
Fast Exact Planning in Markov Decision Processes

H. Brendan McMahan and Geoffrey J. Gordon
{mcmahan+,ggordon+}@cs.cmu.edu

Carnegie Mellon School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

We study the problem of computing the optimal value
function for a Markov decision process with positive
costs. Computing this function quickly and accurately
is a basic step in many schemes for deciding how to
act in stochastic environments. There are efficient algo-
rithms which compute value functions for special types
of MDPs: for deterministic MDPs with S states and A
actions, Dijkstra’s algorithm runs in time O(AS log S).
And, in single-action MDPs (Markov chains), standard
linear-algebraic algorithms find the value function in
time O(S3), or faster by taking advantage of sparsity
or good conditioning. Algorithms for solving general
MDPs can take much longer: we are not aware of
any speed guarantees better than those for comparably-
sized linear programs. We present a family of algo-
rithms which reduce to Dijkstra’s algorithm when ap-
plied to deterministic MDPs, and to standard techniques
for solving linear equations when applied to Markov
chains. More importantly, we demonstrate experimen-
tally that these algorithms perform well when applied to
MDPs which “almost” have the required special struc-
ture.

Introduction
We consider the problem of finding an optimal policy in a
Markov decision process with non-negative costs and a zero-
cost, absorbing goal state. This problem is sometimes called
the stochastic shortest path problem. Let V ∗ be the optimal
state value function, and let Q∗ be the optimal state-action
value function. That is, let V ∗(x) be the expected cost to
reach the goal when starting at state x and following the best
possible policy, and let Q∗(x, a) be the same except that the
first action must be a. At all non-goal states x and all actions
a, V ∗ and Q∗ satisfy Bellman’s equations:

V ∗(x) = min
a∈A

Q∗(x, a)

Q∗(x, a) = c(x, a) +
∑

y∈succ(x,a)

P (y | x, a)V ∗(y)

where A is the set of legal actions, c(x, a) is the expected
cost of executing action a from state x, and P (y | x, a) is

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the probability of reaching state y when executing action a
from state x. The set succ(x, a) contains all possible possi-
ble successors of state x under action a, except that the goal
state is always excluded.1

Many algorithms for planning in Markov decision pro-
cesses work by maintaining estimates V and Q of V ∗ and
Q∗, and repeatedly updating the estimates to reduce the
difference between the two sides of the Bellman equations
(called the Bellman error). For example, value iteration re-
peatedly loops through all states x performing backup oper-
ations at each one:

for all actions a

Q(x, a)← c(x, a) +
∑

y∈succ(x,a) P (y | x, a)V (y)

V (x)← mina∈A Q(x, a)

On the other hand, Dijkstra’s algorithm uses expansion op-
erations at each state x instead:

V (x)← mina∈A Q(x, a)

for all (y, b) ∈ pred(x)

Q(y, b)← c(y, b) +
∑

x′∈succ(y,b) P (x′ | y, b)V (x′)

Here pred(x) is the set of all state-action pairs (y, b) such
that taking action b from state y has a positive chance
of reaching state x. For good recent references on value
iteration and Dijkstra’s algorithm, see (Bertsekas 1995)
and (Cormen, Leiserson, & Rivest 1990).

Any sequence of backups or expansions is guaranteed to
make V and Q converge to the optimal V ∗ and Q∗ so long
as we visit each state infinitely often. Of course, some se-
quences will converge much more quickly than others. A
wide variety of algorithms have attempted to find good state-
visitation orders to ensure fast convergence. For example,
Dijkstra’s algorithm is guaranteed to find an optimal or-
dering for a deterministic positive-cost MDP; for stochas-
tic MDPs, algorithms like prioritized sweeping (Moore &
Atkeson 1993), generalized prioritized sweeping (Andre,
Friedman, & Parr 1998), RTDP (Barto, Bradtke, & Singh
1995), LRTDP (Bonet & Geffner 2003a), and HDP (Bonet
& Geffner 2003b) all attempt to compute good orderings.

1To simplify notation, we have omitted the possibility of dis-
counting. A discount γ can be simulated by reducing P (y | x, a)
by a factor of γ for all y 6= goal and increasing P (goal | x, a)
accordingly. We assume that V ∗ and Q∗ are well-defined, i.e., that
no state has infinite V ∗(x).

0.010.99 Goal

Figure 1: A Markov chain for which backup-based methods
converge slowly. Each action costs 1.

Algorithms based on backups or expansions have an im-
portant disadvantage, though: they can be slow at policy
evaluation in MDPs with even a few stochastic transitions.
For example, in the Markov chain of Figure 1 (which has
only one stochastic transition), the best possible ordering
for value iteration will only reduce Bellman error by 1%
with each five backups. To find the optimal value function
quickly for this chain (or for an MDP which contains it), we
turn instead to methods which solve systems of linear equa-
tions.

The policy iteration algorithm alternates between steps of
policy evaluation and policy improvement. If we fix an ar-
bitrary policy and temporarily ignore all off-policy actions,
the Bellman equations become linear. We can solve this set
of linear equations to evaluate our policy, and set V to be the
resulting value function. Given V , we can compute a greedy
policy π under V , given by π(x) = arg mina Q(x, a). By
fixing a greedy policy we get another set of linear equations,
which we can also solve to compute an even better policy.
Policy iteration is guaranteed to converge so long as the ini-
tial policy has a finite value function. Within the policy eval-
uation step of policy iteration methods, we can choose any
of several ways to solve our set of linear equations (Press et
al. 1992). For example, we can use Gaussian elimination,
sparse Gaussian elimination, or biconjugate gradients with
any of a variety of preconditioners.

