define a symmetric translation to a max-
normal form, isomorphic to the min-normal form of —S; as
we will see, though, min-normal form lends itself to proofs
of upper bounds on the value of a sentence, and therefore
to proofs by contradiction.

Reduced normal form is the final form used by our infer-
ence procedure. It highlights the relationship of FOP to
MILP: as mentioned above, conjoining sum-clauses with
A (as we do in reduced normal form) is analogous to in-
tersecting linear constraints in a MILP. FOP as a whole
assigns no special role to 0, but reduced normal form is de-
signed for comparing a sentence’s value to 0. We could eas-
ily define an analogous normal form for comparing against
any other threshold k, or simply translate S — & instead of
S to reduced normal form.

In more detail, for min-normal form (Fig. 2), after step 1,
each negation and scalar multiplication becomes part of a
literal. Step 2 ensures that we do not quantify over the
same variable more than once, in preparation for steps 3—4.
Step 3 eliminates \/ by using the fact that value(S) con-
tains a supremum over models. Step 4 is purely syntactic,
since quantifier ordering no longer matters after Steps 2—
3. Step 5 finally transforms the formula to normal form,
using either distributive laws (such as (A A B) V C =
(AVC)A(BVC)) or the more-efficient Tseitin transforma-
tion. We show [Gordon et al., 2009] that the Tseitin trans-
formation leads to at most a constant-factor growth in the
length of our formula (compared to potentially-exponential
growth for the simpler distributive procedure). Hence, the
min-normal-form translation (with the Tseitin procedure)
maintains the compactness of FOP.

We extend our semantics in the natural way: value(S), where
S is in a normal form, fills in quantifiers using this convention.

31t is enough to pick B;; > range(L;;), but it is easier to pick
B;; > ZPEPU range(P) coeff(P, L;;) > range(L;;). Here P;;

Figure 2 Transformation to Min-Normal Form

Given a FOP sentence,

1. Move negation and scalar multiplication inward as far
as possible, by distributing positive scalar multiplica-
tion and using rules analogous to De Morgan’s laws:
—ANz.S=Vz.(-5), —(AAB)=(-A)V (-B),
—\Vz.S=Az(-95), —(AVB)=(—A)A(—B).

2. Standardize apart quantified variables to unique
names.

3. “Skolemize”: replace statements \/ z. S with S/{zx —
x(L)}, where L is the list of the names of enclosing
min-quantified variables. E.g., Ay. Az \Vz. P(x)
becomes A y. Az. P(z(y,z)).

4. Remove all A quantifiers; by convention, all free vari-
ables will be implicitly A-quantified.?

5. Ensure that binary operators are applied only in the
order A, V, 4+, using either distributive laws or a
procedure analogous to the Tseitin transformation for
propositional logic [Gordon et al., 2009].

Figure 3 Transformation to Reduced Normal Form

Given a sentence S = C1 A ... A C,, in min-normal form,
replace each superclause C; = (L;1 V ...V L;,) with the
conjunction of sum-clauses L}; A ... A L, A R;, where
L. Lj; = Lij + Bij * (1 — z;5(. . .)), where B;; is a suffi-
ciently large? scalar and z;; (. . .) is anew 0-1 predicate
whose arguments are the free variables in C;

In reduced normal form (Fig. 3) we further replace each su-
perclause with a conjunction of sum-clauses. To do so, we
introduce new variables z;;(x,y) to indicate which sum-
clause L;; gives the maximum value to each original super-
clause C}, and enforce L;; iff its corresponding indicator is
1. The additional sum-clause R; ensures that for every ¢
and for every setting of the free variables in C; there exists
js.t. z;(...) = 1, so that we always enforce at least one
sum-clause out of each disjunction.

S INFERENCE

Given a sentence in reduced normal form, the most basic
reasoning question is to determine whether it is feasible,
that is, whether its value is at least zero. Using our feasibil-
ity test as a primitive, we can place bounds on the value of
a general FOP sentence by binary search. Below, we also
generalize the FOL concept of entailment, and use feasi-
bility to test whether one FOP sentence is a logical conse-

is the set of predicates mentioned in L;;, range(F’) is the differ-
ence between the largest and smallest possible values of F, and
coeff(P, L;;) is the sum of absolute values of scalar multipliers in
the literals based on P in L;;.



quence of another. We will say that inference is the problem
of generating entailed consequences of a given sentence.

