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Abstract

We propose a family of supervised dimension-
ality reduction (SDR) algorithms that com-
bine feature extraction (dimensionality re-
duction) with learning a predictive model
in a unified optimization framework, using
data- and class-appropriate generalized lin-
ear models (GLMs), and handling both clas-
sification and regression problems. Our ap-
proach uses simple closed-form update rules
and is provably convergent. Promising em-
pirical results are demonstrated on a variety
of high-dimensional datasets.

1. Introduction

Dimensionality reduction (DR) is a popular data-
processing technique that serves the following two
main purposes: it helps to provide a meaningful in-
terpretation and visualization of the data, and it also
helps to prevent overfitting when the number of di-
mensions greatly exceeds the number of samples, thus
working as a form of regularization.

When our goal is prediction rather than an (unsu-
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pervised) exploratory data analysis, supervised dimen-
sionality reduction (SDR) that combines DR with si-
multaneously learning a predictor can significantly out-
perform a simple combination of unsupervised DR
with a subsequent learning of a predictor on the result-
ing low-dimensional representation (Pereira & Gor-
don, 2006; Sajama and Alon Orlitsky, 2005). The
problem of supervised dimensionality reduction can
be viewed as finding a predictive structure, such as a
low-dimensional representation, which captures the in-
formation about the class label contained in the high-
dimensional feature vector while ignoring the “noise”.

However, existing SDR approaches are often restricted
to specific settings, and can be viewed as jointly
learning a particular mapping (most commonly, a lin-
ear one) from the feature space to a low-dimensional
hidden-variable space, together with a particular pre-
dictor that maps the hidden variables to the class label.
For example, SVDM (Pereira & Gordon, 2006) learns
a linear mapping from observed to hidden variables,
effectively assuming Gaussian features when minimiz-
ing sum-squared reconstruction loss; on the prediction
side, it focuses on SVM-like binary classification using
hinge loss. SDR-MM method of (Sajama and Alon
Orlitsky, 2005) treats various types of features (e.g.,
binary and real-valued) but is limited to discrete clas-
sification problems, i.e. is not suitable for regression.
Recent work on distance metric learning (Weinberger
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et al., 2005; Weinberger & Tesauro, 2007) treats both
classification and regression settings, but is limited,
like SVDM, to Gaussian features and linear mappings
when learning Mahalanobis distances.

This paper approaches SDR in a more general frame-
work that views both features and class labels as
exponential-family random variables, and allows to
mix-and-match data- and label-appropriate general-
ized linear models, thus handling both classification
and regression, with both discrete and real-valued
data1. It can be viewed as a discriminative learn-
ing based on minimization of conditional probability of
class given the hidden variables, while using as a regu-
larizer the conditional probability of the features given
the low-dimensional hidden-variable “predictive” rep-
resentation.

The main advantage of our approach, besides being
more general, is using simple closed-form update rules
when performing its alternate minimization procedure.
This method yields a short Matlab code, fast perfor-
mance, and is guaranteed to converge. The conver-
gence property, as well as closed form update rules, re-
sult from using appropriate auxiliary functions bound-
ing each part of the objective function (i.e., reconstruc-
tion and prediction losses). We exploit the additive
property of auxiliary functions in order to combine
bounds on multiple loss functions.

We perform a variety of experiments, both on sim-
ulated and real-life problems. Results on simulated
datasets convincingly demonstrate that our SDR ap-
proach can discover underlying low-dimensional struc-
ture in high-dimensional noisy data, while outperform-
ing SVM and SVDM, often by far, and practically al-
ways beating the unsupervised DR followed by learn-
ing a predictor. On real-life datasets, SDR approaches
continue to beat the unsupervised DR by far, while
often matching or somewhat outperforming SVM and
SVDM.

