Online Fitted Reinforcement Learning

Geoffrey J. Gordon
Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213

ggordon@cs.cmu.edu

Abstract

My paper in the main portion of the con-
ference deals with fitted value iteration or Q-
learning for offline problems, :.e., those where
we have a model of the environment so that
we can examine arbitrary transitions in arbi-
trary order. The same techniques also allow
us to do Q-learning for an online problem,
i.e., one where we have no model but must
instead perform experiments inside the MDP
to gather data. I will describe how.

1 INTRODUCTION

For a more detailed coverage of the material in this
introduction, see (Gordon, 1995a, Gordon, 1995b).

Suppose we have a discounted Markov decision pro-
cess M. Let Ths be the @-learning backup operator
for M. Let A be an averaging function approximator
with associated mapping M4. Then the fitted backup
operator M4 o Thy is a contraction mapping, so that
iteration of this operator always converges.

The fitted backup operator M4 0Ty is useful for offline
dynamic programming only if it is much cheaper to
compute than the exact backup operator Ths. One
way to make sure that the fitted operator is cheap is
to require that M4 pay attention only to a small subset
of all possible (state, action) pairs: in this case, there
is no need to compute the other components of Ty,
because they will be ignored anyway.

For online reinforcement learning, a function approx-
imator A which ignores most (state, action) pairs is
inappropriate: since we no longer have complete con-
trol over which transitions we observe, and since such
an A derives information only from a small fraction
of the possible transitions, we will be forced to ignore
most of our training data. So, for online learning, we
want M4 to depend on every (state, action) pair rather
than just a few, so that we can derive information from
every transition that we observe.

The question, then, is how to keep track of the learned
@ function efficiently. For an offline problem, we sim-
ply remembered the @ values for the (state, action)
pairs that M4 payed attention to. We can no longer
do so when M4 pays attention to all states and ac-
tions. The next section describes a way to keep track
of the @ function for online learning.

2 FEATURE-BASED
APPROXIMATORS

In this section, we will present a simple randomized
algorithm for offline learning, then modify it until it
is appropriate for online problems as well. The final
algorithm will collect data by following a fixed explo-
ration policy 7, which is assumed to be given; but
it will compute an approximation to @*, the optimal
@ function, rather than to Q™. Just as in (Gordon,
1995a), the algorithm can be viewed as approximating
the solution to our original MDP by solving a simpler
MDP exactly; but now, since we don’t know the orig-
inal MDP, we will be unable to compute the simpler
MDP.

The algorithm of this section is, to our knowledge,
the first online reinforcement learning algorithm for
general MDPs which can use function approximators
stronger than state aggregation while maintaining a
convergence guarantee.

Suppose that we divide the approximation mapping
M4 into two stages, an encode and a decode, so that
My = MAfl o M§. The encode stage, M3, will esti-
mate the values of some number of features from the
target () function, while the decode stage, M4, will
reconstruct the fitted @ function from the values of
the features. For offline problems, M3 will just pick
out the values of a few selected (state, action) pairs,
while for online problems M § will build its features by
averaging many such pairs. For any given My, there
may be many such decompositions; we will assume
that the chosen decomposition is such that M§ and
Mg are monotone linear max-norm nonexpansions.

Any mapping M4 can be so decomposed: at the very
least, we can take M§ to be the identity (so that the
value of each (state, action) pair is a separate feature)
and M4 = M,. In this paper, though, we are par-
ticularly interested in those mappings which can be
decomposed using only a few features. That is, if M
has n states and m actions, and if M4 uses k features,
then M4 € (R"™ — R¥) and M4 € (R* — R™™) for
k< nm.

Let x be a state, a be an action, and f be a feature.
Let ¢ be a vector in R*™ and # a vector in R*. Then
we will define p;xa and pgaf as follows:

M3l = D Pieatra
> plas0
s

In the notation of (Gordon, 1995b), these definitions
mean that the coefficients of M4 are

d
617@95 = Zp:cafp]e‘yb
f

(Note that we have omitted the constants 8y, and kgzq
from our notation, so that Ey Eb Brayy = 1. This
omission involves no loss of generality, since we can
always take care of these constants by adding dummy
states whose values are fixed appropriately.) The as-
sumption that M§ and Mj are max-norm nonexpan-
sions now translates to the equations 3~ " Piea = 1

and Efpgaf =1.

Consider the following algorithm: for ¢ from 1 onward,
choose a feature f; uniformly, then generate a state
and action a; with probability Pfizea,- Next, observe
a transition from state z; under action a; with cost ¢;
to state y;. Finally, if @ is the current vector of feature
values, perform the @-learning-like update

[MA(O),a =

. d
O —ay Co+ *ymmepytbgHg
g

Here oy; is a learning rate, which is assumed to be
defined for all f at each ¢, but to be nonzero for only
fi at time t. The expected value of this update is

- d
E(e: + 'ymblnzpytbgﬁg)

g
= Zzp;xa(cl‘a ‘1‘721%@1/ mbinngbggg)
T a Y g

If we compute this update for all features f and write
the result in matrix form, we have that the expected
update to 8 is

M4(Tar (M4(0)))

Since Thy is a max-norm contraction with factor v and
M§ and M¢ are nonexpansions, the compound opera-
tor M5 oTyro0 Mj 1s a max-norm contraction with fac-
tor v; therefore this operator has a unique fixed point

g, and theorem 1 of (Jaakkola et al., 1994) shows that

the above algorithm converges with probability 1 to g
as long as for all f the learning rates satisfy

Zatf:oo Za?f<oo
t t

Note that Mg(é) is the fixed point of M4 o Ty, so the
analyses of (Gordon, 1995a) apply.

