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Abstract— The exploration problem is a central issue in and establishing large, self-sufficient planetary settiets
mobile robotics. A complete coverage is not practical if the (e.g., site selection, processing equipment, and marnurtt
environment is large with a few small hotspots, and the qqycts). Without loss of generality, the work in this pape

sampling cost is high. So, it is desirable to build robot tears . : . . .
that can coordinate to maximize sampling at these hotspots Will b€ discussed in the context of this prospecting task.

while minimizing resource costs, and consequently learn nie The first aspect of our goal pertains to theploration
accurately about properties of such environmental phenomea.  strategy how do the robots decide where to explore next?
An important issue in designing such teams is thexploration  Traditionally, conventional sampling methods [2] such as
strategy. The contribution of this paper is in the evaluation Raster ScanningRS), Simple Random Samplif§RS), and

of an adaptive exploration strategy called Adaptive Cluster - L s

Sampling (ACS), which is demonstrated to reduce the resource stratlfled_ random §ampllng have been used in single-robot
costs (i.e., mission time and energy consumption) of a robot €xploration. The first approach acquires measurements at
team, and yield more information about the environment uniform intervals, thus incurring high sampling and travel
by directing robot exploration towards hotspots. Due to the costs to achieve adequate sampling density. The second
adaptive nature of the strategy, it is not obvious how the 5,5105ch selects a random sample of locations and makes

sampled data can be used to provide unbiased, low-variance ts at h of th lected | ti H it
estimates of the properties. This paper therefore discussehow measurements al each or tne selected locations. HoOwever, |

estimators that are Rao-Blackwellized can be used to achieve ignores the fact that hotspots such as mineral deposits are
low error. This paper also presents the first analysis of the clustered and sometimes rare. This results in an imprecise
characteristics of the environmental phenomena that favor (j.e., large variance) mineral density estimate of the evqul

the ACS strategy and estimators. Quantitative experimenta region. Stratified random sampling requires prior knowtedg

results in a mineral prospecting task simulation show that - L - .
our approach is more efficient in exploration by yielding more of the mineral distribution for allocating the appropriate

minerals and information with fewer resources and providing ~Sampling effort among strata. Without such informatios, it
more precise mineral density estimates than previous methts.  efficiency degrades to that of SRS. There is one other con-

ventional sampling scheme call&ystematic SamplingS)
|. INTRODUCTION [3], which spaces out the selected locations in a systematic
The problem of exploring an unknown environment ignanner. Though it has not been utilized in robot exploration
a central issue in mobile robotics. Typically, it requirest will be used as a method of comparison in our paper.
sampling the entire terrain [1]. However, a complete cogyera This paper presents a multi-robot wide-area exploration
is not practical in terms of resource costs if the environimetrategy that is based on adaptive sampling. Assume that the
is large with only a few small-scale features of interesgxplored region is discretized into a grid 8fsampling units.
or “hotspots”, and the sampling cost is high. This arisefh contrast to conventional samplingdaptive sampling
in applications like planetary exploration (e.g., antiarct refers to sampling strategies in which the procedure for
meteorite search, and prospecting for mineral deposits eelecting units to be included in the sample depends on the
localized methane sources on Mars), and environment asémpling data observed during exploration. To satisfy the
ecological monitoring (e.g., monitoring of ocean phenoaensecond aspect of our goal, adaptive sampling can exploit
(plankton bloom), rare species, pollution, or contamimati the characteristics of the environmental phenomena (i.e.,
In this paper, we consider the above exploration problespatial clustering of mineral deposits) to obtain more jseec
with a team of robots, which can potentially complete thestimates of the properties (e.g., mineral density of exglo
task faster than a single robot. A robot team is also mornggion) than conventional strategies for a given sample. siz
robust to failures by providing redundancy, but its perfor- |n this paper, we describe and evaluate a specific explo-
mance may be adversely affected by physical interferengation strategy known aadaptive Cluster SamplingACS)
between robots. Our goal is to design and build robot teangSection Ill), which has desirable benefits: it (1) yields
that can coordinate to (1) explore intelligently by maxim@ more minerals and information about the explored region by
sampling at these hotspots while minimizing resource costgirecting robot exploration towards hotspots (i.e., arefis
and consequently (2) learn more accurately about progertigigh mineral density), thus providing detailed maps of the
of such environmental phenomena. In particular, we focusoundaries of such areas, and (2) reduces the resource costs
on building a robot team for surface prospectingifsitu  of the robot team (Section VI).
mineral resources on Mars, which is crucial to planning The adaptive nature of this scheme incurs a considerable
) . o bias in conventional estimators due to a large proportion of
The authors are with Carnegie Mellon University, PittstyrBA 15213, . .
USA  (bryanl ow@s. cnu. edu, ggor don@s. cmu. edu, sampling data observed in the hotspots. Consequently, two
jmd@s. cmu. edu, pkk@ce. cnu. edu). unbiased estimators are proposed in [3] for the ACS strategy