2. SDR-GLM: Hidden-Variable Model

Let X be an N ×D data matrix with entries denoted
Xnd where N is the number of i.i.d. samples, and n-
th sample is a D-dimensional row vector denoted xn.
Let Y be an N ×K matrix of class labels for K sep-
arate prediction problems (generally, we will consider
K > 1), where j-th column, 1 ≤ j ≤ K, provides

1In other words, the proposed framework extends linear
mappings based on minimization of Euclidean distances
(i.e. Gaussian assumptions) to nonlinear mappings based
on minimization of Bregman divergences corresponding to
particular members of exponential-family distribution.

a set of class labels for the j-th prediction problem.
Our supervised dimensionality approach relies on the
assumption that each data point xn, n = 1, ..., N , is
a noisy version of some “true” data point θn which
lives in a low-dimensional space, and that this hidden
representation of the noisy data is actually predictive
about the class label.

We will also assume, following ePCA (Collins et al.,
2001), (GL)2M(Gordon, 2002), logistic PCA (Schein
et al., 2003) and related extensions of PCA, that noise
in the features follows exponential-family distributions
with natural parameters θn, with different members of
the exponential family used for different dimensions2,
and that the noise is applied independently to each
coordinate of xn. Namely, it is assumed that N × D
parameter matrix Θ can be represented by a linear
model in an L-dimensional (L < D) space:

Θnd =
L∑

l=1

UnlVld + ∆Xd
,

where the rows of the L ×D matrix V correspond to
the basis vectors, the columns of the N × L matrix
U correspond to the coordinates of the “true points”
θn, n = 1, ...N in the L-dimensional space spanned by
those basis vectors, and ∆X is the bias vector (cor-
responding to the empirical mean in PCA). However,
to simplify the notation, we will include ∆X as the
(L + 1)’s row of the matrix V (i.e., VL+1 = ∆X),
and add the (L + 1)’s column of 1’s to U , so that we
can write ΘX as a product of two matrices, ΘXnd

=
(UV )nd =

∑L+1
l=1 UnlVld.

Given the natural parameter Θnd, an exponential-
family noise distribution is defined for each Xnd by

log P (Xnd|ΘXnd
) = XndΘXnd

−G(ΘXnd
)+log P0(Xnd),

where Gx(Θnd) is the cumulant or log-partition func-
tion that ensures that P (Xnd|Θnd) sums (or inte-
grates) to 1 over the domain of Xnd. This function
uniquely defines a particular member of the exponen-
tial family, e.g., Gaussian, multinomial, Poisson, etc.

We can now view each row Un as a “compressed” rep-
resentation of the corresponding data sample xn that
will be used to predict the class labels. We will again
assume a noisy linear model for each class label Yk

(column-vector in Y ) where the natural parameter is
represented by linear combination

2It is important to note that in case of standard (linear)
PCA corresponding to Gaussian noise the parameters θn

live in a linear subspace in the original data space, but for
other types of exponential-family noise the low-dimensional
space of parameters is typically a nonlinear surface in the
original data space.
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ΘYnk
=

L∑

l=1

UnlWlk + ∆Yk

with linear coefficients w = (w1, ..., wL) and K-
dimensional bias vector ∆Y . As for ΘXnd

, we
will simplify the notation by including ∆Y as the
(L + 1)’s row of the matrix W , and write ΘYnk

=
(UW )nk =

∑L+1
l=1 UnlWlk. Using an appropriate type

of exponential-family noise P (Ynk|ΘYnk
), we can han-

dle both classification and regression problems. For
example, in case of binary classification, we can model
Ynk as a Bernoulli variable with parameter pnk and the
corresponding natural parameter Θnk = log( pnk

1−pnk
),

and use logistic function σ(x) = 1
1+e−x to write the

Bernoulli distribution for Ynk as

P (Ynk|ΘYnk
) = σ(ΘYnk

)Ynkσ(−ΘYnk
)1−Ynk .

In case of regression, Ynk will be a Gaussian variable
with the expectation parameter coinciding with the
natural parameter ΘYnk

.

In other words, we will use a generalized linear model
(GLM) E(Xd) = f−1

d (UVd) for each feature Xd (d-th
column in X, 1 ≤ d ≤ D), and yet another set of
GLMs E(Yk) = f−1

k (UW ) for each class label Yk (k-th
column in Y , 1 ≤ k ≤ K), with possibly different link
functions fd and fk (e.g., the logit link function f(µ) =
ln µ

1−µ = σ−1(θ) is used for binary classification, and
identity link function f(µ) = µ is used for real-valued
regression with Gaussian output).

