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Abstract

We describe a generalization of extensive-form games that
greatly increases representational power while still allowing
efficient computation in the zero-sum setting. A principal fea-
ture of our generalization is that it places arbitrary convex op-
timization problems at decision nodes, in place of the finite
action sets typically considered. The possibly-infinite action
sets mean we must “forget” the exact action taken (feasible
solution to the optimization problem), remembering instead
only some statistic sufficient for playing the rest of the game
optimally. Our new model provides an exponentially smaller
representation for some games; in particular, we show how to
compactly represent (and solve) extensive-form games with
outcome uncertainty and a generalization of Markov decision
processes to multi-stage adversarial planning games.

Introduction
Extensive-form games (EFGs) are commonly used to rea-
son about multiagent interaction, and Markov Decision
Processes (MDPs) are commonly used to model single-
agent planning in domains where actions have stochastic
outcomes. Hundreds of papers have been published on
these topics. This paper introducesConvex Extensive-Form
Games(CEFGs), a powerful generalization of both models
that maintains computational tractability. Like an EFG, a
CEFG is a game with partial information played on a tree,
however, in CEFGs: 1) An arbitrary subset of the players
simultaneously select an action at each node; 2) The set of
actions available to each player is a convex subset ofR

n,
rather than a discrete set; 3) Payoffs are made at internal
nodes as well as at leaves, and are given by a bilinear func-
tion of the players’ actions; and, 4) Two nodes that are both
in the same information set may have different numbers of
successor nodes. These differences allow us to embed arbi-
trary convex optimization problems at nodes of the CEFG,
for example allowing us to model MDPs where an opponent
controls the cost function.

We first consider the class of bilinear-payoff convex
games (CGs), a natural generalization of matrix games.
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Zero-sum CGs can be solved efficiently via convex opti-
mization, and in fact known algorithms for solving zero-
sum EFGs work by reducing the EFG to a CG. This ap-
proach to solving EFGs depends on the property ofper-
fect recall; the problem is NP-hard without this assump-
tion (Koller & Megiddo 1992). “Perfect recall” CEFGs
would not be useful due to the intractable number of pos-
sible actions at each node. We develop a generalization of
perfect recall for CEFGs,sufficient recall, that allows some
“forgetting” of past actions. A principal contribution of this
work is showing that zero-sum sufficient-recall CEFGs can
be transformed to CGs, and hence solved efficiently.

The ability to embed linear programs inside CEFGs uni-
fies this class with MDPs: an MDP is a single-player, single-
node CEFG. The problem of solving an MDP where one
player selects a policy and another player chooses the cost
function was addressed in (McMahan, Gordon, & Blum
2003). This problem can be modeled as a two-player, single-
node CEFG. More general versions of this problem, where
the players have some limited opportunities to observe their
opponent’s past actions, can also be solved as CEFGs. We
use a small example of such a multi-stage adversarial path
planning problem to illustrate the CEFG model. Our work
differs from other work on multi-agent MDPs (Petrik & Zil-
berstein 2007, for example), in that we focus on the ad-
versarial (zero-sum) case, and while we only consider two
agents, one or both agents may have arbitrary convex action
sets at each stage of the game, rather than only selecting a
policy in an MDP.

As another example of the expressive power of CEFGs,
we demonstrate how they can efficiently model outcome un-
certainty in EFGs. In games with outcome uncertainty, a
(joint) action results in a probability distribution over fu-
ture states, rather than a deterministic single state as in stan-
dard EFGs. Standard EFGs can model outcome uncertainty
through the explicit use of random nodes, but as we shall
see this can lead to a prohibitive explosion in the size of the
game tree. While we feel this example is both conceptually
straightforward and a significant research result in its own
right, CEFGs have many other promising applications, in-
cluding providing a method for introducing a limited amount
of partial observability into stochastic games or MDPs while
still allowing for tractable solutions. See (McMahan 2006)
for discussion of other applications.
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(c) The t-MAPP game as a CEFG

Figure 1: Representation of example games.

Bilinear-payoff convex games Bilinear-payoff convex
games1 (CGs) are a natural generalization of matrix games,
though they have received surprisingly little attention in
the literature since their introduction by Dresher & Karlin
(1953). EFGs and (as we will show) CEFGs are special
cases of convex games, as are other adversarial problems
such as computing an optimal oblivious routing. For a gen-
eral introduction to CGs and their application, see (McMa-
han 2006).

A two-player CG is defined by convex setsX andY and
a payoff matrixMp for each player. The first player (sayx)
selects an actionx ∈ X , the second (sayy) simultaneously
choosesy ∈ Y , and each playerp receives a payoffxT Mpy.
In the zero-sum case,My = −Mx ≡ M gives the amountx
paysy, and an extension of the minimax theorem holds:

min
x∈X

max
y∈Y

xT My = max
y∈Y

min
x∈X

xT My.

This equilibrium is achieved for somex∗ ∈ X , y∗ ∈ Y . The
convexity ofX andY implies that no explicit randomization
is necessary; rather, a player can implicitly randomize over
the corners of the action set by playing an interior point.
Zero-sum EFGs can be represented as a CG and solved via
the ellipsoid algorithm (Koller & Megiddo 1992); in fact,
all zero-sum CGs can be solved in this manner. IfX and
Y are polyhedra (i.e., defined by a finite number of linear
equality and inequality constraints), then in fact an equilib-
rium (x∗, y∗) can be found via linear programing (Koller,
Megiddo, & von Stengel 1994).