(Section V). This paper examines how the error of thesby the ACS strategy [3], which proceeds as follows: an ihitia
estimators can be reduced througtao-Blackwellization sample of sizen; is taken using SRS without replacement by
(Section V), in which the outputs of the estimators ar¢he base or robot auctioneer. If the observed mineral conten
averaged over several different ordered samples that avkan initially sampled unit satisfies a certain conditién
constructed by permuting the original sampled data. We haye.g., mineral content> predefined threshold), the unit's
also presented the first analysis of the characteristics andighborhood is added to the sample. For every unit, its
distribution of the environmental phenomena that favor theeighborhood consists of the unit and a set of “neighboring”
ACS strategy (Section 1lI-A) and estimators (Section IV-units (e.g., top, bottom, left, and right units). If any athe
C). Before discussing the ACS strategy and estimators, amits in that neighborhood satisty, their neighborhoods are
overview of the multi-robot architecture will be presented also included in the sample. This process is repeated until
1. MULTI-ROBOT ARCHITECTURE no more units that satisf¢’ are encountered.

The multi-robot architecture comprises the teleoperation At this stage, clusters of units are obtained. Ealttster
base and robot prospectors. To facilitate the teleopesatocontains units that satisfg’ and a boundary oédge units
analysis and monitoring, the base maintains a plan of then edge unitis a unit that does not satis§/ but is in the
robot tours to visit the selected units to be sampled, andreeighborhood of a unit that does. The final sample of size
list of sampled units and their corresponding mineral cotite v consists of up to; clusters. There can be fewer than
Each robot maintains an individual tour of its assignedaunitdistinct clusters, since two units in the initial samplettha
to be sampled, and shares spectrometric data of its sampkatisfy C' could have been selected from the same cluster. If
units with the base and robot team. The base continuousdyunit in the initial sample does not satisfy it is considered
receives sampling data from the robots, selects new sagnplito be a cluster of size one.
units based on the ACS strategy described in Section IIl, Let thenetworkA; that is generated by unitbe defined as
and replans the robot tours to visit the new and curremt cluster generated by that unit with its edge units removed.
sampling units. After all selected units have been sampled, selection of any unit in4; leads to the selection of all
it determines the mineral density estimates of the exploraits in .A;. Any unit that does not satisf¢’ is a network
region. These estimates can also be computed in a distlibuef size one since its selection does not lead to the inclusion
manner among the robots as discussed below. of any other units. This implies that any edge unit is also

Our planning problem is an instance of thetraveling a network of size one. Hence, any cluster of size larger
salesman problem wherk is the number of robots. The than 1 can be decomposed into a network with units that
selected sampling units can be considered as cities to batisfy C, and also networks (edge units) of size one that
visited. We consider two different optimality criteria: mi  do not satisfyC. Clusters may overlap on their edge units.
mizing (1) total energy consumption of all robots, and (2)Jn contrast, networks are disjoint and form a partition & th
maximum mission time of any robot. In general, this problenentire population of units.
is NP-hard. So, our centralized planner at the base uses aFig. 1b illustrates the adaptive cluster sample technique.
modified Minimum Spanning Tree (MST) heuristic proposed he values in this table are obtained in a simulation test run
in [4] to obtain 2- and R-competitive tour allocation for on the prospecting region in Fig. 1a, which is discretized
the first and second criterion respectively. Alternatiyéfye  into a 28 x20 grid of square sampling units (thus, the total
centralized planner can be easily replaced by a distributedimber of unitsN = 560). The condition for sampling a
auction-based planner [4] in every robot to eliminate aintr unit's neighborhood is defined &= (y > 1.0 wt%) where
point of failure. In this case, each robot uses the AC$ is the observed mineral content of a sampling unit. The
strategy directly for exploration; whenever it encounteess  boxed values correspond to units from the initial sample Th
sampling units, it initiates an auction with the other rabotlightly and darkly shaded units correspond, respectiviely,
to allocate the new and current sampling units. The bid&e network and edge units of a cluster. Note that the network
are constructed according to the chosen criterion disdusswithin the cluster is intersected twice by the initial sampl
above. This process is elaborated in [4]. A. Cost Analysis of ACS