Of the algorithms discussed above, no single one is fast at
solving all types of Markov decision process. Backup-based
and expansion-based methods work well when the MDP has
short or nearly deterministic paths without much chance of
cycles, but can converge slowly in the presence of noise and
cycles. On the other hand, policy iteration evaluates each
policy as quickly as possible, but may spend work evaluating
a policy even after it has become obvious that another policy
is better.

This paper describes three new algorithms which blend
features of Dijkstra’s algorithm, value iteration, and pol-
icy iteration. To begin with, we describe Improved Priori-
tized Sweeping. IPS reduces to Dijkstra’s algorithm when
given a deterministic MDP, but also works well on MDPs
with stochastic outcomes. In the following section, we de-
velop Prioritized Policy Iteration, by extending IPS by in-
corporating policy evaluation steps. Finally, we describe
Gauss-Dijkstra Elimination (GDE), which interleaves pol-
icy evaluation and prioritized scheduling more tightly. GDE
reduces to Dijkstra’s algorithm for deterministic MDPs, and
to Gaussian elimination for policy evaluation. We experi-
mentally demonstrate that these algorithms extend the ad-
vantages of Dijkstra’s algorithm to “mostly” deterministic

update(x)
V (x)← Q(x, π(x))

for all (y, b) ∈ pred(x)

Q(y, b)← c(y, b) +
∑

x′∈succ(y,b) P (x′ | y, b)V (x′)

if ((not closed(y)) and Q(y, b) < Q(y, π(y)))
pri← Q(y, b) (∗)
π(y)← b

queue.decreasepriority(y,pri)

main
queue.clear()
(∀x) closed(x)← false
(∀x) V (x)←M

(∀x, a) Q(x, a)←M

(∀a) Q(goal, a)← 0
closed(goal)← true
(∀x) π(x)← undefined
π(goal) = arbitrary
update(goal)
while (not queue.isempty())

x← queue.pop()

closed(x)← true
update(x)

Figure 2: Dijkstra’s algorithm, in a notation which will allow
us to generalize it to stochastic MDPs. The variable “queue”
is a priority queue which returns the smallest of its elements
each time it is popped. The constant M is an arbitrary very
large positive number.

MDPs, and that the policy evaluation performed by PPI and
GDE speeds convergence on problems where backups alone
would be slow.

Improved Prioritized Sweeping
Dijkstra’s Algorithm
Dijkstra’s algorithm is shown in Figure 2. Its basic idea
is to keep states on a priority queue, sorted by how ur-
gent it is to expand them. The priority queue is assumed
to support operations queue.pop(), which removes and re-
turns the queue element with numerically lowest priority;
queue.decreasepriority(x, p), which puts x on the queue if it
wasn’t there, or if it was there with priority > p sets its pri-
ority to p, or if it was there with priority < p does nothing;
and queue.clear(), which empties the queue.

In deterministic Markov decision processes with positive
costs, it is always possible to find a new state x to expand
whose value we can set to V ∗(x) immediately. So, in these
MDPs, Dijkstra’s algorithm touches each state only once
while computing V ∗, and is therefore by far the fastest way
to find a complete policy. In MDPs with stochastic outcomes

for some actions, it is in general impossible to efficiently
compute an optimal order for expanding states. An opti-
mal order is one for which we can always determine V ∗(x)
using only V ∗(y) for states y which come before x in the
ordering. Even if there exists such an ordering (i.e., if there
is an acyclic optimal policy), we might need to look at non-
local properties of states to find it. See (McMahan & Gordon
2005) for an example of such an MDP.

Several algorithms, most notably prioritized sweep-
ing (Moore & Atkeson 1993) and generalized prioritized
sweeping (Andre, Friedman, & Parr 1998), have attempted
to extend the priority queue idea to MDPs with stochastic
outcomes. These algorithms give up the property of visit-
ing each state only once in exchange for solving a larger
class of MDPs. However, neither of these algorithms re-
duce to Dijkstra’s algorithm if the input MDP happens to be
deterministic. Therefore, they potentially take far longer to
solve a deterministic or nearly-deterministic MDP than they
need to. In the next section, we discuss what properties an
expansion-scheduling algorithm needs to have to reduce to
Dijkstra’s algorithm on deterministic MDPs.

Generalizing Dijkstra
We will consider algorithms which replace the line (∗) in
Figure 2 by other priority calculations that maintain that
property that when the input MDP is deterministic with pos-
itive edge costs an optimal ordering is produced. If the input
MDP is stochastic, a single pass of a generalized Dijkstra
algorithm generally will not compute V ∗, so we will have
to run multiple passes. Each subsequent pass can start from
the value function computed by the previous pass (instead
of from V (x) = M like the first pass), so multiple passes
will cause V to converge to V ∗. (Likewise, we can save Q
values from pass to pass.) We now consider several priority
calculations that satisfy the desired property.

Large Change in Value The simplest statistic which al-
lows us to identify completely-determined states, and the
one most similar in spirit to prioritized sweeping, is how
much the state’s value will change when we expand it. In
line (∗) of Figure 2, suppose that we set

pri← d(V (y)−Q(y, b)) (1)

for some monotone decreasing function d(·). Any state y
with closed(y) = false (called an open state) will have
V (y) = M in the first pass, while closed states will have
lower values of V (y). So, any deterministic action leading to
a closed state will have lower Q(y, b) than any action which
might lead to an open state. And, any open state y which
has a deterministic action b leading to a closed state will
be on our queue with priority at most d(V (y) −Q(y, b)) =
d(M−Q(y, b)). So, if our MDP contains only deterministic
actions, the state at the head of the queue will the open state
with the smallest Q(y, b)—identical to Dijkstra’s algorithm.