Markov decision processes and CGs In this section we
review some results on MDPs, and introduce an illustrative
game that involves MDP planning. An MDPM is defined
by a (finite) set of statesS, a finite set of actionsA, and tran-
sition dynamics defined by probabilitiesPr(s′ | s, a) for all
s, s′ ∈ S anda ∈ A. We consider undiscounted MDPs with
a fixed start state and a set of goal states. A cost vectorc
assigns a costc(s, a) to each state-action pair. For any finite
setQ, let ∆(Q) be the|Q|-dimensional probability simplex
(that is, the set of distributions overQ). A stochastic policy
is a functionπ : S → ∆(A) that maps each state to a prob-
ability distribution over actions. The goal in standard MDP

1Our convex games are non-cooperative, and are unrelated to
the super-modular coalitional games often called convex games in
the cooperative game theory literature.

planning is to find a policyπ that minimizes the expected
start-to-goal cost with respect to a fixed cost vectorc.

It is well known that the set of stochastic policies for
such an MDP can be represented via state-action visita-
tion frequency vectors, and further that the set of these
vectors is convex (for example, McMahan 2006). Here
we demonstrate the result for a small example. The path-
planning problem on the directed acyclic graph shown in
Figure 1(a) can be interpreted as a deterministic MDP with
S = {a, b, c, . . . , f, g} andA = {1, 2, . . . , 10}, wherea is
the start state,f andg are the goals, and the actions avail-
able at a state are the directed edges out of that state. A
state-action visitation vector for a policyπ is a vector from
R

10 indexed by the edges, which gives the probability2 that
a given edge is traversed under policyπ. Thus the determin-
istic policy that chooses path(a, b, d, f) corresponds to the
vectorx = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0) because it uses edges
1, 3, and7 only. The vectorc assigns costs to edges, so the
expected cost of this policy is exactlyx · c. The convex set
of vectorsx that correspond to valid stochastic policies can
be defined via linear flow constraints. We have

x1 + x2 = 1 (leavea with prob 1)

x7 + x8 + x9 + x10 = 1 (reach a goal with prob 1)

for the start and goal states, and each internal state has a flow
constraint (e.g.,x3 + x4 = x1 for b) that the probability we
enter the state equals the probability we leave. Combining
these equality constraints with the constraintx ≥ 0 defines
the convex setXG of valid edge (or state-action) visitation
frequencies. We can recapture the stochastic policyπx cor-
responding to a vectorx by normalizing at each state; for
example, the probabilityπx takes edge 7 fromd is x7

x7+x8

.
This convex representation of the set of stochastic policies
for MDPs shows that planning in an MDP is a convex game:
playerx has strategy setXG , y has the (trivial) action set
Y = {c}, andM = I (the identity matrix).

Now, we construct an illustrative CG wherey has a more
interesting set of actions: she chooses how to place at most
B obstacles on edges of the graph, with each edge getting at
most one obstacle. The cost on edgee is ce +1 if it contains
an obstacle, andce otherwise (c gives the base costs of the
edges, independent of the obstacles). Define the convex set

YB = {y | y = c + z, zi ≥ 0, zi ≤ 1, 1 · z ≤ B}. (1)

2If the graph was not acyclic, this would generalize to the ex-
pected number of visits to the edge.



The set of possible deterministic obstacle placements corre-
spond to integer choices ofz in YB. It can be shown that the
correspondingy are exactly the corners of the set, and so an
interior point ofYB can be interpreted as a probability distri-
bution over deterministic obstacle placements. We can now
define a convex game wherex chooses fromXG , y from YB ,
andM = I. Sincey is a cost vector on edges andx is a fre-
quency vector on edges, the dot productxT Iy exactly calcu-
lates the expected value of the corresponding strategy/cost-
vector pair. We call this gameg1

B; it is an adversarial-cost
MDP, as introduced in (McMahan, Gordon, & Blum 2003).

We could have modeled this game as an exponentially-big
(in the size of the graph) matrix game where the adversaryy
has combinatorially many pure strategies (deterministic ob-
stacle placements), and the plannerx has one pure strategy
for each start-goal path in the graph (exponentially many in
the size of the graph). The most concise EFG representation
corresponds to the transformation of this matrix game to an
EFG, as shown in Figure 1(b): firstx selects a pathx, and
theny selects a placement of obstacles without knowledge
of x (the dashed lines indicate thaty’s decision nodes are in
a single information set).

We now consider an extension to this game to help mo-
tivate CEFGs. FixB = 2 for concreteness, and suppose
that after playingg1

B, the players will then play another con-
vex gameg2. The exact second-stage gameg2

b,s played de-
pends on how many obstaclesb ∈ {0, 1, 2} playery placed
in the first stage, and which goal states ∈ {f, g} playerx
reached, but the exact path taken byx and the exact place-
ment of obstacles byy are irrelevant. For example,G might
be a subgraph of a larger graph that continues beyondf and
g, and sog2

b,s is another path planning game on a different
piece of the graph, wherex starts from states and y has
B − b obstacles available. Breaking the game into stages
like this will allow y to potentially observex’s location (and
pick obstacles accordingly), or letx potentially observey’s
remaining budget. We call this game t-MAPP, because it
can be viewed as a tiny instance of a multi-stage adversarial
path planning (MAPP) problem. It is no longer clear that the
t-MAPP game can be modeled as a convex game, as we now
have significant temporal structure.