SDR-GLM optimization problem. We formulate
SDR as joint optimization of two objective functions
corresponding to the reconstruction accuracy (data
likelihood) and the prediction accuracy (class likeli-
hood):

LX(ΘX) =
∑

nd

log P (Xnd|ΘXnd
), (1)

LY (ΘY ) =
∑

nk

log P (Ynk|ΘYnk
), (2)

where ΘX = UV , ΘY = UW , and the likelihoods
above correspond to particular members of exponen-
tial family. Then the SDR optimization problem is

max
U,V,W

αLX(UV ) + LY (UW ) (3)

where the data likelihood can be viewed as a regu-
larization added on top of the class likelihood maxi-
mization objective, with the regularization constant α
controlling the trade-off between the two likelihoods 3.

3In our implementation, an L2-norm regularization was
also added on all matrices U, V, W with small regulariza-
tion constants (0.01), effectively corresponding to assuming
Gaussian priors on those matrices.

Comparison with SVDM. Note that the idea of
combining loss functions for SDR was also proposed
before in SVDM (Pereira & Gordon, 2006), where,
similarly to SVD, quadratic loss ||X−UV ||22 was used
for data reconstruction part of the objective, while the
hinge loss was used for the prediction part (using U as
the new data matrix). Herein, we generalize SVDM’s
sum-squared reconstruction loss to log-likelihoods of
exponential family, similarly to ePCA(Collins et al.,
2001) and G2L2M(Gordon, 2002), replace hinge loss
by the loglikelihoods corresponding to exponential-
family class variables, and provide closed-form update
rules rather than perform optimization at each iter-
ation, which results into a significant speed up when
compared with SVDM.

3. Combining Auxiliary Functions

Since the above problem (eq. 3) is not jointly convex
in all parameters, finding a globally optimal solution is
nontrivial. Instead, we can employ the auxiliary func-
tion approach commonly used in EM-style algorithms,
and using auxiliary function of a particular form, de-
rive closed-form iterative update rules that are guar-
anteed to converge to a local minimum. We show that
an auxiliary function for the objective in eq. 3 can
be easily derived for an arbitrary pair of LX and LY

provided that we know their corresponding auxiliary
functions.

Auxiliary functions. Given a function L(θ) to be
maximized, a function Q(θ̂, θ) is called an auxiliary
function for L(θ) if L(θ) = Q(θ, θ) and L(θ̂) ≥ Q(θ̂, θ)
for all θ̂. It is easy to see that L(θ) is non-decreasing
under the update

θt+1 = arg max
θ̂

Q(θ̂, θt),

i.e., L(θt+1) ≥ L(θt), and thus an iterative application
of such updates is guaranteed to converge to a local
maximum of L under mild conditions on L and Q.

We will make use of the following properties of auxil-
iary functions:

Lemma 1 Let Q1(θ̂, θ) and Q2(θ̂, θ) be auxiliary func-
tions for L1(θ) and L2(θ), respectively. Then

Q(θ̂, θ) = α1Q1(θ̂, θ) + α2Q2(θ̂, θ) (4)

is an auxiliary function for L(θ) = α1L1(θ)+α2L2(θ),
where αi > 0 for i = 1, 2.

Proof. Q(θ̂, θ) = α1Q1(θ̂, θ)+α2Q2(θ̂, θ) ≤ α1L1(θ̂)+
α2L2(θ̂) = L(θ̂), and Q(θ, θ) = α1Q1(θ, θ) +
α2Q2(θ, θ) = α1L1(θ) + α2L2(θ) = L(θ).

Also, it is obvious that a function is an auxiliary for
itself, i.e. Q(θ̂, θ) = L(θ̂) is an auxiliary function for
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L(θ). This observations allows us to combine vari-
ous dimensionality reduction approaches with appro-
priate predictive loss functions, given appropriate aux-
iliary functions for both (next section discusses two
such combinations). When optimization of an auxil-
iary functions yields an analytical solution (e.g., for
quadratic functions), it is easy to obtain closed-form
update rules for alternating minimization.