Note that prioritized sweeping and generalized prioritized
sweeping perform backups rather than expansions, and use a
different estimates of how much a state’s value will change
when updated. Namely, they keep track of how much a

state’s successors’ values have changed and base their prior-
ities on these changes weighted by the corresponding transi-
tion probabilities. This approach, while in the spirit of Dijk-
stra’s algorithm, do not reduce to Dijkstra’s algorithm when
applied to deterministic MDPs. Wiering (1999) discusses
the priority function (1), but he does not prescribe the uni-
form pessimistic initialization of the value function which is
given in Figure 2. This pessimistic initialization is necessary
to make (1) reduce to Dijkstra’s algorithm. Other authors
(for example Dietterich and Flann (1995)) have discussed
pessimistic initialization for prioritized sweeping, but only
in the context of the original non-Dijkstra priority scheme
for that algorithm.

One problem with the priority scheme of equation (1) is
that it only reduces to Dijkstra’s algorithm if we uniformly
initialize V (x) ← M for all x. If instead we pass in some
nonuniform V (x) ≥ V ∗(x) (such as one which we com-
puted in a previous pass of our algorithm, or one we got
by evaluating a policy provided by a domain expert), we
may not expand states in the correct order in a deterministic
MDP.2 This property is somewhat unfortunate: by provid-
ing stronger initial bounds, we may cause our algorithm to
run longer. So, in the next few subsections we will inves-
tigate additional priority schemes which can help alleviate
this problem.

Low Upper Bound on Value Another statistic which al-
lows us to identify completely-determined states x in Dijk-
stra’s algorithm is an upper bound on V ∗(x). If, in line (∗)
of Figure 2, we set

pri← m(Q(y, b)) (2)

for some monotone increasing function m(·), then any open
state y which has a deterministic action b leading to a closed
state will be on our queue with priority at most m(Q(y, b)).
(Note that Q(y, b) is an upper bound on V ∗(y) because we
have initialized V (x)←M for all x.) As before, in a deter-
ministic MDP, the head of the queue will be the open state
with smallest Q(y, b). But, unlike before, this fact holds no
matter how we initialize V (so long as V (x) > V ∗(x)): in a
deterministic positive-cost MDP, it is always safe to expand
the open state with the lowest upper bound on its value.

High Probability of Reaching Goal Dijkstra’s algorithm
can also be viewed as building a set of closed states, whose
V ∗ values are completely known, by starting from the goal
state and expanding outward. According to this intuition, we

2We need to be careful passing in arbitrary V (x) vectors for
initialization: if there are any optimal but underconsistent states
(states whose V (x) is already equal to V ∗(x), but whose V (x)
is less than the right-hand side of the Bellman equation), then the
check Q(y, b) < V (y) will prevent us from pushing them on the
queue even though their predecessors may be inconsistent. So,
such an initialization for V may cause our algorithm to terminate
prematurely before V = V ∗ everywhere. Fortunately, if we ini-
tialize using a V computed from a previous pass of our algorithm,
or set V to the value of some policy, then there will be no optimal
but underconsistent states, so this problem will not arise.

should consider maintaining an estimate of how well-known
the values of our states are, and adding the best-known states
to our closed set first.

For this purpose, we can add extra variables pgoal(x, a)
for all states x and actions a, initialized to 0 if x is a non-
goal state and 1 if x is a goal state. Let us also add variables
pgoal(x) for all states x, again initialized to 0 if x is a non-
goal state and 1 if x is a goal state.

To maintain the pgoal variables, each time we update
Q(y, b) we can set

pgoal(y, b)←
∑

x′∈succ(y,b)

P (x′ | y, b)pgoal(x
′)

And, when we assign V (x)← Q(x, a) we can set

pgoal(x)← pgoal(x, a)

(in this case, we will call a the selected action from x).
With these definitions, pgoal(x) will always remain equal to
the probability of reaching the goal from x by following se-
lected actions and at each step moving from a state expanded
later to one expanded earlier (we call such a path a decreas-
ing path). In other words, pgoal(x) tells us what fraction of
our current estimate V (x) is based on fully-examined paths
which reach the goal.

In a deterministic MDP, pgoal will always be either 0 or
1: it will be 0 for open states, and 1 for closed states. Since
Dijkstra’s algorithm never expands a closed state, we can
combine any decreasing function of pgoal(x) with any of the
above priority functions without losing our equivalence to
Dijkstra. For example, we could use

pri← m(Q(y, b), 1− pgoal(y)) (3)

where m is a two-argument monotone function.3

In the first sweep after we initialize V (x) ← M , priority
scheme (3) is essentially equivalent to schemes (1) and (2):
the value Q(x, a) can be split up as

pgoal(x, a)QD(x, a) + (1− pgoal(x, a))M

where QD(x, a) is the expected cost to reach the goal as-
suming that we follow a decreasing path. That means that a
fraction 1 − pgoal(x, a) of the value Q(x, a) will be deter-
mined by the large constant M , so state-action pairs with
higher pgoal(x, a) values will almost always have lower
Q(x, a) values. However, if we have initialized V (x) in
some other way, then equation (1) no longer reduces to Dijk-
stra’s algorithm, while equations (2) and (3) are different but
both reduce to Dijkstra’s algorithm on deterministic MDPs.

All of the Above Instead of restricting ourselves to just
one of the priority functions mentioned above, we can com-
bine all of them: since the best states to expand in a deter-
ministic MDP will win on any one of the above criteria, we
can use any monotone function of all of the criteria and still
behave like Dijkstra in deterministic MDPs.

3A monotone function with multiple arguments is one which al-
ways increases when we increase one of the arguments while hold-
ing the others fixed.