In terms of computational complexity, the centralized This section analyzes the cost of ACS over SRS for a given
and distributed planners requi@((k + n)nlog,n) and final sample sizes. If the cost of a multi-robot exploration
O(n?log, n) time respectively where: is the number of strategy is attributed primarily to sampling and motiorg(ge.
selected units to be sampled. Note thats usually much see Section VI), only the motion costs of ACS and SRS can
greater thark and this results in the same polynomial timediffer due to the same. In particular, we compare the worst-
complexity for both planners. In terms of communicatiorcase motion costs of ACS and SRS; let the ratio of these
complexity, the centralized and distributed planners irequ costs bep. Then, using the MST heuristic (Section Ip,is
respectivelyO(k) and O(kn) messages to replan whenevetthe ratio of the MST size on the, randomly selected initial
new sampling units are selected. sample units together with the cost @f — n;) adaptively

I11. ADAPTIVE CLUSTER SAMPLING added units to the MST size on theandomly selected units.

In a large environment with only a few small hotspots, itSo, if p < 1, the worst-case tour allocation cost of ACS is
is often useful after locating a sampling unit in a hotspot téess than that of SRS for either of the optimality criteria.
continue exploring its neighborhood. One way of doing so i$he results below were processed from the MST sizes for



1 . . ..
\ @ mean estimatoz = v~ 'Y, y; (Section VI). Kriging

3 [Lo0] (or Gaussian process regression) [3] is a more sophidticate
8 25 ol a0 350 = alternative but will be similarly biased. Hence, unbiased
1 171163 estimators are needed for the ACS scheme. Two of these
are presented in this section.

15 A. Modified Horvitz-Thompson Estimator
The first ACS estimator is modified from the Horvitz-

Thompson (HT) estimator [3]. LeB; be the set of units
05 p70 in the ith network andm; be the number of units iB;.
Note thatB; is defined in the same way as netwark
in Section Ill except that its index refers to the network

. (@ (b :
Fig. 1. (érl]) Syntglet}c zirconium dlgtgggtlg]l (?ED) Ig a?UFEXCPSFOSpeCt"}g label rather than the unit label. The probability that thigah
region with population meam = 0. . artial example : -
corresponding to boxed area (dashed) in (a). sample intersects netwoik; is
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Fig. 2. Graphs of proportion of adaptively added units infihal sample . . =1 .
vs. (a) initial sample size, and (b) cost ratio with varyimifgesolutions. Wherey; is the total mineral content of thigh network and

K is the total number of distinct networks in the population.
9 w1 cannot be computed directly due to the unknayis for
blénsampled networks. So, to form an unbiased estimatar of

each term in the sum can be multiplied by ~;, wherel; is

an indicator variable of value 1 if the initial sample intects

ny = 1,..., N, each of which was obtained by averagin
over 1000 test runs.

Fig. 2a shows the largest proportion of units that can
adaptively added (i.e., largest value(of-n4 ) /v) when ACS

does not cost more than SRS (i.es 1). This is illustrated B;, and 0 otherwise. The expected valuelghr is 1, S0 our

with varying grid_ resolqtions (i-e7x5, 14x10, 28X2(.) grids estimator is unbiased; sindg is 0 for unsampled networks

of square sampll_n’g umts), the cost of each adapt!vely adO||er(§ormation about these networks are not needed to cakulat
unit is thus a unit's width. Note that when no units can b% ¢ estimator. Apolving this trick vields theodified HT
adaptively added, the final sample sizis equal to the initial egt'mat:)rof ; PRiyIng this trick i "

sample sizen;. As a result, ACS degrades to SRS and they : e B K yili y; 5
have the same costs (i.¢.= 1). The results show that the HHT = £ Nm; ; N @)
maximum proportion of units that can be adaptively addegnere s; is the number of distinct networks intersected by
decreases with increasing initial sample size. This insplige injtial sample.