Consider representing t-MAPP as an EFG: the first stage
of the game,g1, is modeled by Figure 1(b); for each of the
exponentially many leaves of this game, we now attach a
copy of the appropriateg2

s,b (also represented as an EFG)
for that leaf. Butg2

s,b could be an arbitrary convex game,
so it is quite possible that each copy is itself exponentially
large when represented as an EFG. So, clearly, t-MAPP is
intractable when represented as a standard EFG. In the next
section, we introduce CEFGs, which will give us a natu-
ral polynomial-sized representation of t-MAPP, of the form
given in Figure 1(c): at nodeg0 playery picksb ∈ {0, 1, 2},
the number of obstacles she will place in stage one. At the
stage one nodesg1

b , y picks a cost vectory that respects
the budgetb, while x simultaneously picks a pathx (with-
out knowledge ofb or y). The transition to the next stage
game then depends only on the relevant portion of the out-
come: which statex reached, and how much of the budget

y exhausted. Unlike the EFG representation, the CEFG can
“forget” the exact path taken byx and the exact obstacle
configuration chosen byy.

Sequential games like this can be used to model a power-
ful class of multi-stage adversarial path planning problems:
We have a large graph, andx starts at a fixed node and must
travel to a goal. However, the goal is not yet known, and
may in fact be chosen randomly or by the adversary. So,
in the first stage, playerx travels to an intermediate node in
the graph. Playery partially controls the costs, just as in
the g1 game. After the first stage, the adversary or nature
chooses the location of the goal, some information about the
goal is revealed tox, and some information aboutx’s loca-
tion may be revealed toy. Another movement stage occurs,
in whichx picks a policy to another intermediate node, andy
selects another cost vector. The game continues in stages un-
til the goal is revealed and reached byx. CEFGs can model
MAPP problems with many kinds of uncertainty, including
outcome uncertainty, stochastic and adversarial control of
costs, stochastic and adversarial control of the goal states,
and partial observability (McMahan 2006).

Generalizing Extensive-Form Games
In this section, we introduce CEFGs for the two-player,
zero-sum case. Complete proofs as well as additional exam-
ples, commentary, and references can be found in (McMa-
han 2006, Ch. 4). Comments specific to the example
t-MAPP are set in brackets[...].

A CEFG is played on a directed, finite game tree
T = 〈V, E〉 rooted at s∗. Define E(s) =
((s1, s2), (s2, s3), . . . , (sk−1, sk = s)), the sequence of
edges on the path tos. The game is played by a set
N = {0, 1, 2} of players, where the 0 player is an op-
tional random player. We again letx = 1 be the min
player andy = 2 be the max player. Each player is ac-
tive (selects an action) on an arbitrary subset of the inter-
nal (non-leaf) nodes,3 Vp ⊆ V ; these are playerp’s deci-
sion nodes. LetA(s) = {p | s ∈ Vp}, the set of active
players ats. We require|A(s)| ≥ 1 for all internal nodes
s ∈ V , and |A(s)| = 0 for leaves. [For t-MAPP, the set
V = {g0, g1

b=0, . . . , g
2
b=2,g}. Nodeg0 ∈ Vy because at this

nodey selects her budget, butg0 6∈ Vx. Both players are
active at all the nodesg1

b .]
As in EFGs, the decision nodesVp for each player are par-

titioned into information setsu ∈ Up. When play reaches a
nodes in information setu, then playerp observes that the
game has reachedu, but not the specifics ∈ u; that is, all
s, s′ ∈ u are indistinguishable top. For nodess wherep is
not active (s 6∈ Vp), we define (for notational convenience)
a special “non-information set”♦p. In particular,♦p 6∈ Up

and playerp never observes when she is in♦p. For any
nodes ∈ Vp, let φp(s) be the (unique)u ∈ Up such that
s ∈ u, and letφp(s) = ♦p for s 6∈ Vp. To simplify no-
tation, whenu is not otherwise specified it can be read as

3Allowing strict subsets of players to be active at each node
requires some notational gymnastics; however, it is necessary to
maintain a direct transformation from EFGs to CEFGs.



φp(s). For any nodes and playerp, let obsp(s) be the se-
quence of playerp information sets on the path tos: obsp(s)
has an entryu for each states′ with φp(s

′) 6= ♦p on the
unique path tos. [In t-MAPP, each of the first four nodes
is in its own information set fory. Forx, φx(g

0) = ♦x, and
u1

x
= {g1

b=0, g
1
b=1, g

1
b=2} ∈ Ux is an information set because

x does not observe how many obstaclesy decided to place.]
A few notes on notation: Each information setu we men-

tion is associated with a player (sayp), so for examplexu is
an action taken byp atu. A bar indicates a tuple over play-
ers, e.g.,̄x is a joint action. Entries in a tuple over players
are indexed with a subscriptp ∈ N , x̄ = {x0, x1, x2}. A
bar over a capital symbol denotes a set of such tuples:X̄s is
a set of joint actions.