Since feasibility in FOP is analogous to satisfiability in
FOL, we could try to design an inference procedure for
FOP by reducing FOP to FOL. However, a good reduc-
tion is not immediately obvious; and in fact, we believe re-
ducing to FOL would lose valuable structure in many sen-
tences, making proofs longer and more difficult to find and
interpret. Instead, we seek a procedure which works di-
rectly on the FOP representation.

In the following subsections, we first define entailment,
soundness, and completeness. We then present a sound
and complete, but non-lifted and therefore intractable, in-
ference procedure. Finally, we give a lifted inference pro-
cedure, and show its soundness and completeness by com-
paring it to the first procedure.

5.1 ENTAILMENT

In this subsection, we focus on the integer fragment of
FOP; we discuss entailment for mixed-integer FOP in
Sec. 6.

In FOL, sentence S entails sentence S (written S |= S”) iff
S’ is true in every model which satisfies S. To extend this
definition to FOP, we replace satisfiability by feasibility:

Definition 5.1 (FOP entailment). S |= S’ iff; for all models
M, [value(S, M) > 0] = [value(S’, M) > 0].

Using the translations from Table 1, together with an appro-
priate threshold (0 for Trans. A, % for Trans. B), it should
be clear that FOP entailment generalizes FOL entailment.

In FOL, we can reduce entailment checking to satisfiability
checking: S |= S’ iff S A =S’ is satisfiable. (This proof
strategy is called refutation.) Similarly, in integer FOP, we
can reduce entailment to feasibility checking. To do so, we
need the following lemmas, whose proofs can be found in
Gordon et al. [2009].

Lemma 5.1. Given a sentence S of integer FOP, we can
efficiently (in low-order polynomial time in the length of
S) compute an €(S) > 0 such that, for all models M,
value(S, M) is an integer multiple of €(5).

Lemma 5.2. Let S and S’ be sentences of integer FOP, and
lete = €(S'). Then S |= S" iff S A (—§ — S') is infeasible.

So, to search for a refutation proof of S = S in FOP, we
pass S A (_6(2& — 8’) to a feasibility checker.

We say that an inference procedure is sound if it generates
only entailed sentences, and complete if it can generate all
entailed sentences. Since refutation is based on feasibility
checking, we say that a feasibility checker is sound if its
reports of infeasibility are always correct, and complete if
it can discover the infeasibility of all truly-infeasible sen-
tences.

Assuming that we have access to a practical, sound, and
complete feasibility checker for FOP, lemma 5.1 shows that
refutation inference is practical, and lemma 5.2 shows that
refutation inference is sound and complete. So, we turn
next to the problem of feasibility checking.

5.2 FEASIBILITY

To try to prove value(S) < 0 for a mixed-integer sentence
S in reduced normal form, we can use the following Naive
Inference procedure. We give more detail on each step of
this procedure below.

1. Propositionalize (or Herbrandize) S.
2. For each finite subproblem of the Herbrandization:

(a) Phrase the subproblem as a mixed-integer linear
feasibility problem and pass it to a MILP solver.

(b) If the MILP is infeasible, terminate and declare
that S is infeasible; otherwise, continue.

Naive Inference is not practical: we must generate and test
all finite subproblems of the propositionalized S. So, in
Sec. 5.3, we prove a “lifting lemma”, showing that we can
avoid propositionalization, and use fully first-order reason-
ing instead. But first, we analyze Naive Inference.

Our propositionalization procedure is analoguous to that
in FOL: we build a Herbrand universe H containing all
ground terms which could possibly be relevant to the value
of S, and substitute them into S in all possible ways. For
example, the sentence height(father(z)) becomes

height(father(nil)) A height(father(father(nil))) A ...

The result will be a “propositional program” S(H), with
no free variables, countably infinitely many distinct atoms,
and countably infinitely many sum-clauses, such that
value(S(H)) = value(S). A more detailed description
of the procedure can be found in Gordon et al. [2009].

Finding value(S(H)) is an optimization problem,
sup,, value(S(H), M). Tt is sufficient to optimize over
Herbrand models, i.e., models in which the set of objects
is H, and in which the function tables implement the
expected semantics (e.g., applying the function father
to the object nil yields the object father(nil)). So, the
only variable part of M is the assignment of (real or
integer) values to syntactically-distinct atoms. Write D
for the Cartesian product of the domains of all distinct
atoms in S(H), and write M(d) for a model which
implements an assignment d € D. We then have
value(S(H)) = supyep value(S(H), M(d)).