4. Iterative Update Rules

Recall that natural parameters for Xnd and Ynk

variables are represented by ΘXnd
=

∑L+1
l=1 UnlVld

and ΘYnk
=

∑L+1
l=1 UnlWlk. Let QX(Θ̂X , ΘX)

and QY (Θ̂Y , ΘY ) be the auxiliary functions for
the corresponding loglikelihoods in eq. 2, then
Q(Θ̂X , ΘX , Θ̂Y , ΘY ) =

= αQX(Θ̂X , ΘX) + QY (Θ̂Y , ΘY ) (5)

is an auxiliary function for the combined log-likelihood
in eq. 3 when we fix two out of three parameters and
optimize over the remaining one. The update rules for
Ûnl, V̂ld and Ŵnk are obtained by solving

∂Q

∂Ûnl

= 0,
∂QX

∂V̂ld

= 0,
∂QY

∂Ŵnk

= 0, where

∂Q

∂Ûnl

= α
∑

d

∂Q

∂Θ̂Xnd

Θ̂Xnd

∂Ûnl

+
∑

k

∂Q

∂Θ̂Ynk

Θ̂Ynk

∂Ûnl

.

Note that we get simpler expressions for V and W
since they appear only in QX or only in QY parts of
eq. 5, respectively.

Auxiliary functions for Bernoulli and Gaussian
log-likelihoods. For a Bernoulli variable s with nat-
ural (log odds) parameter θ we use the variational
bound on log-likelihood L(θ) = log P (s|θ) proposed by
(Jaakkola & Jordan, 1997) and used later by (Schein
et al., 2003)

L(θ̂) ≥ Q(θ̂, θ) = log 2− log cosh(θ/2) +

+
Tθ2

4
+

(2s− 1)θ̂
2

− T θ̂2

4
, (6)

where T = tanh(θ/2)
θ . Note that the auxiliary function

is quadratic in θ and taking its derivatives leads to
simple closed-form iterative update rules for U , V and
W . For multinomial variables, one can use a recent
extension of the above bound to multinomial logistic
regression proposed by (Bouchard, 2007).

For a Gaussian variable s with natural parameter θ
that coincides with the mean parameter (identity link
function) we do not really have to construct an aux-
iliary function, since we can simply use the negative

squared loss proportional to the Gaussian loglikelihood
as an auxiliary function itself, i.e.

L(θ̂) = Q(θ̂, θ) = −c(s− θ)2, (7)

where c = (2σ)−1 is a constant, assuming a fixed stan-
dard deviation that will not be a part of our estimation
procedure here, similarly to the approach of (Collins
et al., 2001) and related work; c can be ignored since
it will be subsumed by the parameter α.

Using the above auxiliary functions, we can combine
them into joint auxiliary functions as in eq. 5 for var-
ious combinations of Bernoulli and Gaussian variables
Xnd and Ynk. Namely, assuming all Xnd are Bernoulli,
we get (Schein et al., 2003):

QBer
X (Θ̂Xnd

,ΘXnd
) =

∑

nd

log cosh(ΘXnd
/2) +

+
TΘ2

Xnd

4
+

(2Xnd − 1)Θ̂Xnd

2
− T Θ̂2

Xnd

4
, (8)

while assuming all Xnd are Gaussian, we get

QGauss
X (Θ̂Xnd

, ΘXnd
) = −

∑

nd

(Xnd − Θ̂Xnd
)2. (9)

Note that QY (Θ̂Ynk
, ΘYnk

) for all-Bernoulli or all-
Gaussian Ynk is obtained by replacing X with Y , V
with W , and d with k in eq. 8 and 9, respectively.

Due to lack of space, we omit the derivation of the it-
erative update rules for the four versions of SDR-GLM
that we experimented with (for more detail, see (Rish
et al., 2008)): Gaussian-SDR, that assumes Gaus-
sian Xnd and Bernoulli Ynk, Bernoulli-SDR in case
of Bernoulli Xnd and Bernoulli Ynk, Gaussian-SDR-
Regression and Bernoulli-SDR-Regression in case of
Gaussian Ynk (appropriate for real-valued label, i.e.
for the regression problem).