that for sampling large hotspots, a smaller initial sample For practical use of the HT estimator, it is important to
(n1/N < 0.05) has to be used in order for ACS to coSthe aple to estimate its variance from the sample. There is
less than SRS: this allows more units to _b(_a_adap'uvely add%dsimple closed-form formula which can be used for this
from the large hotspots located by the initial sample. Notgurpose.r; has been defined to be the probability that the
that a smaller initial sample is also sufficient for locatingpjtial sample intersects théth network. Definer; to be
large hotspots. On the other hand, a larger initial sampige probability that the initial sample intersects both jite
(0.1 < ny/N < 0.13) can be used for small hotspots, asand xth networks. Ifj = k, thenr;, = ;. Otherwise,
they require fewer adaptively added units and are harder {§ computer,,, notice that the probability that the initial

find. Also, though a higher grid resolution decreases thgymple intersects neither netwojkior networkk is
proportion of adaptively added units, it provides a more

N —m. — N

detailed mapping of the hotspot boundaries. P #1011 #1) = ( . mk) ( ) '
Fig. 2b shows the proportion of units that can be adaptivelg th bability that the initi Inl leirt nlt ithh

added (i.e.(v — ny)/v) where the cost ratip is minimized > \N€ Proba ity that the Initial sample Intersects et

for varyingn;. The results show that the proportion of units®" kth network is1— P(I; # 1N I # 1), and

that can be adaptively added decreases with increasing cost ~ mjx =7 + 7 — (1 = P(I; #1 N1 #1)) .
ratio; since an adaptively added unit does not cost more thangijnce ;1 is a sum of several terms, its variance can

an initial sample unit, decreasing the proportion of ad@fi pe derived by taking the sum of covariances between these

added units increases the cost of ACS. terms: K K « .
o _ yily oyl
V. UNBIASED ACS ESTIMATORS varfiipr] = Z cov] O N
Since the ACS scheme results in a large proportion of j=1k=1 J k (3)
high mineral content data sampled from the hotspots, it KK vi oy
1 . e . = S B o, )
will incur a considerable bias with the conventional sample Nm; Ny, J



(3) cannot be computed from the sample data since not &l Efficiency Analysis of ACS Estimators

the networks in the population are necessarily sampled. So,The estimator efficiency of ACS over SRS depends on
to obtain an unbiased estimator of the variance, we can uséh® characteristics of the environmental phenomena (i.e.,
similar trick as before: each term is multiplied By}, /7;;, ~ mineral distribution being sampled). In particuldf x is

(which has an expected value of 1) to get more efficient than the conventional sample mgdor SRS
. N if var[ var|fi|. Using the theory of SRS [3],
o EE g codr, I ] < vaijil. Using the theory 13l
Var[:uHT] - ZZ N7; Ny, Tik Var[A] _ g Z( L )2 (8)
j=1 kzlﬁ : J (4) K= No(N —1) 2 Yi — W
_ 1 Z Z YV [ Tk 1 The total sum of squared difference betwegrand . in (8)
N2 | = = ik \ Tk ' can be partitioned into within-network and between-nekwor
e _ components:
The second equality follows because cvlx] is m;—m ;7. N N N
The network formulation of these estimators allows their Z(yi —p)?= Z(yi —w;)? + Z(wi —w? (9
computations to be readily distributed among the robots if =1 i=1 =1 _
desired; the networks are allocated to the robots such tHdsing (6), (8), and (9), vafiy ] < var{a] if and only if
each robot is responsible for the computations within its n N n N
assigned networks. The resulting network data can then bel 1 — 7) > (i —p)? < (1 - N) > (yi—w)* (10)
aggregated by a robot or a cyclic message-passing algorithm i= i=1

to obtain the estimates. This can be similarly achieved td carj ,be observgd -from (10) th@,tHH IS more efﬁuem
the second estimator described next. than i if (1) the within-network variance of the population

