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Overview
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Actual results

Fast approximate planningin POMDPs – p.4/37



POMDP overview

Planning in an uncertain world

Actions have random effects

Don’t observe full world state
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POMDP definition

State x ∈ X, actions a ∈ A, observations z ∈ Z

Rewards ra (column vectors), discount γ ∈ [0, 1)

Belief b ∈ P (X) (row vectors)

Starting belief b0
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POMDP definition cont’d

Transitions b→ bTa (Ta stochastic)

Observation likelihoods wz (row vectors)
∑

z

wz = 1

Observation update:

b← wz × b · η

where × is pointwise multiplication
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Value functions

Just like MDP value function (but bigger)

V (b) = expected total discounted future reward
starting from b

Knowing V means planning is 1-step lookahead

If we discretize belief simplex, we are “done”

From b get to bz1
, bz2

, . . . according to P (z | b, a)
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Value functions

Additional structure: convexity

Consider beliefs b1, b2, b3 = b1+b2

2

b3: flip a coin, then start in b1 if heads, b2 if tails

b3 is always worse than average of b1, b2
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Representation

Represent V as the upper surface of a (possibly
infinite) set of hyperplanes

V is set of hyperplanes

Hyperplanes represented
by normals v (column
vectors)

V (b) = maxv∈V b · v
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Value iteration

Bellman’s equation:

V (b) = max
a

Q(b, a)

Q(b, a) = ra + γ
∑

z

P (z | b, a)V (baz)

where baz = η(bTa)× wz
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Convergence

Backup operator T : V ← TV

T is a contraction on P (X) 7→ R

‖b− b′‖ = maxx |b(x)− b′(x)|
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Sondik’s algorithm (1972)

Rearrange Bellman equation to make it linear:

η−1 = P (z | b, a), and V (ηb) = ηV (b), so

Q(b, a) = ra + γ
∑

z

V ((bTa)× wz)

= ra + γ
∑

z

max
v∈V

((bTa)× wz) · v

= ra + γ
∑

z

max
v∈V

b · Ta(wz × v)
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Evaluate from inside out

Suppose Vt(b) = b · v

vz = wz × v

vaz = γTavz

va = vaz1
+ vaz2

+ . . .

V ′ = {va1
, va2

, . . .}

Now Vt+1(b) = maxv∈V ′ b · v
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More than 1 hyperplane

Suppose Vt(b) = maxv∈V b · v

Vz = wz × V set ops are elementwise

Vaz = γTaVz

Va = ra + Vaz1
⊕ Vaz2

⊕ . . . expensive!

V ′ = Va1
∪ Va2

∪ . . .

Now Vt+1(b) = maxv∈V ′ b · v

above representation due to [Cassandra et al]
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A note on complexity

Or, some very large numbers

Set Comment Total size Time/element
Vz same size as V |Z| |V| O(|X|)

Vaz still same size |A| |Z| |V| O(|X|2)

Va big! |A| |V||Z| O(|X|)

For example, w/ 5 actions, 5 observations:

1, 5, 15625, 4.6566× 1021, 1.0948× 10109, . . .
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Witnesses (Littman 1994)

Don’t need all elements of V

Just those which are arg max b · v for some b

If we have the b (a
witness), fast to check
that v is indeed arg max
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Witness details

Linear feasibility problem (size about |V| × |X|)

b · v ≥ b · vi ∀i

b · 1 = 1

b ≥ 0

Solve one LF per element of V—expensive, but
well worth it

Can add margin ε > 0 for approximate solution
• don’t have to have all witnesses
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Incremental pruning

(Cassandra, Littman, Zhang 1997)

Prune Vz, Vaz, and Va as they are constructed

Another big win in runtime

We are now up to 16-state POMDPs
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Summary so far

Solve POMDPs by repeatedly applying backup T

Represent V with set of hyperplanes V

V grows fast

Can prune V using witnesses
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Plan for rest of talk

Better use of witnesses: point backups

Better way to find witnesses: exploration

PBVI = point backups + exploration for witnesses

PBVI examples
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Backups at a point

Computing witnesses is expensive

What if we knew a witness b already?

Fast to compute both V (b) and d

db
V (b)

Intuitive, then formal derivation
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Point backup—intuition

V (b′) depends on P (z | b, a)baz for all a, z

P (z | b, a)baz are linear functions of b

V (P (z | b, a)baz) is scaled/shifted copy of V

Adding these copies: hard over P (X), easy at b
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Point backup—math

When V → V ′, we want maxv∈V ′ b · v

That’s maxa maxv∈Va
b · v, since V ′ = Va1

∪ Va2
. . .

But maxv∈Va
b · v is

max
v1∈Vaz1

b · v1 + max
v2∈Vaz2

b · v2 + . . .

since any v ∈ Va is v1 + v2 + . . .

. . . and Vaz is quick to compute.
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Advantage of point-based backups

Suppose we have a set B of witnesses and V of
hyperplanes

Pruning V takes time O(|B| |V| |X|) (w/ small
constant)

Without knowing witnesses, solve |V| LFs, each
|V| × |X|

Higher order, worse constants
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Where do witnesses come from?

Grids (note difference to discretizing belief
simplex)

Random (Poon 2001)

Interleave point-based with incremental pruning
(Zhang & Zhang 2000)

We are now up to 90-state POMDPs
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New theorem

Bound error of the point-based backup operator

Bound depends on how densely we sample
reachable beliefs

Probably exists an extension to “easily
reachable” beliefs

Error bound on one step + contraction of value
iteration = overall error bound

First result of this sort for POMDP VI
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Definitions

Let ∆ be the set of reachable beliefs

Let B be a set of witnesses

Let ε(B) be the worst-case density of B in ∆:

ε(B) = max
b′∈∆

min
b∈B
‖b− b′‖1
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Theorem

A single point-based backup’s error is

ε(B)(Rmax −Rmin)

1− γ

That means the error after value iteration is

ε(B)(Rmax −Rmin)

(1− γ)2

plus a bit for stopping at finite horizon
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Policy error

We therefore have that policy error is:

ε(B)(Rmax −Rmin)

(1− γ)3

(1− γ)3, ouch! But it does go to 0 as ε(B)→ 0
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Exploration

Theorem tells us we want to sample reachable
beliefs with high worst-case 1-norm density

We can do this by simulating forward from b0

Generate a set of candidate witnesses

Accept those which are farthest (1-norm) from
current set
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Selecting new witnesses
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Summary of algorithm

B ← {b0}

V = {0} (or whatever—e.g., use QMDP)

Do some point-based backups on V using B

• we backup k times, where γk is small

Add more beliefs to B

• we double the size of B each time

Repeat
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Tag problem

870 states, 2×29 observations, 5 actions

fixed opponent policy
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Results
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Results

Catches opponent 60% of time

Don’t know of another value iteration algorithm
which could do this well

On smaller problems, gets policies as good as
other algorithms

But uses a small fraction of the compute time
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Contributions and Conclusion

Others have used point-based backups
• mostly in combination with other, more

expensive ops

Others have tried to select witnesses quickly
• on small problems, random & grid are good

heuristics

Pushed to 10× larger problems with efficient
algorithm and intelligent search for witnesses

Our theorem is the strongest of its type
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