Given S(H), we formulate a subproblem by selecting a
subset of sum-clauses: if S(H) = G1 A G2 A ..., where
the G; are ground clauses, and if .J is a subset of the natural
numbers, then subproblem S; is the conjunction (using A)
of all clauses G; for j € J. Forany d € D,

value(S(H), M (d)) < value(Sy, M(d))



as minimizing over fewer clauses only increases the value.

Write D ; for the subspace of D corresponding to the atoms
mentioned in S, and extend M (-) to apply to d € Dy
by assigning predicate values not mentioned in S; arbi-
trarily. Since each G; contains finitely many atoms, D
has finitely many dimensions—that is, a subproblem has
finitely many variables. Also note that D ; can be described
by finitely many linear constraints (upper and lower bounds
on each dimension). Since

value(Sy, M(d)) > 0 < Vj € J. value(G;, M(d)) >0

and since each constraint value(G;, M (d)) > 0 is linear
in d, finding d € D such that value(S;, M(d)) > Ois a
MILP.

Now that we have specified the Naive Inference procedure,
we can show that it is sound and complete:

Lemma 5.3 (completeness). If value(S) < 0, Naive Infer-
ence will eventually find a subproblem Sy s.t. value(Sy) <
0 (and so declare that S is infeasible).

Proof. By the Tychonoff Product Theorem, D is a compact
set under the product topology, since it is the product of
bounded subsets of the reals or integers (each of which is
compact). Write Djg, <o) for the subset of D containing
exactly those assignments d for which value(G;, M (d)) <
0. Crucially, Dig, <) is an open subset: value(G, M (d))
is a linear function of d, and a strict linear inequality on
finitely many variables defines an open set.

If indeed value(S) < 0, then the open sets Djg,<q) for
7 = 1,2,... form a cover of D: by the definition of
value(S), for any assignment d € D there exists a clause
G; s.t. value(G;, M (d)) < 0. Since D is compact, this
open cover must have a finite subcover. Let .J be the set of
indices of any such subcover; then consider the subprob-
lem value(S). Since Dig, <o for j € J is also a cover of
D, we have value(S;) < 0, so we can use this subproblem
to prove value(S) < 0 as claimed. Since Naive Inference
iterates through all possible subproblems, it will eventually
find Sy and declare that value(S) < 0. O

Lemma 5.4 (Soundness). If value(S) > 0, Naive Infer-
ence will never declare that value(S) < 0.

Proof. Naive Inference will only declare that value(S) < 0
if finds an infeasible subproblem. An infeasible subprob-
lem S; must satisfy value(S;) < 0, which is not possible
since value(Sy) > value(S) > 0. O

Combined with the proofs of correctness for our construc-
tion of the feasibility problem and our propositionalization
process [Gordon et al., 2009], Lemmas 5.1-5.4 imply:

Theorem 5.5. Naive Inference with entailment by refuta-
tion is a sound and complete inference method for the inte-
ger fragment of FOP.

Gomory cuts. Naive Inference uses a MILP solver to
check the feasbility of each subproblem. For our purposes,
a particularly convenient solver is based on Gomory cuts
for integer linear programs [Gomory, 1958], along with
their generalization to mixed-integer programs. Since we
will also use a lifted version of Gomory cuts for our lifted
inference procedure below, for clarity, we refer to the non-
lifted cuts as propositional Gomory cuts.

The details of Gomory cuts are available in standard texts
on optimization [Wolsey and Nemhauser, 1988]; here, we
only require the following properties. First, Gomory cuts
work on MILPs in equality form, that is, a set of m lin-
ear equality constraints on n > m nonnegative variables.
Second, given a linear combination of the constraints, we
get a unique Gomory cut, represented as a new linear in-
equality on the n variables.*:> Third, this cut is valid, i.e.,
does not remove any (mixed) integer points from the fea-
sible region. Finally, any valid inequality can be derived
via a finite sequence of Gomory cuts, in which later cuts
work from the expanded set of constraints containing both
the original constraints and all previous cuts.

These properties together ensure that an inference proce-
dure based on Gomory cuts terminates in finite time: gen-
erate all tableau-based Gomory cuts by breadth-first search,
add them one at a time to our set of constraints, and check
for mixed-integral basic feasible solutions after each one.
Eventually, either we will find a feasible point which satis-
fies all integrality constraints, or we will generate a valid in-
equality which cuts away all (real as well as integer) points
from our feasible region. In the latter case, the sequence of
cuts constitutes a proof of infeasibility of the subproblem,
and therefore of the original sentence .S.