(rightmost term) is sufficiently high, (2) the final sample

B. Modified Hansen-Hurwitz Estimator size v is not much larger than the initial sample size

The second ACS estimator is modified from the Hanserfer jigyy so thatl — n;/v is small, and (3)n; < N
Hurwitz (HH) estimator [3]. In Section IV-A, we mention so thatl — n;/N is large. However, conditions 2 and 3
that the total mineral content of the explored region is thean oppose condition 1 because a small difference between
sum of the mineral contents of the individual networks. Thénitial and final sample size, and a small initial sample
mineral content of each network can be written as the averagize usually mean small within-network variance. So, ACS
mineral content of all units in this network summed over itsith iy performs better than SRS wiih if the networks
number of network units. So, the average mineral content afe small enough to restrict the final sample size but large

the explored region can also be expressed as enough for the within-network variance to represent the
1 X population variance reasonably. That is, it works betteh wi

"= N Z’wi environmental phenomena that are clustered into a few small

i=1 hotspots. Even though drastically lowering the threshold

wherew; is the average mineral content of the netwotk for condition C' can increase the within-network variance

containing unit;. and improve condition 1, it increases the final sample size
1 cannot be computed directly due to the unknawis for  tremendously and violates condition 2 easily.

unsampled networks. Using the same trick as in Section IV- Although it is straightforward to compare Vagr| (3)

A, an unbiased estimator @f can be formed by multiplying and vafi], the result cannot be easily interpreted since

each term in the sum withV.J; /n;, where.J; is an indicator variigr] involves the intersection probabilities. However,

variable of value 1 if unit is included in the initial sample, empirical results in Section VI show thag; 7 is consistently

and 0 otherwise. The expected value §f/;/n; is 1, so more efficient thani. In the next section, we will show how

our estimator is unbiased; sinck is 0 for units not in the the variances of the ACS estimators can be reduced to be

initial sample, information about these units is not needegiven more efficient.

to calculate our estimator. Applying this trick yields they UngiaSED RAO-BLACKWELLIZED ACS ESTIMATORS

modified HH estimatoof . An estimatort(D,) of a population characteristi¢ is a
1 X 1 & functiont which maps our observed dai3, to an estimate

PHH = n_lzwiJi = n—lzwz (5)  of u. Saying thaty is a population characteristic means

=1 =1 ] there is a parameter vectér which completely describes
Note thatiiyz can be interpreted as the conventional samplg,e gistribution of our population, ang = (6) is a

mean obtained using SRS of sizg from a population of fnction of§. In our setting,D, is an ordered list of pairs
w; values rather thap; values. So, using the theory of SRS<Z-S y..) wherei, is the unit sampled at step andy;, is

(3], varisy] = N —m al ) ©6) its mineral content. The population characteristic of iest
p] = Nni(N —-1) z;(wl . i is the average mineral content of the explored region.
i ) o
with unbiased estimator The population parameter &= WYiy--y ?¥N>_’ which is the
N —n, ny vector of true mineral contents for all units in the populati

varjipg] = ] Z(wi —awm)® . (7)  The estimators of. that we are interested in afe;, and

an(nl -1 N
=1 HHH-



To evaluate an estimatofD,,), its distribution conditioned The variance of 5 is obtained using (11) whetg = tgp.
on a possible value & can be examined. Good estimatorsThe unbiased estimator of vagg] is then
have low Mean-Squared Errors (MSES), i.e., the distriloutio _ ¢ 9
Z(Tg — tRB) .
g=1

Il

P((Do) — 1|6) is concentrated around 0. We will now Vaftre] = vart] — varit|D] = vart] —
describe how to reduce the MSEs ofir and jigg. (13)
Rao-Blackwellization is a procedure that can reduce the Since (12) and (13) are based on samples compatible with
MSE of an arbitrary estimatot(D,) [3]. The improved D, naively, the¢ compatible samples have to be identified
estimator is E(D,)| D), whereD is a reduced description of from the G combinations and their correspondiggstima-
our data that omits some redundant information. In paiicul tors have to be evaluateg.and G can be potentially large,
D is defined as astatistic if it is a function of our data which would render the Rao-Blackwellized method compu-
D, (i.e., D = g(D,)), and D is defined as asufficient tationally infeasible. However, closed-form expressierist
statisticif it contains all relevant information i, aboutd, for the Rao-Blackwellized HT (RBHT) and HH (RBHH)
i.e., PO,|D,0) = P(D,|D). Given these definitions, Rao- estimators, which are described in [6]. These expressions
Blackwellization is the process of computingtE,)|D) are computationally efficient if relatively few networks of
when D is a sufficient statistic. In our cas@ is set to size larger than 1 are intersected by the initial samples Thi
be theunorderedset of distinct, labeled observations, i.e.,assumption is valid if the prospecting region contains @nly
D = {(i,y;)| i € S} whereS is the set of distinct unit few hotspots.