We have experimented with several different combina-
tions of priority functions; the experimental results we report
use the priority functions

pri1(x, a) =
Q(x, a)− V (x)

Q(x, a)
(4)

and
pri2(x, a) = 〈1− pgoal(x), pri1(x, a)〉 (5)

The pri1 function combines the value change criterion (1)
with the upper bound criterion (2). It is always negative
or zero, since 0 < Q(x, a) ≤ V (x). It decreases when
the value change increases (since 1/Q(x, a) is positive),
and it increases as the upper bound increases (since 1/x
is a monotone decreasing function when x > 0, and since
Q(x, a)− V (x) ≤ 0).

The pri2 function uses pgoal as a primary sort key and
breaks ties according to pri1. That is, pri2 returns a vector in
R

2 which should be compared according to lexical ordering
(e.g., (3, 3) < (4, 2) < (4, 3)).

Sweeps vs. Multiple Updates
The algorithms we have described so far in this section must
update every state once before updating any state twice. We
can also consider a version of the algorithm which does not
enforce this restriction; this multiple-update algorithm sim-
ply skips the check “if not closed(y)” which ensures that we
don’t push a previously-closed state onto the priority queue.
The multiple-update algorithm still reduces to Dijkstra’s al-
gorithm when applied to a deterministic MDP: any state
which is already closed will fail the check Q(y, b) < V (y)
for all subsequent attempts to place it on the priority queue.

Experimentally, the multiple-update algorithm is faster
than the algorithm which must sweep through every state
once before revisiting any state. Intuitively, the sweeping al-
gorithm can waste a lot of work at states far from the goal be-
fore it determines the optimal values of states near the goal.

In the multiple-update algorithm we are always effec-
tively in our “first sweep,” so keeping track of pgoal doesn’t
help us compute accurate priorities. So, with multiple up-
dates, we will use the priority pri1 from equation (4). The
resulting algorithm is called Improved Prioritized Sweeping;
it’s update method is listed in Figure 3.

We also mention here that it is also possible to perform
expansions in an incremental manner. If B is a bound on the
number of outcomes of each action, this approach perform-
ing O(1) work per expansion rather than O(B) as in Fig-
ure 3. Doing the full O(B) expansion incorporates newer
information about other outcomes as well, and so we did not
notice an improvement in performance for the incremental
version. For details, please see (McMahan & Gordon 2005).

Prioritized Policy Iteration
The Improved Prioritized Sweeping algorithm works well
on MDPs which are moderately close to being deterministic.
Once we start to see large groups of states with strongly in-
terdependent values, there will be no expansion order which
will allow us to find a good approximation to V∗ in a small
number of visits to each state. The MDP of Figure 1 is an

update(x)
V (x)← Q(x, π(x))

for all (y, b) ∈ pred(x)

Q(y, b)← c(y, b) +
∑

x′∈succ(y,b) P (x′ | y, b)Q(x′, π(x′))

if (Q(y, b) < Q(y, π(y)))
pri← (Q(y, b)− V (y))/Q(y, b)

π(y)← b

queue.decreasepriority(y,pri)

Figure 3: The update function for the Improved Prioritized
Sweeping algorithm. The main function is the same as for
Dijkstra’s algorithm. As before, “queue” is a priority min-
queue and M is a very large positive number.

example of this problem: because there is a cycle which has
high probability and visits a significant fraction of the states,
the values of the states along the cycle depend strongly on
each other. To deal with this, we turn to algorithms that oc-
casionally do some work to evaluate the current policy; the
simplest such algorithm is policy iteration.

Prioritized Policy Iteration attempts to improve on policy
iteration’s greedy policy improvement step, doing a small
amount of extra work during this step to try to reduce the
number of policy evaluation steps. Since policy evaluation
is usually much more expensive than policy improvement,
any reduction in the number of evaluation steps will usually
result in a better total planning time.

Pseudo-code for PPI is given in Figure 4. The main loop
is identical to regular policy iteration, except for a call to
sweep() rather than to a greedy policy improvement rou-
tine. The policy evaluation step can be implemented effi-
ciently by a call to a low-level matrix solver; such a low-
level solver can take advantage of sparsity in the transition
dynamics by constructing an explicit LU factorization (Duff,
Erisman, & Reid 1986), or it can take advantage of good
conditioning by using an iterative method such as stabilized
biconjugate gradients (Barrett et al. 1994). In either case,
we can expect to be able to evaluate policies efficiently even
in large Markov decision processes.

The policy improvement step is where we hope to beat
policy iteration. By performing a prioritized sweep through
state space, so that we examine states near the goal before
states farther away, we can base many of our policy deci-
sions on multiple steps of look-ahead. Scheduling the ex-
pansions in our sweep according to one of the priority func-
tions previously discussed insures PPI reduces to Dijkstra’s
algorithm: when we run it on a deterministic MDP, the first
sweep will compute an optimal policy and value function,
and will never encounter a Bellman error in a closed state.
So ∆ will be 0 at the end of the sweep, and we will pass
the convergence test before evaluating a single policy. On
the other hand, if there are no action choices then PPI will
not be much more expensive than solving a single set of lin-
ear equations: the only additional expense will be the cost

update(x)
for all (y, a) ∈ pred(x)

if (closed(y))
Q(y, a)← c(y, a) +

∑
x′∈succ(y,a) P (x′ | y, a)V (x′)

∆← max(∆, V (y)−Q(y, a))

else
for all actions b

Q(y, b)← c(y, b) +
∑

x′∈succ(y,b) P (x′ | y, b)V (x′)

pgoal(y, b)←
∑

x′∈succ(y,b) P (x′ | y, b)pgoal(x
′)

+ P (goal | y, b)

if (Q(y, b) < Q(y, π(y)))
V (y)← Q(y, b)