Prediction step. Once we learn the parameters U ,
V and W , and thus ΘX and ΘY , we can use them
on test data in order to predict labels for previously
unseen data. Given the test data Xtest, we only need
to find the corresponding low-dimensional representa-
tion U test by performing the corresponding iterative
updates only with respect to U , keeping V and W
fixed. Once U test is found, we predict the class labels
as Y test = U testW .

5. Empirical Evaluation

We evaluated our SDR-GLM methods on both sim-
ulated and real-life datasets, in both classifica-
tion and regression settings. We varied the low-
dimensionality parameter L from 2 to 10, and eval-
uated a range of regularization parameters α =
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0.0001, 0.001, 0.01, 0.1, 1, 10, 100, selecting those giving
the best average error among several dimensions4.

5.1. Classification Problems

In the classification setting, we compared Bernoulli-
SDR and Gaussian-SDR versus linear SVM5 and ver-
sus unsupervised dimensionality reduction followed by
SVM and by logistic regression, which we refer to as
SVM-UDR and Logistic-UDR, respectively. In both
cases, unsupervised dimensionality reduction is per-
formed first using the data-appropriate DR method
(i.e., PCA for real-valued data and Logistic-PCA for
binary data; this is equivalent to removing the predic-
tion loss in eq. 3); then SVM or logistic regression are
performed on the low-dimensional data representation
U . For datasets with real-valued features, we also com-
pared the above methods to SVDM (Pereira & Gor-
don, 2006). We performed k-fold cross-validation with
k = 10 on the datasets with less than 1000 dimensions,
and with k = 5 otherwise.

Simulated data. In order to test our methods first on
the data with controllable low-dimensional structure,
we simulated high-dimensional datasets that indeed
were noisy versions of some underlying easily-separable
low-dimensional data. Particularly, a set of N = 100
samples from two classes was generated randomly in
two-dimensional space so that the samples were lin-
early separable with a large margin.

Next, we simulated two sets of exponential-family ran-
dom variables Xnd, a Bernoulli set and a Gaussian set,
using the coordinates of the above points for natu-
ral parameters Θnd, where the number of samples was
N = 100 and the dimensionality of a “noisy” dataset
varied from D = 100 to D = 1000. We then com-
bined the data with the labels generated in the low-
dimensional space and provided them as an input to
our algorithms.

Simulated data: Bernoulli noise. Figures 1a summa-
rize the results for Bernoulli-noise dataset. Supervised
DR methods (Bernoulli-SDR and Gaussian-SDR) ver-
sus SVM and versus unsupervised DR followed by
learning a predictor (Logistic-UDR and SVM-UDR);
the reduced dimensionality parameters is set to L =
2 and the regularization constant is α = 0.0001
(the choice of those parameters is discussed below).
We can see that Bernoulli-SDR significantly outper-
forms all other methods, including SVM, and both

4Selecting the best α separately for each dimension can
only improve the results, but would be more computation-
ally intensive.

5We used the SVM code by A. Schwaighofer available
at http://ida.first.fraunhofer.de/˜anton/software.html.

Bernoulli-SDR and Gaussian-SDR also outperform the
unsupervised DR followed by either logistic regres-
sion or SVM. Apparently, Bernoulli-SDR is able to
reconstruct correctly the underlying separable two-
dimensional dataset and is robust to noise, as its error
remains zero for up to 700 dimensions, and only in-
creases slightly up to 0.05 for 1000 dimensions. On
the other hand, SVM has zero-error prediction only in
the lowest-dimensional case (D = 100), and is much
more sensitive to noise when the dimensionality of the
data increases, making incorrect predictions in up to
14% to 21% cases when the dimensionality increases
above D = 300. Apparently, SVM was not able to ex-
ploit the underlying separable low-dimensional struc-
ture disturbed by high-dimensional noise, while su-
pervised dimensionality reduction easily detected this
structure.