We can modify the above algorithm slightly as follows:
suppose that, on each time step ¢, we first generate a
state z; and action a; with probability ps,q,, then gen-
erate a feature f; with probability p}tmat. Then Bayes’
rule gives us the probability of seeing a particular state
and action on time step ¢, given the value of f;:

o mabre
Zy 2 P}ybpyb foa

This modified algorithm is essentially the same as the
original one; the main difference is that it would be
time-consuming to compute the probabilities p7,,. In
other words, we have substituted some effectively un-
known encode stage Mjl into our function approxima-
tor while leaving the decode stage the same. (Actually,

Pz =z,ar=al|fi = f)

MjI 1s not completely unknown: for example, p5,, can
only be nonzero if p}m is. Also, one might hope that,
if the states and actions being averaged together to
find the value of feature f really are similar, the exact
coefficients of the average might not matter too much.)

Of course, we cannot apply either of the above al-
gorithms to an online problem, because they require
observing a transition from an arbitrary state at
each time step. We can, however, do the following
(see (Singh et al., 1995) for a similar analysis). Sup-
pose that we follow a fixed exploration policy # in
M. Then there will be a fixed limiting frequency p7,
with which we will visit each state and action. Just
as before, we can generate a feature randomly on each
step with probabilities p}m and perform the above Q-
learning-like backup. We will let p;fa be the limit-
ing frequency of visits to state and action a given
that the current feature is f, and we will let M 3™ be
the mapping with coefficients p;fa. (Note that these
frequencies are impossible to compute without knowl-
edge of M.) If the states and actions on each step
were independent, then we could again apply theorem
1 from (Jaakkola et al., 1994) to show convergence.

The observations on different time steps are not in fact
independent; but for any € we can choose a sufficiently
large M that, over an M-step interval, the expected
frequency of visits to any state x and action a while up-
dating feature f will be within € of p;’;a. That means
that, if we collect updates for M steps before applying
them, the expected update to 0 is

DD 0+ €pea) [T (ME(0))]ea

for some constants —e < €74 < €.

We can compute the following bound for the difference
between #; and the expected update to 0;:

‘(Z > (Pl + €raa) T (M5 (0))],) — 0y

<SS chaalTas (MA(0))]ea| +

(M5 (T (MA0))], b |

< e [TwM50) ~ TwMAE))] |+
2 X egen [T LA@))] [+ 0 =01
< Ce [TM<MA<9>>—TM<M,1<5>>]M +
Ce [Tar (MA@ | + 110
< (L+Cepyllo - dl + Cerlld]

for some constant C'.

For sufficiently small ¢, this inequality means that
there exists a 7/ < 1 and an ¢’ so that the difference
between 0 and the expected update to f; is less than

(¢ + 7116 — 0]])). A minor modification to theorem
1 of (Jaakkola et al., 1994) now shows that (for ap-
propriate learning rates) the algorithm converges with
probability 1 to the region

~ e
{olw-ar< =}

By increasing M, we can make v — 4 and ¢ — 0, so
that this region becomes as small as necessary.

Finally, by an analysis similar to the one in theorem 3
of (Jaakkola et al., 1994), we can show that the differ-
ence between updating every step and accumulating
the updates for M steps vanishes in the limit. The
reason for this effect is that, for any starting point 8,
once the learning rate is small enough, the difference
between the online update to # and the M-step up-
date to # is dwarfed by the difference between # and
MY (Tay(M3(0))). The fact that online updating is
equivalent in the limit to M-step updating for all M
means, in turn, that M-step and N-step updating are
equivalent; that is, no matter how frequently or infre-
quently we perform the updating, we always reach 6
eventually.

An interesting early version of this algorithm was de-
scribed in (Gordon, 1995b). According to that algo-
rithm, the agent would begin with an offline approxi-
mator such as k-nearest-neighbor that pays attention
only to some sample of states X;. After observing

a transition out of some state z ¢ Xy, the agent
would find the nearest state z’ € Xj, pretend that
the transition actually originated from z’, and make a
@-learning backup accordingly. The paper presented
no convergence analysis, and in fact, since the algo-
rithm did not follow a fixed exploration policy, it could
oscillate forever.

References

G. J. Gordon. Stable function approximation in dy-
namic programming. In Machine Learning (proceed-
ings of the twelfth international conference), San Fran-
cisco, CA, 1995. Morgan Kaufmann.

G. J. Gordon. Stable function approximation in dy-
namic programming. Technical Report CS-95-103,
CMU, 1995.

T. Jaakkola, M. I. Jordan, and S. P. Singh. On the
convergence of stochastic iterative dynamic program-
ming algorithms. Neural Computation, 6(6):1185~
1201, 1994.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Rein-
forcement learning with soft state aggregation. In
G. Tesauro and D. Touretzky, editors, Advances in
Neural Information Processing Systems, volume 7.
Morgan Kaufmann, 1995.