labels in our data sample. VI. EXPERIMENTS AND DISCUSSION
The following theorem, adapted from the Rao-Blackwell This section presents quantitative evaluations of the ACS
theorem, justifies the use of Rao-Blackwellized estimator: strategy and its estimators for wide-area exploration with
Theorem 1:Lett = ¢(D,) be a (not necessarily unbiased)a team of four robots. The experiments were performed

estimator ofu. Definetp = E[¢|D]. Then using Webots, a mobile robot simulator, which incorporated
(@) tp is an estimator; 10% white noise in its sensors and actuators. 16 directed
(b) E[tp] = E[t]; distance sensors with 0.3 m range were modelled around
(c) MSHtp| < MSE[t] with strict inequality for all@ such the 0.32 m (L) x 0.27 m (W) x 0.2 m (H) robot body.
that Ry(t #tp) > 0. Each robot could sense its global position through &PS
Corollary 1: If t is unbiased, and communicate spectrometric and tour data with the base.
varltp] = vart] — EpE[(t — tp)?|D] 1) The robots use_d the _potential fields method for navigation
— vart] — Ep{vart/D]} . between sampling units and obstacle avoidance. Each robot

The proofs of Theorem 1 and Corollary 1 are provided iffould move ata maximum speed of 0.425 m/s and consumed
[6]. From (11), vaftp] < vart] since the variance reduction about 28.2 J/m. It used the Alpha Particle X-Ray Spectrom-
term Ep{varft|D]} > 0. eter (APXS) (1.3 W) for sgmpllng, which required qbout
Rao-Blackwellization does nothing if(D,) is already a 2 hours to obtain a _hlgh—quahty_x—ray spectrum of the mihera
function of D. On the other hand, it achieves the largesEOntent. So, sampling each unit would use about 9.5 kJ. The
possible reduction in variance whénis aminimal sufficient ©-46 kmx 4.61 km prospecting region is dlscrep’zed_lnto_a
statistic A minimal sufficient statistic is one that reducs 2820 grid of sampling units such that each unit's width is

as much as possible without losing information ab@ut about 231 m (Fig. 1a). The robots were placed at a sampling
Definition 1: A sufficient statisticD = g(D,,) is minimal unit in the center of the region and had to rendezvous at this

sufficientfor @ if, for any other sufficient statisti®’ = same unit after all selected units were Sa”_‘p'ed-
4(D,), D is a function ofD'. To compare the performance of the estimators, the Root

o - . Mean-Squared Error (RMSE) criterion is used to measure
In our caseD is minimal sufficient, andiyr and gy

AL ) f
are not functions oD; they depend on the order of selectionthelr efficiency: 1 E ) 2
[6]. In order to Rao-Blackwellizgiz and figs, we will RMSH[t| = = Z(Ti — )
1 — v =1
need several notations. Let = (”1) be the number of where R = 20 is the number of test runs; is the mean

combinations ofn; distinct initial sample units from the
v units in the final sample and let these combinations
indexed by the labej whereg =1,2,...,G. Let 7, be the
value of an estimatot when the initial sample consists o
combinationg, I, be an indicator variable of value 1 if the
gth combination can result ifv (i.e., iscompatiblewith D),
and 0 otherwise. The number of compatible combinations
then¢ = Zle I,. It follows that P¢ = 7,|D) = 1/¢ for all
compatibleg. So, the improved Rao-Blackwellized estimato
is

b@ineral content estimate obtained in test fun

Using this measure, a quantitative test was conducted to
§ compare the estimators described above. For ACS, thelinitia
sample sizen; was 10, 20, or 40 sampling units. After 20
test runs for each, it resulted in an average final sample
E’ze Ep] of approximately 41, 64, and 92 units, which
corresponded to 7.4%, 11.5%, and 16.4% of the 560 total
Isampling units. The SRS and SS schemes were conducted
using the same sample sizes ag]E[