All nodes in an information setu for p share the same
setXu of actions available top; this is natural becausep
cannot differentiate among these nodes. For this presenta-
tion, we assume the action setXu ⊆ R

nu is a bounded
polyhedron (defined by a finite number of linear equalities
and inequalities). Ats, each playerp ∈ A(s) selects an
action xp ∈ Xu. We denote byC(Xu) the finite set of
corners (extreme points) ofXu. The setC(Xu) may be
exponentially large even ifXu has a compact representa-
tion. We view the setC(Xu) as the primitive actions of the
game (actions that are actually taken in the world), with the
interior points interpreted as probability distributionsover
C(Xu). We defineX♦p

= {1}, and letX̄s =
⊗

p∈N Xu

(where
⊗

is the Cartesian set product), so that a joint action
x̄ = (x0, x1, x2) ∈ X̄s is a tuple over all the players, even
though the playersp 6∈ A(s) do not actually make a decision
and have no immediate knowledge thats was reached.[In
t-MAPP, the action set fory at g0 is ∆({0, 1, 2}). Eachg1

node is in a different information set fory (she knows whatb
she picked), and has action setYb from Equation (1). Forx,
all theg1 nodes are in the same information set, and the set
of actions is simply the setXG of possible stochastic paths.]

Payoffs are made at internal nodes, not just at leaves as for
EFGs. The payoff fromx to y at nodes whenx playsx and
y playsy is given by the bilinear formxT M sy, specified by
the matrixM s. SinceX♦p

= {1}, we use this same notation
to indicate payoffs where only one player selects an action,
and at leaves where no actions are selected.[In t-MAPP,
there are no payoffs atg0 (M is the zero matrix), but at each
nodeg1 we haveM = I, and so payoffs are the dot product
between the cost vectory and edge-frequency vectorx.]

We may have an exponential set of possible actions
C(Xu), but we cannot afford that many nodes inT , let alone
children of one node. Thus, each internal nodes ∈ V has
a small (i.e., feasible to work with) set of successors, de-
noted succ(s). The successor that occurs next in the game
is chosen via a probability distribution that is a function of
the joint actionx̄. For eachp ∈ A(s) ands′ ∈ succ(s),
the game specifies a linear function4 fss′

p : Xu → R; to

avoid special cases definefss′

p (xp) = 1 for p 6∈ A(s). The

4The linearity of thef -functions is necessary for the transfor-
mation from CEFGs to CGs for efficient solution.

probability thats′ is the next node afters is given by:

Pr(s′ | s, x̄) =
∏

p∈N

fss′

p (xp). (2)

Thus, we require that these functions are chosen in such a
way thatPr(s′ | s, x̄) is always a well-defined probability
distribution. The random player has one information set per
node andXu = {1} for all u ∈ U0. Thus, the random
player is defined by constantf -functions,fss′

0 . [In t-MAPP,
the transition from stage 2 to stage 3 depends only on which
goalx reaches, and soy’s f -functions all return 1. Forx, we
define

ff
x

= x7 + x9 and fg
x

= x8 + x10

whereff is thef -function forg1
b to g2

b,f for b ∈ {0, 1, 2},
and similarly forfg. Sincex ∈ XG we havex7 +x8 +x9 +
x10 = 1 andxi ≥ 0, and so the products in Equation (2)
produce a probability distribution.]

Two CEFGsG andG′ aref -equivalentif they are identi-
cal except for theirf functions, and if for all(s, s′), for all
x̄ ∈ X̄s, PrG(s′ | s, x̄) = PrG′(s′ | s, x̄). ClearlyG andG′

are essentially the same game. We assume throughout that
fss′

(x) ∈ [0, 1], without loss of generality (proof omitted).
It is easy to show that for anyG that does not satisfy this
property, there is anf -equivalentG′ that does.

The payoff to each player is simply the sum over the pay-
offs at each node visited in the game. Acomplete history
h of a CEFG is the sequence of nodes and joint (primitive)
actions that occurred in a play of the game; a history is com-
posed of tuples(s, (x, y)) wheres is the state andx andy
are the actions selected byx andy respectively. The value of
a historyh is given by

V (h) =
∑

(s,(x,y))∈h

xT M sy.

Playerx tries to minimizeV , while playery tries to maxi-
mize it. LetH be the set of all complete histories. A partial
player history,hp, is the (information set, action) sequence
for playerp so far in the game, ending with any playerp
information set. LetHp be the set of all such histories forp.

A convex game can be immediately represented as a
single-node CEFG, and in fact each node in a CEFG can
be viewed as a convex game where the players’ joint ac-
tion determines not only the immediate bilinear payoff, but
also a probability distribution over outcomes; information
sets, however, imply that unlike in CGs, a player in a CEFG
may not know his opponent’s action set. Since MDPs are a
special case of CGs, they can be modeled as a single-node
CEFG.

Theory of CEFGs
In this section, we develop the concept of sufficient recall
and show that for CEFGs with sufficient recall, a class of
behavior strategies always contains an optimal policy. First,
we establish some terminology regarding policy classes and
probabilities.