5.3 LIFTED INFERENCE

While Naive Inference is sound and complete, it is imprac-
tical: it requires us to generate and test all finite subprob-
lems of the Herbrandization of .S until we find an infeasi-
ble one, and for each subproblem it requires us to gener-
ate and test all Gomory cuts until we prove feasibility or
infeasibility. Instead, we would prefer an inference pro-
cedure more like the highly-successful resolution rule for
first-order logic: since resolution is a lifted inference rule,
aresolution proof in FOL can ignore irrelevant clauses, and
never needs to blow up the size of its assumptions by Her-
brandizing them.

In order to trust our lifted inference rule, we must demon-
strate that it can form the basis of a sound and complete

*To handle inequalities, we can turn them to equalities using
slack variables. We can eliminate the slack variables once we find
the cut: if our original constraint is Az + b = s > 0, with slack
variables s, we can substitute Ax + b for s in the cut.

>The linear combination is usually chosen as a row of a sim-
plex tableau; this restriction can help focus search, but is not nec-
essary.



inference procedure (as resolution does for FOL); else, we
might gain more-efficient inference, but lose the ability to
prove some true statements. To do so, we will provide
a lifting lemma: given a propositional proof (such as the
one found by Naive Inference using propositional Gomory
cuts), the lifting lemma will show that we can duplicate
each step of the proof using our lifted inference rule. So,
we can conclude that we do not lose the ability to prove
any true statements when we move to lifted inference, and
also that the lifted proofs are no longer than the original
propositional proofs. Combined with the observations that
the lifted inference rule allows us to consider large numbers
of propositional proofs at once, and that lifting can signif-
icantly shorten proofs, this fact suggests that lifted infer-
ence will make it much more practical to search for proofs
in FOP.

We start by describing our inference rule, which we call
lifted Gomory cuts. This rule is a generalization of FOL’s
resolution rule, in which we combine two clauses by elim-
inating a resolvent literal which appears positively in one
and negatively in the other. (See Gordon et al. [2009] for
a proof.) However, while resolution only combines pairs
of clauses, our lifted Gomory cut rule can work from any
number of clauses at once. Just as resolution provers unify
expressions across clauses to find resolvents, we can use
variable substitutions to simplify our clause set before cut-
ting. And, just as a resolution proof ends by deriving the
empty clause, a proof using lifted Gomory cuts ends when
we can use simple linear algebra to prove that our sen-
tence’s feasible region is empty.

Each lifted Gomory cut tries to prove value(S) < 0 us-
ing a subset of the sum-clauses of S. Just as we did for
Naive Inference, we build a MILP representing the feasi-
bility of our chosen subset of sum-clauses, and perform a
Gomory cut in this MILP. However, in contrast to Naive
Inference, lifted cuts can work from non-ground clauses;
in this case, the resulting cut holds for many subproblems
simultaneously (corresponding to many ways to substitute
ground terms into our clauses). We represent the cuts for
all of these subproblems as a new, lifted sum-clause which
has value < 0 in model M only if value(S, M) < 0. Be-
cause of this fact, conjoining this new clause to .S does not
change whether value(S) < 0.

To build a lifted Gomory cut, we start from a sentence .S of
FOP in reduced normal form. We then perform the follow-
ing steps:

1. Select sum-clauses Ly, Lo, ... L, from S, along with
a variable substitution U. We may pick the same
clause twice, in which case we standardize the copies
apart. As a special case, to reason about predicate
bounds, we allow some L; to be implicit clauses of the
form p(z,y,...) —loru—p(z,y,...), where [l,u] is
the declared range for p, and x, y, . . . are standardized
apart. Let L; = L; /U for each i.

2. Introduce a new, temporary MILP variable (zero-
argument predicate) for each textually distinct atom
in the clauses L}, and substitute the variables into the
L to get propositional sum-clauses L. Write x for
the vector of temporary variables.

3. Convert LY A LY A ... to a mixed integer feasibility
problem P as described for subproblems in Naive In-
ference. This step introduces slack variables s; > 0.

4. Pick a linear combination of constraints, and use the
(propositional) Gomory method to derive a new, valid
inequality C' > 0 for P, where C contains z and s;.

5. Eliminate the slack variables, as described previously
for Naive Inference, leaving an inequality C' > 0
written in terms of x only. For convenience, we al-
low weakening the cut by increasing the coefficient
of each s; before eliminating it. (Weakening is never
necessary, but can help interpretation.)