π(y)← b
pgoal(y)← pgoal(y, b)

pri← 〈1− pgoal(x), (V (y)− Vold(y))/V (y)〉
queue.decreasepriority(y,pri)

sweep()
(∀x) closed(x)← false
(∀x) pgoal(x)← 0

closed(goal)← true
update(goal)
while (not queue.isempty())

x← queue.pop()

closed(x)← true
update(x)

main()
(∀x) V (x)←M , Vold(x)←M

V (goal)← 0, Vold(goal)← 0

while (true)
(∀x) π(x)← undefined
∆← 0

sweep()
if (∆ < tolerance)

declare convergence
(∀x) Vold(x)← V (x)

evaluate policy π(x) and store its value function in V

Figure 4: The Prioritized Policy Iteration algorithm. As be-
fore, “queue” is a priority min-queue and M is a very large
positive number.

of the sweep, which at O((BA)2S log S) is usually much
less expensive than solving the linear equations (assuming
B,A << S). For PPI, we chose to use the pri2 schedule
from equation (5). Unlike pri1 (equation (4)), pri2 forces
us to expand states with high pgoal first, even when we have

initialized V to the value of a near-optimal policy.
In order to guarantee convergence, we need to set π(x) to

a greedy action with respect to V before each policy evalu-
ation. Thus in the update(x) method of PPI, for each state
y for which there exists some action that reaches x, we re-
calculate Q(y, b) values for all actions b. In IPS, we only
calculated Q(y, b) for actions b that reach x. The extra work
is necessary in PPI because the stored Q values may be un-
related to the current V (which was updated by policy eval-
uation), and so otherwise π(x) might not be set to a greedy
action. Other Q-value update schemes are possible,4 and
will lead to convergence as long as they fix a greedy pol-
icy. Note also that extra work is done if the loops in update
are structured as in Figure 4; with a slight reduction in clar-
ity, they can be arranged so that each predecessor state y is
backed up only once.

One important additional tweak to PPI is to perform mul-
tiple sweeps between policy evaluation steps. Since policy
evaluation tends to be more expensive, this allows a better
tradeoff to be made between evaluation and improvement
via expansions.

Gauss-Dijkstra Elimination
The Gauss-Dijkstra Elimination algorithm continues the
theme of taking advantage of both Dijkstra’s algorithm and
efficient policy evaluation, but it interleaves them at a deeper
level.

Gaussian Elimination and MDPs Fixing a policy π for
an MDP produces a Markov chain and a vector of costs c. If
our MDP has S states (not including the goal state), let P π

be the S × S matrix with entries P π
xy = P (y | x, π(x)) for

all x, y 6= goal. Finding the values of the MDP under the
given policy reduces to solving the linear equations

(I − P π)V = c

To solve these equations, we can run Gaussian elimination
and backsubstitution on the matrix (I−P π). Gaussian elim-
ination calls rowEliminate(x) (defined in Figure 5, where Θ
is initialized to P π and w to c) for all x from 1 to S in order,5

zeroing out the subdiagonal elements of (I−P π). Backsub-
stitution calls backsubstitute(x) for all x from S down to 1
to compute (I − P π)−1c. In Figure 5, Θx· denotes the x’th
row of Θ, and Θy· denotes the y’th row. We show updates to
pgoal(x) explicitly, but it is easy to implement these updates
as an extra dense column in Θ.

Gaussian elimination performed on a Markov chain in this
way has a very appealing interpretation: the xth row in Θ

4For example, we experimented with only updating Q(y, b)
when P (x | y, b) > 0 in update and then doing a single full
backup of each state after popping it from the queue, ensuring a
greedy policy. This approach was on average slower than the one
presented above.

5Using the Θ representation causes a few minor changes to the
Gaussian elimination code, but it has the advantage that (Θ, w)
can always be interpreted as a Markov chain which is has the same
value function as the original (P π, c). Also, for simplicity we will
not consider pivoting; if π is a proper policy then (I − Θ) will
always have a nonzero entry on the diagonal.

rowEliminate(x)
for y from 1 to x-1 do

w(x)← w(x) + Θxyw(y)

Θx· ← Θx· + ΘxyΘy· (1)
pgoal(x)← pgoal(x) + Θxypgoal(y)

Θxy ← 0

w(x)← w(x)/(1−Θxx)

Θx· ← Θx·/(1−Θxx) (2)
Θxx ← 0

pgoal(x)← pgoal(x)/(1−Θxx)

backsubstitute(x)
for each y such that Θyx > 0 do

pgoal(x)← pgoal(x) + Θyx

w(y)← w(y) + ΘyxV (x)

Θyx ← 0

if (pgoal(y) = 1)
backsubstitute(y)
F ← F ∪ {y}

GaussDijkstraSweep()
while (not queue.empty())

x← queue.pop()
π(x)← arg mina Q(x, a)

(∀y) Θxy ← P (y | x, π(x))

w(x)← c(x, π(x))

rowEliminate(x)
v(x)← (Θx·) · V + w(x)

F = {x}
if (Θx,goal = 1)

backsubstitute(x)
(∀y ∈ F) update(y)

Figure 5: Gauss-Dijkstra Elimination

can be interpreted as the transition probabilities for a macro
action from state x, with cost given by w(x). For a full dis-
cussion of this relationship, see (McMahan & Gordon 2005).

Gauss-Dijkstra Elimination Gauss-Dijkstra elimination
combines the above Gaussian elimination process with
a Dijkstra-style priority queue that determines the or-
der in which states are selected for elimination. The
main loop is the same as the one for PPI, except that
the policy evaluation call is removed and sweep() is
replaced by GaussDijkstraSweep(). Pseudo-code for
GaussDijkstraSweep() is given in Figure 5.