Policy classes and probability The most general type of
policy is a function from private randomness andhp ∈ Hp

to Xu. When we refer to a general policyκ, it is from this
class. We writēκ−p for a joint policy for all players except
p, that is,κ̄−p = (κ1, κ2, . . . , κp−1, κp+1, . . . , κn), and let
(κp, κ̄−p) be the joint policy where players other thanp play
according tōκ−p and playerp follows κp. We also consider
the class ofimplicit behavior reactive policies(IBRPs). We
say reactivebecause IBRPs are not history dependent: an
IBRPβ selects its actionβ(u) as a function of only the cur-
rent information setu. By implicit behavior, we meanβ
specifies an interior point ofXu, and then interprets that
point as a probability distribution overC(Xu). Thus,β is
a function fromu ∈ Up to Xu.

Any joint policy induces a distribution onH; the proba-
bilities we work with will be with respect to this distribution.
To emphasize which joint policy is associated with a given
probability or expectation, we include the policy as a condi-
tion, for example,Pr(s | κ̄). Whens appears as an event,
it is the subset of histories inH in which s occurs. Simi-
larly, the eventu is the subset of histories where somes ∈ u
is reached, and(s, xp) is the set of histories where playerp
selects actionxp ∈ Xu from s. Once we fixκ̄, V is a ran-
dom variable, and we defineV(κ̄) = E[V | κ̄], the expected
payoff fromx to y under joint policyκ̄.

A policy κp for playerp is payoff equivalentto another
policy κ′

p, if for all κ̄−p for the other players,V(κp, κ̄−p) =
V(κ′

p, κ̄−p). In the rest of this section we define sufficient
recall, and then show that for any policyκ in a sufficient
recall CEFG, there is a payoff equivalent IBRP. Sequence
weights play a fundamental roll in this effort.

Sequence weights Sequence weights for CEFGs are anal-
ogous to sequence weights in EFGs (Koller & Megiddo
1992; Koller, Megiddo, & von Stengel 1994) but do not by
themselves contain enough information to represent a pol-
icy. (In the next section, we will augment the sequence
weights with enough information to represent IBRPs.) In-
tuitively, the sequence weightwp(s | κp) is the probabil-
ity playerp reachess by following κp, given that all other
players (and their randomness) “conspire” to forcep to s.
More formally, define REL(κp) ⊆ V to be the set of nodes
potentially reachable (relevant) whenκp is played, that is,
REL(κp) = {s | ∃κ̄−p s.t.Pr(s | (κp, κ̄−p)) > 0}. Define
the sequence weight fors given κp by w(s | κp) = 0 if
s 6∈ REL(κp), and otherwise

w(s | κp) =
∏

(t,t′)∈E(s)

∑

x∈C(Xu)

Pr((t, x) | t, κp)f
tt′

p (x),

Recall that we havePr((s, 1) | s) = 1 andfss′

p (1) = 1
whenp 6∈ A(s), so the product is effectively over only those
edges resulting from playerp’s choices. The next lemma
shows that the conditional probabilities in the definition are
well defined.
Lemma 1. For anyp using policyκp and any two joint poli-
cies for the other players̄κ−p andκ̄′

−p, for anys ∈ Vp where
Pr(s | (κp, κ̄−p)) > 0 andPr(s | (κp, κ̄

′
−p)) > 0, we have

Pr((s, xp) | s, (κp, κ̄−p)) = Pr((s, xp) | s, (κp, κ̄
′
−p)).

In other words, givens is reached, the probability thatκp

playsxp is independent of the opponents’ joint policy. In-
tuitively this is the case because, asκp plays the game, its
decisions can only depend on its own past actions and the
information sets it observes, and conditioned on reachings,
these both must be independent of the other players’ poli-
cies. Thus, as promised, whens ∈ REL(κp), we can write
Pr((s, xp) | s, κp) for Pr((s, xp) | s, (κp, κ̄−p)).

A fundamental results is that if we know the sequence
weights for each player, we can easily compute the proba-
bility that any state is reached:

Lemma 2. For anys ∈ V and any joint policȳκ,

Pr(s | κ̄) =
∏

p

wp(s | κp).

For the next lemma, we defineE[x | s, κp] =
∑

x∈C(Xu) Pr((s, x) | s, κp)x whens ∈ REL(κp).

Lemma 3. If κp andκ′
p are two policies for playerp such

that
E[xp | s, κp] = E[xp | s, κ′

p]

for all s ∈ REL(κp) ∩ REL(κ′
p), then REL(κp) = REL(κ′

p),
and furtherκp andκ′

p are payoff equivalent.

We will use this lemma to show that IBRPs are as power-
ful as general policies in sufficient recall CEFGs.

Sufficient Recall A CEFG hassufficient recallfor player
p if it has both: 1)observation memory: For all u ∈ Up,
and all s, s′ ∈ u, obsp(s) = obsp(s′); and, 2)sufficient
action memory: For any two policiesκp and κ′

p and any
joint policy κ̄−p for the other players, for anyu ∈ Up with
Pr(u | (κp, κ̄−p)) > 0 andPr(u | (κ′

p, κ̄−p)) > 0, and any
s ∈ u, thenPr(s | u, (κp, κ̄−p)) = Pr(s | u, (κ′

p, κ̄−p)).
Observation memory implies that playerp’s information

sets form a forest, and so knowing the current information
set uniquely specifies the history of information sets (obser-
vations) that have previously occurred; hence playerp has
no incentive to remember the information sets visited. Suf-
ficient action memory implies that given the observation of
u, knowledge of the policy that has been followed so far
provides no information about the actuals ∈ u. Thus,p
has no incentive to remember the policy followed so far. In-
formally, if the game has sufficient recall for playerp, then
playerp should be able to play optimally by selecting an ac-
tion purely as a (random) function of the current information
set. In order to prove this, we will need an alternative char-
acterization of sufficient recall, which will allow us to prove
some important structural properties of sequence weights.