6. Replace each temporary variable in C” with its corre-
sponding atom, yielding a lifted inequality L > 0.

7. Ensure no object variable in L conflicts with those in
S by standardizing apart L. Call the result L’. Set
S’ = S AL, and use S’ to continue generating lifted
Gomory cuts.

Note that, while there are well-studied heuristics for FOL
which choose a subset of clauses and a variable substitution
intelligently, so that unification and resolution are likely to
result in refutation quickly, the corresponding search con-
trol problem for FOP is a subject of future research.

Detailed proof sketches of the following two lemmas can
be found in Gordon et al. [2009].

Lemma 5.6 (Soundness). Lifted Gomory cuts, with proof
by refutation, are a sound inference procedure for FOP.

Lemma 5.7 (Lifting). Any propositional proof produced
by Naive Inference using propositional Gomory cuts can
be duplicated using lifted Gomory cuts.

Combining the two lemmas, we obtain our desired result:

Theorem 5.8. Lifted Gomory cuts, together with proof by
refutation, form a sound and complete inference procedure
for the integer fragment of FOP.

5.4 AN EXAMPLE PROOF

For a simple demonstration of a proof by lifted Gomory
cuts, consider the FOP sentence F' = x (i) — 2x(S5(7)) from
Sec. 3.2. An interesting fact about F’ is that, in every sat-
isfying model, x () must “eventually” be zero: every time
we move from ¢ to S(), the corresponding = must decrease
by at least a factor of two, reaching 0 in at most log(8) = 3
steps. In particular, for any 4, (S(S(S(¢)))) must be zero.

More formally, we can show F' = —z(S(S(S(4)))) using
a single lifted Gomory cut: pick four copies of F' and one
copy of the implicit clause 8 — 2:(7). Standardize apart (say,



using variables j, k,l,m,n), and apply the substitution
{j =ik — 5(), 1 — S(5(i),m — S(S(5(i)),n —
i}. Use the linear combination (1,2,4,8,1)/16 to get the
constraint 3 — z(S(S(S(i)))) > 0, which leads to the cut
—z(S(5(5(2)))) = 0.

6 EXTENSIONS

Equality. As defined so far, FOP cannot reason about ob-
ject equality; that is, it cannot test whether two objects
which appear syntactically different are in fact the same.
Instead, object equality shows up only because all function
and predicate expressions involving the two distinct names
will evaluate to the same value. To represent equality, we
could add a distinguished equality predicate equals(x, y) to
FOP, along with appropriate new semantics. Such a treat-
ment would be in many ways analogous to standard ex-
tensions of FOL to include equality; for example, it would
require a new inference rule, analogous to paramodulation
in FOL with equality.

Sums. Another useful extension to FOP would be a sum
quantifier: if I is our context valuation, we define ) z. P
as the sum, over all distinct objects y from our model M, of
the value of P under I[x — y]. This extension makes most
sense in conjunction with object equality, since an equality
predicate gives us more control over which terms appear in
our sum.

Since the sum quantifier can represent a sum over infinitely
many terms, we need additional restrictions to ensure con-
vergence of the sum to a unique value. The best way to im-
plement such restrictions is not immediately obvious, but
is an interesting direction for future research.

Inference in mixed-integer FOP. Lifted Gomory cuts and
refutation are sound and complete for integer FOP; unfortu-
nately, the situation is more complicated for general mixed-
integer sentences. Our lifted feasibility test (Sec. 5.3)
works equally well for integer or mixed-integer sentences,
and Lemmas 5.3 and 5.4 show that it is sound and com-
plete in either case. However, Lemma 5.1 does not hold
for mixed-integer sentences (see Gordon et al. [2009] for a
counterexample), so we can no longer reduce entailment to
feasibility checking by using a margin to convert from a <
bound to a < bound.

To get around this problem, we can strengthen or weaken
the definition of entailment:

Definition 6.1 (e-entailment). Sentence S e-entails S,
S = 9, iff [value(S, M) > 0] = [value(S’, M) > €.

Fore > 0, S | 5’ is stronger than S | S'; for e < 0,
it is weaker. With this altered definition, S A (—e — S”) is
feasible iff S |=. S’, and so we can test e-entailment using
our lifted feasibility procedure from Sec. 5.3. If we wish
to know whether S |= S, a reasonable procedure might be
to test S = S’ for one or more values of ¢; however, this

procedure may give up either soundness (if we conclude
entailment based on any efficiently computable ¢ < 0) or
completeness (if we require ¢ > (). On the other hand,
in some applications, “approximate entailment” might be a
useful conclusion in its own right.