When x is popped from the queue, its action is fixed to
a greedy action. The outcome distribution for this action

is used to initialize Θx·, and row elimination transforms
Θx· and w(x) into a macro-action as described above. If
Θx,goal = 1, then we fully know the state’s value; this will
always happen for the Sth state, but may also happen ear-
lier. We do immediate backsubstitution when this occurs,
which eliminates some non-zeros above the diagonal and
possibly causes other states’ values to become known. Im-
mediate backsubstitution ensures that V (x) and pgoal(x) are
updated with the latest information, improving our priority
estimates for states on the queue and possibly saving us work
later (for example, in the case when our transition matrix is
block lower triangular, we automatically discover that we
only need to factor the blocks on the diagonal). Finally, all
predecessors of the state popped and any states whose val-
ues became known are updated using the update() routine
for PPI (in Figure 4).

Since S can be large, Θ will usually need to be repre-
sented sparsely. Assuming Θ is stored sparsely, GDE re-
duces to Dijkstra’s algorithm in the deterministic case; it
is easy to verify the additional matrix updates require only
O(S) work. Initially it takes no more memory to represent
Θ than it does to store the dynamics of the MDP, but the
elimination steps can introduce many additional non-zeros.
The number of such new non-zeros is greatly affected by
the order in which the eliminations are performed. There is
a vast literature on techniques for finding such orderings; a
good introduction can be found in (Duff, Erisman, & Reid
1986). One of the main advantages of GDE seems to be that
for practical problems, the prioritization criteria we present
produce good elimination orders as well as effective policy
improvement.

Our primary interest in GDE stems from the wide range of
possibilities for enhancing its performance; even in the naive
form outlined it is usually competitive with PPI. We antici-
pate that doing “early” backsubstitution when states’ values
are mostly known (high pgoal(x)) will produce even better
policies and hence fewer iterations. Further, the interpre-
tation of rows of Θ as macro-actions suggests that caching
these actions may yield dramatic speed-ups when evaluat-
ing the MDP with a different goal state. The usefulness of
macro-actions for this purpose was demonstrated by Dean
& Lin (1995). A convergence-checking mechanism such as
those used by LRTDP and HDP (Bonet & Geffner 2003a;
2003b) could also be used between iterations to avoid re-
peating work on portions of the state space where an opti-
mal policy and value function are already known. The key
to making GDE widely applicable, however, probably lies
in appropriate thresholding of values in Θ, so that transition
probabilities near zero are thrown out when their contribu-
tion to the Bellman error is negligible. Our current imple-
mentation does not do this, so while its performance is good
on many problems, it can perform poorly on problems that
have significant fill-in.

Experiments
We implemented IPS, PPI, and GDE and compared them
to VI, Prioritized Sweeping, and LRTDP. All algorithms
were implemented in Java 1.5.0 and tested on a 3Ghz Intel
machine with 2GB of main memory under Linux.

|S| fp f` % determ O notes
A 59,780 0.00 0.00 100.0% 1.00 determ
B 96,736 0.05 0.10 17.2% 2.17 |A| = 1
C 11,932 0.20 0.00 25.1% 4.10 fh = 0.05
D 10,072 0.10 0.25 39.0% 2.15 cycle
E 96,736 0.00 0.20 90.8% 2.41
F 21,559 0.20 0.00 34.5% 2.00 large-b
G 27,482 0.10 0.00 90.4% 3.00

Figure 6: Test problems sizes and parameters.

Our PPI implementation uses a stabilized biconjugate gra-
dient solver with an incomplete LU preconditioners as im-
plemented in the Matrix Toolkit for Java (Heimsund 2004).
No native or optimized code was used; using architecture-
tuned implementations of the underlying linear algebraic
routines could give a significant speedup.

For LRTDP we specified a few reasonable start states for
each problem. Typically LRTDP converged after labeling
only a small fraction of the the state space as solved, up to
about 25% on some problems.

Experimental Domain
We describe experiments in a discrete 4-dimensional plan-
ning problem that captures many important issues in mobile
robot path planning. Our domain generalizes the racetrack
domain described previously in (Barto, Bradtke, & Singh
1995; Bonet & Geffner 2003a; 2003b; Hansen & Zilberstein
2001). A state in this problem is described by a 4-tuple,
s = (x, y, dx, dy), where (x, y) gives the location in a 2D
occupancy map, and (dx, dy) gives the robot’s current ve-
locity in each dimension. On each time step, the agent se-
lects an acceleration a = (ax, ay) ∈ {−1, 0, 1}2 and hopes
to transition to state (x+dx, y+dy, dx+ax, dy+ay). How-
ever, noise and obstacles can affect the actual result state.

As in the racetrack problem, actions can fail with prob-
ability fp, resulting in a the next state being (x + dx, y +
dy, dx, dy). We also model high-velocity noise: if the
robot’s velocity surpasses an L2 threshold, it incurs a ran-
dom acceleration on each time step with probability fh.
States with local noise move the robot in a designated di-
rection with probability f`. We use one-way passages to
introduce larger cycles into some of our domains.

These additions to the domain allow us to capture a wide
variety of planning problems. In particular, kinodynamic
path planning for mobile robots generally has more noise
(more possible outcomes of a given action as well as higher
probability of departure from the nominal command) than
the original racetrack domain allows. Action failure and
high-velocity noise can be caused by wheels slipping, delays
in the control loop, bumpy terrain, and so on. One-way pas-
sages can be used to model low curbs or other map features
that can be passed in only one direction by a wheeled robot.
Local noise can model a robot driving across sloped terrain:
downhill accelerations are easier than uphill ones. For more
details on the dynamics of our test problem, as well as ad-
ditional experimental results, please refer to (McMahan &
Gordon 2005).