Sufficient recall arises naturally in many CEFGs; two gen-
eral cases appear in this paper. The first case includes games
where the action impacts the immediate payoff (say, the ex-
act path chosen in an MDP), but only some finite informa-
tion (say, the goal state reached) matters to the rest of the
game. The second case occurs when the action chosen in-
duces a probability distribution over outcomes, but only the
actual outcome chosen by nature from this distribution mat-
ters to the rest of the game; we will see this is the case for
EFGs with outcome uncertainty modelled as CEFGs.



In an EFG, all nodes in an information setu have the same
out-degreed, and each outgoing edge for as ∈ u is labeled
with one ofd outcome (or choice) labels. The action set
of the EFG is the set of these labels. We can view the out-
come labels as partitioning all of the edges out ofu into d
equivalence classes. We now define a generalization of this
partition for CEFGs via an equivalence relation∼p on pairs
of edges out ofu. For any two edges(s, s′) and(t, t′) out
of u, (s, s′) ∼p (t, t′) if and only if there exists a constant
α ≥ 0 such that for allx ∈ Xu, fss′

p (x) = αf tt′

p (x). Let
Ou be the set of equivalence classes atu defined by∼p. [In
t-MAPP, all stage 2 nodes forx are in the single information
setu1

x
. Recall that thef -functions are independent ofb, and

so we have the partition of the six edges out ofu1
x

into two
sets, those leading tof (labeledof in Figure 1(c)), and those
leading tog (labeledog).]

We have the following key Lemma:

Lemma 4. For any CEFGG, there exists anf -equivalent
CEFG G′ such that if(s, s′) ∼p (t, t′) in G, then for all
x ∈ Xu, in G′ we havefss′

p (x) = f tt′

p (x).

CEFGs that satisfy the condition of Lemma (4) are called
f -canonical, and for the remainder of this paper, we assume
(without loss of generality) all CEFGs considered aref -
canonical. The transformation to anf -canonical representa-
tion is essential—our solution technique is not even defined
on CEFGs that do not have this property. Under this assump-
tion, we writefu,o

p for thef function shared by all edges out
of u in outcome partitiono ∈ Ou.

The playerp sequenceσp(s) is the list of playerp (infor-
mation sets, outcome) tuples on the unique path tos; it does
not include tuples for states whereφp(s) = ♦p. A CEFG
hassequence recallfor playerp, if for all u ∈ Up and all
s, s′ ∈ u, σp(s) = σp(s

′). [It is straightforward to verify
that the game t-MAPP satisfies sequence recall: the key is
the identicalf -functions out of theg1 nodes forx.]

Lemma 5. In a f -canonical CEFG with sequence recall,
for any policyκp for playerp, and anys, s′ ∈ u, thenw(s |
κp) = w(s′ | κp), and whenw(s | κp) > 0, for all x ∈ Xu,
Pr((s, x) | s, κp) = Pr((s′, x) | s′, κp).

The intuition for the proof is that because the sequence
to eachs ∈ u is the same, there is no way for the policy
κp to differentiate the nodess ands′ (even using knowledge
of past actions and observations), and hence, it must play
identically at both.

Lemma (5) reveals significant tree-like structure of se-
quence weights in CEFGs with sequence recall: we can
now think of sequence weights being associated with each
player’s information set tree, rather than with the overall
game tree. We extend some notation to account for this:
we writew(u | κp) for the unique valuew(s | κp) shared by
all s ∈ u. Each non-root information setu2 for playerp has
a unique (information set, outcome) parent, which we iden-
tify by upredp(u2) = (u1, o1). If u is a root information set,
we write upredp(u) = ∅. Any states occurring after some
playerp information set (that is, with a non-emptyσp(s))
has a unique (information set, outcome) predecessor, namely
the last tuple inσp(s). We write upred(s2) = (u1, o1) to

identify such a parent. Any states occurring before any
playerp information set hasw(s | κp) = 1. All imme-
diate successor states ofu reached via an edge in a fixed
outcome partitiono must have the same sequence weight;
we writew(u, o | κp) for this value. In summary, for any
nodes ∈ u2 where(u1, o1) = upredp(u2), we write any of
the following equivalently:

wp(s | κp) = wp(u2 | κp) = wp(u1, o1 | κp).

Theorem 6. A f -canonical CEFG has sufficient recall for
playerp if and only if it has sequence recall for playerp.

Showing sequence recall implies sufficient recall is fairly
straightforward; the other direction is more difficult. It relies
on an alternative characterization of sufficient action mem-
ory, and then the construction of a suitable contradiction.
Based on this theorem, we can apply the results and notation
for sequence recall games to sufficient recall games; this will
be critical for the construction of an equivalent convex game
in the next section.