Also, using the Bernoulli model instead of Gaussian
when features are binary is clearly beneficial, and
thus, as noted previously, proper extensions of PCA to
exponential-family data must be used (Collins et al.,
2001; Schein et al., 2003). However, previous work
on logistic PCA by (Schein et al., 2003) demonstrated
advantages of using the Bernoulli vs Gaussian assump-
tion only for reconstruction of the original data, while
this paper investigates the impact of such assumptions
on the generalization error in supervised learning case.
This is less obvious, since a good fit to the training
data does not necessarily imply a good generalization
ability, as shown by our experiments with unsuper-
vised dimensionality reduction followed by learning a
classifier.

Regarding the choice of the regularization parameter
α, we experimented with a range of values from 0.0001
to 10, and concluded that the smallest value was the
most beneficial for both SDR algorithms; this is in-
tuitive since it effectively puts most of the weight on
the predictive loss. There is a clear trend (Figure 1b)
in error decrease with the parameter decrease, where
sufficiently low values of α ≤ 0.1 yield quite similar
low errors, but increasing α further, especially above
1, leads to a drastic increase in the classification error,
especially in higher-dimensional cases. Note, however,
that such tendency is not present in the other datasets
we experimented with, where the effect of regulariza-
tion constant can be non-monotonic, and thus under-
scores the importance of using cross-validation or other
parameter-tuning approaches6.

Regarding the choice of the reduced-dimensionality pa-
6Bayesian approach to selecting regularization parame-

ter may prove beneficial, as shown, for example, in (Y. Lin
and D. Lee, 2006)
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Figure 1. (a) Results for Bernoulli noise. (b) Effects of the regularization parameter α (the weight on the data recon-
struction loss) - Bernoulli noise. (c) Results for Gaussian noise.

rameter L, for low values of α, we did not observe any
significant variation in the results with increasing this
parameter up to L = 10, e.g. the results for different
L were practically identical when α ≤ 0.1, while for
higher values variance was more significant.

Simulated data: Gaussian noise. Figure 1c shows the
results for the Gaussian noise: supervised dimension-
ality reduction provides a clear advantage over unsu-
pervised ones, although the performance of SDR ver-
sus SVM is somewhat less impressive, as Gaussian-
SDR is comparable to SVM. However, Gaussian-SDR
seems to outperform considerably another supervised
dimensionality method, SVDM, proposed by (Pereira
& Gordon, 2006). SVDM was used with its regular-
ization constant set to 100 since it provided the best
SVDM performance among the same values of α as be-
fore. Interestingly, the performance of SVDM does not
show any monotonic dependence on this parameter.

Real-life datasets. First, we considered several
datasets with binary features, such as a 41-dimensional
Sensor network dataset where the data represent con-
nectivity (0 or 1) between all pairs of sensor nodes
in a network of 41 light sensors (see Table 1). Note
that Bernoulli-SDR with L = 10 and regularization
parameter α = 0.1 outperformed SVM, Gaussian-SDR
with L = 8, 10 and same α = 0.1 matched SVM per-
formance, while both the unsupervised dimensionality
reduction methods followed by SVM and logistic re-
gression - SVM-UDR and Logistic-UDR, respectively -
performed worse. (Best results for each method are
shown in the boldface.) Also, using the Bernoulli
model for binary data instead of Gaussian seems to pay
off: Bernoulli-SDR performs somewhat better than
Gaussian-SDR. It is interesting to note that for really
low dimensionality L = 2, all of the above methods
have same error of 0.2, while increasing the dimen-

Table 1. Results for Sensor network dataset (N = 41, D =
41): classification errors of different methods for different
reduced dimension parameter, L.

method\ L 2 4 6 8 10
Bernoulli-SDR 0.20 0.24 0.27 0.15 0.12
Gaussian-SDR 0.20 0.22 0.22 0.17 0.17
Logistic-UDR 0.20 0.22 0.20 0.20 0.24
SVM-UDR 0.20 0.27 0.22 0.27 0.24

SVM 0.17

sionality allows for much better performance, although
this effect is non-monotonic.