G 3
1 1
trRB = E[t|D] = E Z Tolg = g Z Tg - 12) 1Deployment of space exploration infrastructure wouldnudtiely result
g=1 g=1 in GPS or similar localization capability on the Moon and lar
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Fig. 3. Comparison of (a) RMSEs of different estimators aamhgling strategies, (b) energy consumption of differemh@ang strategies, (c) mission
time of different sampling strategies, (d) energy consumnptand (e) mission time of ACS strategy with different rolbeam sizes.

Test results (Fig. 3a) show, with statistical signifi-These figures will increase substantially if thedssbauer
cance, that the ACS estimators perform better than thepectrometer is used instead.
non-ACS estimators, and among the ACS estimators, thelastly, the robot team performance is compared with
Rao-Blackwellized estimators achieved lower RMSE. Thisarying team sizes (i.e., 1, 4, and 8 robots) for the ACS
implies that the ACS estimators, especially the Raocstrategy. Figs. 3d and e show the results after 20 test runs
Blackwellized ones, are practically more appealing begausor the first and second criterion respectively. Fig. 3d show
more accurate mineral density estimates can be obtainbd wihat the team of 8 robots is less energy-efficient than 1 robot
a reasonably small sample size. Usitigests & = 0.1), and the team of 4 robots; the larger team incurs a greater
the differences in RMSEs between the estimators have beamount of physical interference during rendezvous. Fig. 3e
verified to be statistically significant if these differescare shows that the reduction in mission time decreases with more
more than 0.007, 0.013, and 0.008 for the sample sizes mfbots; the teams of 4 and 8 robots achieve, respectively,
41, 64, and 92 units respectively. Note that the biased sam[#8.9% and 18.7% of the mission time taken by 1 robot,
mean estimatofi under the ACS scheme is not included inwhich are greater than the expected 25% and 12.5%. This
Fig. 3a; it has extremely large RMSEs of 0.682, 0.670, and due to the competitive ratio of the tour allocation, which
0.524 corresponding to 7.4%, 11.5%, and 16.4% of the totaicreases with the number of robots (Section II).
sampling units. VII. CONCLUSION AND FUTURE WORK

To compare the robot team performance between different 1 NiS paper describes the application of the ACS strategy
sampling/exploration strategies, the previously mermibn and estimators to mu!tl—robot wide-area ex_plorauon. They
optimality criteria are considered: minimizing (1) totai-e €an explq|t the clustering nature of the environmental phe-
ergy consumption of all robots, and (2) maximum missioffomena (i-e., hotspots) and therefore perform better the S
time of any robot. Figs. 3b and ¢ show the results aftdP Such environments as shown in the analysis. Quantitative
20 test runs for the first and second criterion respectivelfXPerimental results in the mineral prospecting task samul
the mineral yield, energy consumption, and mission timdon show that the ACS strategy is most efficient in explo-
recorded for the various sampling strategies are given as'&lion by yielding more minerals and information with fewer
percentage of the corresponding values for RS (i.e., campld€Sources, and the Rao-Blackwellized ACS estimators can
sampling of 560 units). As a result, varying the size of th@rovide more precise mineral der_15|ty estimates than pusvio
prospecting region does not change our results. Note tH&€thods. In future work, we will apply these techniques

each strategy (other than RS) has three different records QR @ larger robot team and real robots. Our planner will
its plot, which correspond to EJ of 41, 64, and 92 units; be improved using other minimum spanning tree heuristics
a smaller sample size gives a smaller mineral yield. Th&" stochastic search strategies to reduce the tour lengths s
line for RS shows a constant ratio of energy consumptiofiat ACS can be even more efficient than RS. We will also
or mission time to mineral yield. We observe that the Acsonsider the effect of noisy and multivariate mineral cante
strategy yields more minerals than SRS and SS with le§&ta on the ACS strategy and estimators. Lastly, adaptive
energy and mission time. The differences in mineral yield@Ystematic and stratified sampling will be examined.
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