Now we can give this section’s principal result: IBRPs are
as powerful as arbitrary policies in sufficient recall CEFGs.
The theoretical work done earlier in this section makes this
result straightforward.
Theorem 7. For sufficient-recall CEFGs, for any policyκp

for playerp, there exists a payoff equivalent implicit behav-
ior reactive policy.

Proof. Letκp be an arbitrary policy forp. A consequence of
Lemma (5) is that for alls, s′ ∈ u, whens, s′ ∈ REL(κp),

E[xp | s, κp] = E[xp | s′, κp].

Call this valuexu for eachu where it is defined, and pick
xu arbitrarily in Xu for the remainingu ∈ Up. Then, we
define an implicit behavior policyβκ by βκ(u) = xu. By
Lemma (3)βκ andκp are payoff equivalent.

From CEFGs to CGs
Theorem 7 shows that when playing sufficient recall CEFGs,
it suffices to consider only IBRPs. Now, we show that for
each player the set of IBRPs can be represented as a convex
setW , and the value of the game is bilinear in this represen-
tation. Thus, we can solve zero-sum sufficient-recall CEFGs
using linear programming on the convex game defined by
the setsW and corresponding bilinear objective function.

To differentiate playersx andy, we useu andXu to de-
note playerx’s information and action sets, and similarly
v andYv for y. The random player only affects the game
through her sequence weights, which we write asw0(s).

An IBRP for playerx can be viewed as a vector from the
convex set

X̃ =
⊗

u∈Ux

Xu.

The setX̃ is a Cartesian product of convex sets, and so it
is also a convex set. DefinẽY analogously fory, and let
βx ∈ X̃ andβy ∈ Ỹ be two IBRPs. Letu = φx(s) and
v = φy(s), x = βx(u), andy = βy(v), and define

V(s) = Pr(s | (βx, βy)) xT M sy

= w0(s)w(s | βx)w(s | βy) xT M sy



using Lemma (2). Then the expected total payoff fromx to
y is

V =
∑

s∈REL(βx,βy)

V(s).

Unfortunately,V(s) is not bilinear inβx andβy. We now
develop an alternative convex representation for IBRPs in
whichV(s) is bilinear. Our use of sequence weights as vari-
ables is analogous to the technique in (Koller, Megiddo, &
von Stengel 1994), but our approach must also represent the
implicit behavior taken at eachXu, as this is not defined by
the sequence weights alone.

We represent an IBRP forx as an element of a setWx (and
analogously fory with a setWy). Our construction ofWx

relies on the sets

Xc
u = {(αx, α) | x ∈ Xu, α ≥ 0} ⊆ R

nu+1

for eachu ∈ Ux. The setXc
u is thecone extensionof Xu,

and it is also convex ; in fact, ifXu is a polyhedron, then so
is Xc

u. Define

X̃c =
⊗

u∈Ux

Xc
u.

We will haveWx ⊆ X̃c. We work with a vectorωx ∈ X̃c by
writing ωx = 〈(xc

u, wu) | u ∈ Ux〉, where(xc
u, wu) ∈ Xc

u,
and soxc

u ∈ R
nu andwu ∈ R are defined for allu ∈ Ux by

ωx. The setWx is defined by the following constraints:

(xc
u, wu) ∈ Xc

u

wu = 1 ∀u ∈ Ux with upredp(u) = ∅

wu = fu′,o′

x
(xc

u′ ) ∀u ∈ Ux with upredp(u) = (u′, o′).

The setWx is convex asX̃c is convex and the constraints are
linear (recall thef -functions are linear).

We associate eachωx ∈ Wx with a behavior policy via
the functiong defined byg(ωx) = βωx

whereβωx
∈ X̃ is the

IBRP defined by

βωx
(u) =

{

(1/wu)xc
u whenwu > 0

arbitrary otherwise.

It can be shown thatwu = w(u | βωx
), and so thewu

variables are in fact sequence weights. The functiong is
not quite a bijection, becauseβωx

can be set arbitrarily at in-
formation sets that are never reached; however, it is easy to
show that optimizing over the setWx is equivalent to opti-
mizing overX̃. With these tools, we can prove that payoffs
are bilinear in theWx representation:

Theorem 8. In a two-player, zero-sum, sufficient recall
CEFGs, representx’s IBRPs asWx, and playery’s IBRPs
asWy. Then, for anyωx ∈ Wx andωy ∈ Wy, the payoff
V(g(ωx), g(ωy)) is a bilinear function ofωx andωy.

An immediate corollary is that zero-sum sufficient-recall
CEFGs can be solved in polynomial time using the linear
programming solution for the convex game with strategy
setsWx andWy and the payoff matrix implied by Theo-
rem (8).

Modeling Outcome Uncertainty in EFGs
We now show that the class of extensive-form games with
outcome uncertainty (which we termperturbed games) can
be compactly represented as CEFGs, while their EFG rep-
resentations are exponentially larger. This lets us general-
ize extensive-form games in much the same way that MDPs
generalize deterministic path planning. The analogy is not
perfect, because perturbed games are still representable as
EFGs (but at the cost of an exponential blowup in size),
while a general MDP cannot be modeled by any determinis-
tic planning problem.