Table 2. Results for PlanetLab dataset (N = 169, D =
168): classification errors of different methods for differ-
ent reduced dimension parameter, L.

method\ L 2 4 6 8 10
Bernoulli-SDR 0.10 0.07 0.10 0.12 0.15
Gaussian-SDR 0.10 0.11 0.08 0.07 0.08
Logistic-UDR 0.11 0.10 0.08 0.09 0.10
SVM-UDR 0.10 0.09 0.08 0.08 0.07

SVM 0.10

Another dataset related to network performance
management, of somewhat larger dimensionality
(N = 169, D = 168), contains pairwise end-
to-end network latency (ping round-trip times)
collected by the PlanetLab measurement project
(http://www.pdos.lcs.mit.edu/∼simstrib/pl app) dis-
cretized by applying a threshold as follows: above
the average latency is considered “bad” (1) while the
below-average latency is considered “good” (0). We
selected the first column (latencies of all 169 nodes to-
wards the node 1) as the label, and predicted them
given the remaining data. The results are shown in
Table 2. The regularization parameters α selected by
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Table 3. Results for Mass-spectrometry dataset (N =
50, D = 38573): classification errors of different methods
for different reduced dimension parameter, L.

method\ L 2 4 6 8 10
Gaussian-SDR 0.04 0.02 0.02 0.02 0.02
Logistic-UDR 0.5 0.18 0.08 0.04 0.02
SVM-UDR 0.54 0.2 0.02 0.06 0.02

SVDM 0.42 0.04 0.02 0.06 0.04
SVM 0.02

Table 4. Results for fMRI dataset (N = 84, D = 14043):
classification errors of different methods for different re-
duced dimension parameter, L.

method\ L 5 10 15 20 25
Gaussian-SDR 0.21 0.26 0.23 0.20 0.23
Logistic-UDR 0.44 0.42 0.29 0.30 0.26
SVM-UDR 0.49 0.52 0.56 0.57 0.55

SVDM 0.32 0.25 0.21 0.23 0.23
SVM 0.21

cross-validation were different here for different SDR
methods: for Bernoulli-SDR, α = 100 turned out to be
the best, while Gaussian-SDR performed better with
α = 1. Overall, the results for different methods and
varying dimensions L were surprisingly similar to each
other, with both SDR methods achieving the lowest er-
ror of 0.07 for L = 4 and L = 8, respectively, that was
also achieved by SVM-UDR at L = 10, slightly out-
performing SVM (0.10 error). Very similar results (not
shown here due to lack of space) were also obtained on
the Advertisement dataset from UCI ML repository.

We experimented next with several extremely high-
dimensional datasets from biological experiments that
had real-valued features. The first dataset, called here
Proteomics data, containing mass-spectrometry data
for D = 38573 proteins (features), showing their “ex-
pression levels” in N = 50 female subjects (examples),
25 of which were pregnant (class 1), and the others
were not (class 0). The results are shown in Table 3,
comparing Gaussian-SDR with α = 0.001 (that yields
lowest average SVDM error (among all dimensions) on
this dataset) versus SVM, Logistic-UDR, SVM-UDR
(both using the Gaussian assumption, i.e. PCA, for
dimensionality reduction), and SVDM with its best-
performing parameter 0.01. Despite its very high di-
mensionality, this dataset turned out to be easy: both
SVM and Gaussian-SDR achieved an error of 0.02, and
Gaussian-SDR used only L = 4 dimensions to achieve
it. On the contrary, unsupervised DR followed by pre-
dictor learning (Logistic-UDR and SVM-UDR), suf-
fered from really high errors at low dimensions, and
only managed to achieve same low error at L = 10.

SVDM was able to reach its lowest error (same 0.02)
a bit earlier (L = 6), although for L = 2 it incurred a
huge error of 0.42, while Gaussian-SDR had 0.04 error
at that same level of reduced dimensionality.