Figure 6 summarizes the parameters of the test problems

Figure 7: Some maps used for test experiments; maps are
not drawn to the same scale. Problem (E) uses the same
map as (B). Problem (G) uses a smaller version of map (B).

we used. The “% determ” column indicates the percentage
of (s, a) pairs with deterministic outcomes.6 The O column
gives the average number of outcomes for non-deterministic
transitions. All problems have 9 actions except for (B),
which is a policy evaluation problem. Problem (C) has high
velocity noise, with a threshold of

√
2 + ε. Figure 7 shows

the 2D world maps for most of the problems.
To construct larger problems for some of our experiments,

we consider linking copies of an MDP in series by making
the goal state of the ith copy transitions to the start state of
the (i+1)st copy. We indicate k serial copies of an MDP M
by Mk, so for example 22 copies of problem (G) is denoted
(G22).

Experimental Results
Effects of Local Noise First, we considered the effect of
increasing the randomness f` and fp for the fixed map (G),
a smaller version of (B). One-way passages give this com-
plex map the possibility for cycles. Figure 8 shows the run
times (y-axis) of several algorithms plotted against fp. The
parameter f` was set to 0.5fp for each trial.

These results demonstrate the catastrophic effect in-
creased noise can have on the performance of VI. For low-
noise problems, VI converges reasonably quickly, but as
noise is increased the expected length of trajectories to the
goal grows, and VI’s performance degrades accordingly.
IPS performs somewhat better overall, but it suffers from
this same problem as the noise increases. However, PPI’s
use of policy evaluation steps quickly propagates values
through these cycles, and so its performance is almost to-

6Our implementation uses a deterministic transition to apply the
collision cost, so all problems have some deterministic transitions.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

300

350

400

Noise level

R
un

tim
e

(s
ec

on
ds

)

PPI−4
IPS
VI
LRTDP

Figure 8: Effect of local noise on solution time. The leftmost
data point is for the deterministic problem. Note that PPI-4
exhibits almost constant runtime even as noise is increased.

tally unaffected by the additional noise. PPI-4 beats VI on
all trials. It wins by a factor of 2.4 with fp = 0.05 and with
fp = 0.4 , PPI-4 is 29 times faster than VI.

The dip in runtimes for LRTDP is probably due to
changes in the optimal policy, and the number and order in
which states are converged. Confidence intervals are given
for LRTDP only, as it is a randomized algorithm. The deter-
ministic algorithms were run multiple times, and deviations
in runtimes were negligible.

Number of Policy Evaluation Steps Policy iteration is an
attractive algorithm for MDPs where policy evaluation via
backups or expansions is likely to be slow. It is well known
that policy iteration typically converges in few iterations.
However, Figure 9 shows that our algorithms can greatly re-
duce the number of iterations required. In problems where
policy evaluation is expensive, this can provide a significant
overall savings in computation time.

We compare policy iteration to PPI, where we use either
1,2, or 4 sweeps of Dijkstra policy improvement between it-
erations. Policy iteration was initialized to the policy given
by the solution of a deterministic relaxation of the problem.
We also ran GDE on these problems. Typically it required
the same number of iterations as PPI, but we hope to im-
prove upon this performance in future work.

Q-value Computations Our implementation are opti-
mized not for speed but for ease of use, instrumentation,
and modification. We expect our algorithms to benefit much
more from tuning than value iteration. To show this poten-
tial, we compare IPS, PS, and VI on the number of Q-value
computations (Q-comps) they perform. A single Q-comp
means iterating over all the outcomes for a given (s, a) pair
to calculate the current Q value. A backup takes |A| Q-
comps, for example. We do not compare PPI-4, GDE, and
LRTDP based on this measure, as they also perform other
types of computation.

C D E F
0

5

10

15

Problem

Ite
ra

tio
ns

PI
PPI−1
PPI−2
PPI−4

Figure 9: Number of policy evaluation steps.

IPS typically needed substantially fewer Q-comps than
VI. On the deterministic problem (A), VI required 255 times
as many Q-comps as IPS, due to IPS’s reduction to Dijk-
stra’s algorithm; VI made 7.3 times as many Q-comps as PS.
On problems (B) through (F), VI on average needed 15.29
times as many Q-comps as IPS, and 5.16 times as many
as PS. On (G22) it needed 36 times as many Q-comps as
IPS. However, these large wins in number of Q-comps are
offset by value iteration’s higher throughput: for example,
on problems (B) through (F) VI averaged 27,630 Q-comps
per millisecond, while PS averaged 4,033 and IPS averaged
3,393. PS and IPS will always have somewhat more over-
head per Q-comp than VI. However, replacing the standard
binary heap we implemented with a more sophisticated algo-
rithm or approximate queuing strategy could greatly reduce
this overhead, possibly leading to significantly improved
performance.

Overall Performance of Solvers Figure 10 shows a com-
parison of the run-times of our solvers on the various test
problems. Problem (G22) has 623,964 states, showing that
our approaches can scale to large problems.7 Biconjugate
gradient failed to converge on the initial linear systems pro-
duced by PPI-4, so we instead used PPI where 28 initial
sweeps were made (so that there was a reasonable policy
to be evaluated initially), and then 7 sweeps were made be-
tween subsequent evaluations. We also found that adding a
pass of standard greedy policy improvement after the sweeps
improved performance. These changes roughly balanced the
time spent on sweeping and policy improvement. In future
work we hope to develop more principled and automatic
methods for determining how to split computation time be-
tween sweeps and policy evaluation. We did not run PS,
LRTDP, or GDE on this problem.

Generally, our algorithms do best on problems that are

7This experiment was run on a different (though similar) ma-
chine than the other experiments, a 3.4GHz Pentium under Linux
with 1GB of memory.

sparsely stochastic (only have randomness at a few states)
and also on domains where typical trajectories are long rel-
ative to the size of the state space. These long trajectories
cause serious difficulties for methods that do not use an ef-
ficient form of policy evaluation. For similar reasons, our
algorithms do better on long, narrow domains rather than
wide open ones; the key factor is again the expected length
of the trajectories versus the size of the state space.