Fix a standard (unperturbed) EFGG, and letOu be the
set of outcomes (labels) at an information setu, soOu is in
a 1-1 correspondence with the children ofs for all s ∈ u.
In G, Ou is exactly the set of actions available to the player
atu: the player chooses some actiono ∈ Ou, and the game
state transitions deterministically to the appropriate succes-
sor node associated with the choiceo.

A perturbed EFG introduces a level of indirection be-
tween a player’s action selection and the outcome of the ac-
tion by decoupling the set of actions available from the set
of outcomesOu. A perturbed EFG(G, A) is specified as a
standard EFGG together with a perturbation modelA. The
perturbation model specifies a finite setAu = {p1, p2, . . . }
of probabilistic (meta-)actions for each player at each infor-
mation set. Each actionpi specifies a distribution over possi-
ble outcomes, sopi ∈ ∆(Ou). Hence the analogy to MDPs,
where an action at a state is defined by the distribution over
successor states it induces. The perturbed game(G, A) is
played as follows: whenp ∈ Au is selected by the player
active atu, the actual outcomeo ∈ Ou is sampled according
to the distributionp, and the game transitions to the unique
successor of the currents ∈ u that corresponds to outcome
o, as if the player had selectedo in the unperturbed game.
It is standard to assume that the player atu observes which
outcomeo actually occurred; other players in the game only
observe this if they observed the player’s action atu in the
unperturbed game.

A perturbed EFG(G, A) can be represented as an
extensive-form gameGA. For each information setu in G,
for eachs ∈ u, we introduce a new random node for each
p ∈ Au in order to model the outcome uncertainty associ-
ated with meta-actionp. Thus,s is given successor random
nodes in 1-1 correspondence withAu, and each of these ran-
dom nodes has successors in 1-1 correspondence withOu

(and hence the successors ofs in G). Applying this trans-
formation at a single information setu blows up the size of
the game representation by a factor ofO(|Au|). Introducing
a perturbation model at each information set will increase
the size of the game tree exponentially: while(G, A) can be
represented in spaceO(|G| + |A|), the EFG representation
GA can take spaceO(|G| · |Au|d), whered is the depth of
the original game tree.

An example of this transformation at a single nodes1 is
shown in parts (a) and (b) of Figure 2. Part (b) of the figure
shows the introduction of random nodesr1 andr2 that im-
plement the perturbation model. The game tree of (b) thus
remembers both which action outcome the player wanted to
happen (a versusb) as well as which action outcome actu-
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a b

A B

(a) The Original EFGG

s1

A B

r1

a

1 - ε ε

BA

r2

b

1 - εε

(b) The Perturbed EFGGA

s1

a’ b’

A B

1 - ε 1 - ε

ε ε

(c) The Perturbed CEFG

Figure 2: Representing a perturbed game as an EFG and as a CEFG. The states1 is in a singleton information set for simplicity.
We haveOu = {A, B}, where the triangles labeled with these outcomes correspond to the rest of the game tree, which could
be very large. The perturbation model isAu = {a, b} where the meta-actiona achieves outcomeA with probability1 − ǫ and
outcomeB with probabilityǫ for some small valueǫ, and similarly forb.

ally happened: hence there are two copies of the subtreesA
andB, doubling the size of the EFG.

We now show how to transform an EFG with a perturba-
tion model into a compact sufficient-recall CEFG. To rep-
resent anunperturbedEFG as a CEFG, we keep the same
game tree, and replace the finite action setOu with the con-
vex action setXu = ∆(Ou) at each information setu. To
represent theperturbedgame(G, A) we keep the game tree
of G, but the set of available actionsXu at u will be the
convex hull of the probability distributions inAu. Each
x ∈ Xu then corresponds to a valid probability distribution
overOu achievable by playing a mixture of the actionsAu.
It is straightforward to verify that this CEFG satisfies suffi-
cient recall and has a representation of sizeO(|G| + |A|).
A schematic for this representation is shown in part (c) of
Figure 2. The key is that the game tree remains the same as
G, and the space of possible outcome distributions is stored
independently via the setsXu.

The concise representation perturbed EFGs gives a sim-
ple polynomial-time algorithm for finding approximate
trembling-hand equilibria (also called perfect equilibria) for
extensive-form games: namely, one simply solves the CEFG
version of the original EFG where on each action the player
gets a random action with probabilityǫ instead of the one
chosen. Solving for perfect equilibria (or some other form
of sequential equilibria) can be critical in practice, but only
very recently have algorithms for finding such equilibria
been investigated (Miltersen & Sorensen 2006).

We have modeled outcome uncertainty efficiently using
CEFGs, but have not fully tapped the class’s representational
power. In particular, we have not used the ability to model
both players simultaneously playing at a single node, and we
have not used the ability to model different numbers of out-
comes at different states in the same information set. Both of
these abilities enable exponentially smaller representations
for some EFGs.

Conclusion and Future Directions
We have introduced CEFGs and shown that they can be
solved efficiently in the zero-sum sufficient-recall case.

CEFGs can compactly represent some games whose EFG
representation is exponentially large, thus allowing for
polynomial-time solution of games that before were in-
tractable. Two general example domains were presented:
an extension of MDPs to an adversarial setting with tempo-
ral structure and sequential observation, and the extension
of EFGs to allow for actions with stochastic outcomes. It re-
mains a promising line of future research to investigate other
applications of this expressive framework.
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