Another truly high-dimensional dataset we used con-
tained the fMRI recordings of subject’s brain activ-
ity (measured using changes in the brain oxygenation
levels) while the subject was observing on a screen
words of two types, representing tools or buildings (see
(Pereira & Gordon, 2006) for details). The task was
to learn a mind-reading classifier that would predict,
given the fMRI data, what type of the word the subject
was looking at. The features here correspond to fMRI
voxels (D = 14043 voxels were selected after some pre-
processing of the data, as described in (Pereira & Gor-
don, 2006)), and there are N = 84 samples (i.e., word
instances presented to a subject). This dataset was
clearly more challenging then the previous one (both
SVM’s and SDR’s errors were around 0.2).

The results for all methods are shown in Table 4; for
Gaussian-SDR we used α = 0.0001, while SVDM was
best at 0.001 (as before, we used the average error over
all dimensions to select best α). For those values of
α parameter, Gaussian-SDR matches SVM’s errors of
0.21 using just five dimensions (L = 5), while SVDM
reaches same error at L = 15 dimensions. Again,
learning a predictor on “compressed” data obtained
via unsupervised dimensionality reduction was consis-
tently worse than both supervised methods.

5.2. Regression Problems

Finally, we did some preliminary experiments with
the regression version of our SDR approach that
makes Gaussian assumption about the label (re-
sponse variable) Y and thus uses sum-squared predic-
tive LY (UW ) loss in equation 3, comparing it with
the state-of-art sparse-regression technique called the
Elastic Net, which was shown to improve over both
Lasso and ridge regression using a convex combination
of the L1- and L2-norm regularization terms (Zou &
Hastie, 2005).

We used the fMRI data from the 2007 Pittsburgh
Brain Activity Interpretation Competition (PBAIC)7,
where the fMRI data were recorded while subjects were
playing a videogame, and the task was to predict sev-
eral real-valued response variables, such as level of
anxiety the subject was experiencing etc. We used
the data for the two runs (games) by the first sub-
ject, and for the Instructions response variable, learn-

7See http://www.ebc.pitt.edu/2007/competition.html
for more detail.
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ing from run 1 and predicting on run 2. The dataset
contained N = 704 samples (measurements over time)
and approximately D = 33, 000 features (voxels). Fig-
ure 2 compares the performance of Elastic Net and
Gaussian-SDR-Regression, where the L parameter de-
notes the number of active variables (voxels selected)
by the sparse EN regression. We can see that SDR
regression is comparable with the state-of-the art EN
(or even slightly better) when the number of hidden
dimensions is not too low.
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Figure 2. Results for the fMRI dataset from PBAIC. Per-
formance is measured by correlation between the actual
and predicted response variable (Instructions, in this case).

6. Conclusions and Future Work

This paper proposes a family of SDR algorithms that
use generalized linear models to handle various types
of features and labels, thus generalizing previous ap-
proaches in a unifying framework. Our SDR-GLM ap-
proach is fast and simple: it uses closed-form update
rules at each iteration of alternating minimization pro-
cedure, and is always guaranteed to converge. Experi-
ments on a variety of datasets show that this approach
is clearly promising, although more empirical investi-
gation is needed in case of SDR-regression.

Although we only tested our approach with Gaussian
and Bernoulli variables, it can be easily extended to
multinomial variables (and thus to multiclass classi-
fication) using a recent extension of the variational
bound proposed in (Jaakkola & Jordan, 1997) to
multinomial logistic regression (soft-max)(Bouchard,
2007). Deriving closed-form update rules for other
members of the exponential family (e.g., Poisson) re-
mains a direction of future work. Another possible
extension is to obtain closed-form SDR update rules
for alternative DR methods, such as non-negative ma-
trix factorization (NMF)(Lee & Seung, 2000), simply
plugging in NMF’s auxiliary function instead of (un-
constrained) PCA-like quadratic-loss.

Other potential applications of our approach in-

clude dimensionality reduction on mixed-type data,
weighted dimensionality reduction schemes (e.g., as-
signing different weight to reconstruction error of dif-
ferent coordinates in PCA and similar DR techniques),
multitask learning, as well as semi-supervised learning,
including only the reconstruction loss part of the ob-
jective for unlabeled date, while keeping both recon-
struction and prediction losses for the labeled ones.
Finally, a more principled selection of the regulariza-
tion constant α (e.g., using Bayesian approaches) is
another open research direction.
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