Value iteration backed up states in the order in which
states were indexed in the internal representation; this order
was generated by a breadth-first search from the start state
to find all reachable states. While this ordering provides
better cache performance than a random ordering, We ran a
minimal set of experiments and observed that the natural or-
dering performs somewhat worse (up to 20% in our limited
experiments) than random orderings. Despite this, we ob-
served better than expected performance for value iteration,
especially as it compares to LRTDP and Prioritized Sweep-
ing. For example, on the large-b problem (F), (Bonet &
Geffner 2003b) reports a slight win for LRTDP over VI, but
our experiments show VI being faster.

Also, GDE’s performance is typically close to or better
than that of PPI-4, except on problem (B), where GDE fails
due to moderately high fill in. These results are encouraging
because GDE already sometimes performs better than PPI-
4, and currently GDE is based on a naive implementation
of Gaussian elimination and sparse matrix code. The liter-
ature in the numerical analysis community shows that more
advanced techniques can yield dramatic speedups (see, for
example, (Gupta 2002)), and we hope to take advantage of
this in future versions of GDE.

Discussion
The success of Dijkstra’s algorithm has inspired many algo-
rithms for MDP planning to use a priority queue to try to
schedule when to visit each state. However, none of these
algorithms reduce to Dijkstra’s algorithm if the input hap-
pens to be deterministic. And, more importantly, they are
not robust to the presence of noise and cycles in the MDP.
For MDPs with significant randomness and cycles, no algo-
rithm based on backups or expansions can hope to remain ef-
ficient. Instead, we turn to algorithms which explicitly solve
systems of linear equations to evaluate policies or pieces of
policies.

We have introduced a family of algorithms—Improved
Prioritized Sweeping, Prioritized Policy Iteration, and
Gauss-Dijkstra Elimination—which retain some of the best
features of Dijkstra’s algorithm while integrating varying
amounts of policy evaluation. We have evaluated these al-
gorithms in a series of experiments, comparing them to
other well-known MDP planning algorithms on a variety of
MDPs. Our experiments show that the new algorithms can
be robust to noise and cycles, and that they are able to solve
many types of problems more efficiently than previous algo-
rithms could.

For problems which are fairly close to deterministic, we
recommend Improved Prioritized Sweeping. For problems
with fast mixing times or short average path lengths, value
iteration is hard to beat and is probably the simplest of all

A (4.37s) B (76.00s) C (5.55s) D (28.15s) E (90.75s) F (3.80s) G22 (675.12s)
0

0.2

0.4

0.6

0.8

1

Problem

F
ra

ct
on

 o
f l

on
ge

st
 ti

m
e

PPI−4
IPS
GDE
VI
LRTDP
PS

Figure 10: Comparison of a selection of algorithms on representative problems. Problem (A) is deterministic, and Problem
(B) requires only policy evaluation. Results are normalized to show the fraction of the longest solution time taken by each
algorithm. On problems (B) and (E), the slowest algorithms were stopped before they had converged. LRTDP is not charged
for time spent calculating its heuristic, which is negligible in all problems except (A).

of the algorithms to implement. For general use, we recom-
mend the Prioritized Policy Iteration algorithm. It is sim-
ple to implement, and can take advantage of fast, vendor-
supplied linear algebra routines to speed policy evaluation.

Acknowledgements
The authors wish to thank the reviewers for helpful com-
ments, and Avrim Blum and Maxim Likhachev for useful
input.

References
Andre, D.; Friedman, N.; and Parr, R. 1998. Generalized
prioritized sweeping. In Jordan, M. I.; Kearns, M. J.; and
Solla, S. A., eds., Advances in Neural Information Process-
ing Systems, volume 10. MIT Press.

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.;
Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and der
Vorst, H. V. 1994. Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods, 2nd Edition.
Philadelphia, PA: SIAM.

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 72:81–138.

Bertsekas, D. P. 1995. Dynamic Programming and Optimal
Control. Massachusetts: Athena Scientific.

Bonet, B., and Geffner, H. 2003a. Labeled RTDP: Improv-
ing the convergence of real time dynamic programming. In
Proceedings of the 13th International Conference on Auto-
mated Planning and Scheduling (ICAPS-2003).

Bonet, B., and Geffner, H. 2003b. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of IJCAI-03, Acapulco, Mexico, 1233–1238. Mor-
gan Kaufmann.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. McGraw-Hill.
Dean, T., and Lin, S. 1995. Decomposition techniques for
planning in stochastic domains. In IJCAI.
Dietterich, T. G., and Flann, N. S. 1995. Explanation-
based learning and reinforcement learning: A unified view.
In 12th International Conference on Machine Learning
(ICML), 176–184. Morgan Kaufmann.
Duff, I. S.; Erisman, A. M.; and Reid, J. K. 1986. Direct
methods for sparse matrices. Oxford: Oxford University
Press.
Gupta, A. 2002. Recent advances in direct methods for
solving unsymmetric sparse systems of linear equations.
ACM Trans. Math. Softw. 28(3):301–324.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
Heimsund, B.-O. 2004. Matrix Toolkits for Java (MTJ).
http://www.math.uib.no/˜bjornoh/mtj/.
McMahan, H. B., and Gordon, G. J. 2005. Generaliz-
ing Dijkstra’s algorithm and Gaussian elimination to solve
MDPs. Technical Report (to appear), Carnegie Mellon
University.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: reinforcement learning with less data and less real
time. Machine Learning 13(1):102–130.
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flan-
nery, B. P. 1992. Numerical Recipes in C. Cambridge:
Cambridge University Press, 2nd edition.
Wiering, M. 1999. Explorations in Efficient Reinforcement
Learning. Ph.D. Dissertation, University of Amsterdam.