Direct inference of values. Our feasibility checking proce-
dure compares the value of a sentence to a threshold. While
we can use this test together with binary search to discover
tight bounds on a sentence’s value, we could also ask for a
procedure which discovers a sentence’s value directly.

We can build such a procedure easily: given a sentence .S,
let z be a new zero-argument predicate which doesn’t ap-
pear in S. Then, the feasible region of S’ = S — z corre-
sponds to the epigraph of S, that is, the set of pairs (M, z)
where M is a model of S and z < value(S, M).

If we now run our lifted Gomory cut procedure on S’, each
new cut will place a new bound on the feasible region of S’
and therefore on the epigraph of S. Since we are interested
in the maximal feasible value of z, we can focus our search
to try to pin down this maximal value quickly: first note
that z will appear in every clause of the reduced normal
form of S’, and so will always appear in the MILP which
we construct in Step 3 of the cut procedure. So, in Step 4
(where we pick a linear combination of constraints, thereby
specifying a cut which removes a corner of our subprob-
lem’s relaxed feasible region), we can make sure to cut off
a corner which has maximal z: we can find such a corner
by optimizing z over our relaxed feasible region, and then
make a cut by choosing a row of the simplex tableau corre-
sponding to this corner. A further benefit of this procedure
is that the optimal z values for each of our subproblems
will be upper bounds on value(.S).

In applications where we care about the exact value of a
sentence S, rather than merely its sign, we may be inter-
ested in the following extension of entailment:

Definition 6.2 (Strong entailment). Sentence S strongly
entails sentence S’, S E* S', iff, for all models M,
value(S’, M) > value(S, M).

(We could also define S | S’ to parallel Defn. 6.1.)
Strong entailment implies ordinary FOP entailment, but not
vice versa. If S |=* S’, then the conjunction S A S’ has the
same value as .S in any model. By contrast, if we only have
S = S’, the conjunction S A S’ only preserves whether the
value is > 0 in each model.

Concrete FOP. One special case of FOP with equality is
particularly useful in practice: if we assume unique names
(all syntactically-distinct object constants refer to distinct
objects), known functions (all function values are prespec-
ified), and domain closure (there are no objects other than
the ones mentioned in the sentence), we get a restricted ver-
sion of FOP in which inference is much easier. We will call
this version concrete FOP.



In particular, in concrete FOP, we can take the Herbrand
universe for any sentence S to include all and only the
named object constants, and so the concrete Herbrandiza-
tion of S will be finite. There is then no need to consider
finite subsets of the Herbrandized sentence: instead, we can
convert the entire Herbrandized sentence to a MILP (as de-
scribed in Sec. 5.2) and solve it directly. Since the MILP
is finite, we can efficiently compute a threshold ¢ which
allows us to reduce entailment to feasibility. And, no re-
strictions on the use of the ) | quantifier are required, since
we need not worry about convergence of sums.

In concrete FOP, quantifiers can be seen as macros: any
expression containing quantifiers is equivalent to some fi-
nite, quantifier-free expression, and quantified statements
merely prescribe a way to generate repetitive pieces of a
ground formula. The representative power of concrete FOP
is therefore no greater than that of ordinary MILPs, al-
though equivalent problem statements may still be far more
compact in concrete FOP than they are as MILPs.

Even in concrete FOP, lifted inference can still be useful,
since it allows us to perform many propositional inference
steps simultaneously. Many papers about “lifted inference”
consider only this sort of lifting, in which we operate on a
lifted representation which is more compact than the corre-
sponding propositional representation, but still only equiv-
alently powerful. The true power of lifted inference, how-
ever, only becomes apparent when our lifted representation
is capable of representing concepts which are impossible to
specify using only propositional syntax (as is true both for
FOL and (non-concrete) FOP).

7 CONCLUSION AND FUTURE WORK

We have defined first-order programming, and established
formal methods for reasoning about first-order programs,
including a sound and complete inference procedure for in-
teger FOP. Future work includes extending FOP to include
equality and a summation quantifier. We also plan to exper-
iment with lifted Gomory cuts, demonstrating their ability
to make proofs more compact than corresponding proofs
in FOL or MILP. Finally, we plan to implement our lifted
proof-search procedure, and test it on real-world examples
such as first-order stochastic programs with recourse. Find-
ing proofs quickly in real examples will require us to gen-
eralize standard FOL search-control heuristics to FOP.
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