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ABSTRACT

This article presents an implemented multi-robot system for play-
ing the popular game of laser tag. The object of the game is to
search for and tag opponents that can move freely about the en-
vironment. The main contribution of this paper is a new particle
filter algorithm for tracking the location of many opponents in the
presence of pervasive occlusion. We achieve efficient tracking prin-
cipally through a clever factorization of our posterior into roles that
can be dynamically added and merged. When searching for op-
ponents, the individual agents greedily maximize their information
gain, using a negotiation technique for coordinating their search
efforts. Experimental results are provided, obtained with a phys-
ical robot system in large-scale indoor environments and through
simulation.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Probabilistic Algorithms; 1.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—Mul-

tiagent systems

General Terms
Algorithms

Keywords

Particle Filter, Robot Exploration, Laser tag

1. INTRODUCTION

This paper describes a multi-robot system capable of locating
and pursuing moving objects (people, other robots) in indoor en-
vironments. Our research is motivated by the popular game “laser
tag” [27]. The object of laser tag is to find and tag individuals from
an opposing team using an infra-red tagging device. The robotic
form of lasertag involves teams of robots instead of people. In our
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Figure 1: The laser tag robots are equipped with light-emitting
devices and receivers.

implementation, it is played in regular buildings, with Pioneer-size
robots equipped with laser range sensors (see Figure 1).

The game of laser tag provides unique opportunities for multi-
agent robotics research. Just like robotic soccer [12], laser tag is
inherently real-time. The environment is dynamic, leaving only
limited time for information fusion and decision making. A key
difference between lasertag and robotic soccer arises from the per-
vasive presence of occlusion: most of the time neither teammates
nor opponents are within a robot’s sensor field. To play well, the
robots must carefully keep track of where possible opponents might
be, and which areas of the environment have already been observed.
This creates a challenging multi-robot data fusion problem. Fur-
thermore, the robots have to coordinate their actions in the face of
this uncertainty.

As mentioned above one of the main problems in lasertag is
tracking multiple moving objects under pervasive occlusion. This
problem, however, has received relatively little attention in the lit-
erature. This paper seeks to address this question. The core of this
paper is an algorithm for maintaining posteriors over the locations
of moving objects in environments where occlusion is pervasive. In
our approach we use particle filters [7, 14] because they allow the
team to represent complex multi-modal posteriors.

Our technique is based on two related insights. First, pervasive
occlusion leads directly to an intractable data association problem.
Data association is often difficult, but in many cases if the objects
being tracked are well separated and frequently observed, approxi-
mating data association with a maximum likelihood point estimate
is effective. In lasertag and other domains where occlusion is per-
vasive, this approximation is poor because many associations are
plausible. The second insight is that the same pervasive occlusion



that makes data association hard introduces structure into our pos-
terior. Our sensors’ inability to see through walls and around cor-
ners causes many dimensions of our belief to become practically
equivalent. We show how to capitalize on this redundancy by cat-
egorizing our opponents into roles. Roles allow us to represent
groups of opponents by their known characteristics, ignoring their
individual identities. This role based factorization leads to a tracker
that can grow and shrink, adding or removing dimensions from its
state space as new roles are formed or old ones become indistin-
guishable. At the same time, focusing on observable characteristics
drastically simplifies our data association problem. We show em-
pirically that there are situations where the number of opponents is
large, but the number of active roles remains quite small.

In the following sections we will develop an efficient particle
filter tracking algorithm by using the role-based factorization de-
scribed above. We will proceed to demonstrate mathematically that
our factorization holds even as more observations are received and
controls issued. We will also present a greedy algorithm for issu-
ing coordinated controls to our teammates, and use it to demon-
strate that our tracker is practically useful in the laser tag domain.
Though the technique we present in this paper is in no way specific
to adversarial environments, we will adopt the terminology of laser
tag throughout for simplicity of discussion, referring to the track-
ing robots as the teammates, and those robots being tracked as the
opponents.

2. TRACKING UNDER OCCLUSION

2.1 State Representation

The main contribution of this paper is a particle filter algorithm
for tracking the location of a large number of opponents under pro-
longed periods of occlusion. The teammates make use of sensor
information to track their opponents. Let y1.: = y1,¥2,---, Yt
denote the teammates’ measurements up to time ¢, and wuq.: their
control inputs. In our implemented system, sensor measurements
consist of range readings at a known set of bearings from each
teammate produced by SICK laser range finders, but with appro-
priate modifications to the sensor model the readings could come
from other perception systems such as vision or sonar. We will
write y;; for the ith individual reading.

As is common in the literature on tracking [3], our approach
maintains a posterior probability distribution over the state, which
we denote z¢, at time ¢: P(z: | y1:, u1.¢). Note that we will some-
times use the notation P(X; = z+ | y1:¢, w1:¢+) which has the same
meaning. For the laser tag problem, the state variables consist of
the positions of all of the agents. These variables can be divided
into two qualitatively different sets: the positions of the teammates
and the positions of the opponents.

More formally, our approach divides the state x: into two pieces
(rt, s¢). The first piece, r;, contains the positions of our own team-
mates. The second piece, s¢, contains the positions of the oppo-
nent robots. We divide s; into s}, sZ,..., sM for the M individual
opponents and let s1.+ represent the complete history of opponent
positions. In addition to the state variables we will introduce data
association variables z1.;. The data association variables z; are ac-
tually a collection of binary variables z; 77, each of which indi-
cate whether a sensor reading y;; is associated with an opponent
7. We further introduce a special set of association variables,z{ ~°,
to specify whether a sensor reading is associated to the map. Each
reading is associated to exactly one object in our world. We can ex-
press this constraint formally as 32 277 = 1. We will some-
times use the special notation z;”™ to represent the set of all as-
sociation variables that indicate some sensor reading associates to

opponent m, for example z;*° represents the set of all association
variables that indicate some sensor reading associates to the map.
We will never represent z1.; explicitly, but we will need to reason
about it in the derivation of the state-tracking equations below.

With the above notation, our tracking problem is to estimate the
posterior

P(rs, 8¢, 2t | Y1ty Utety 21:6—1)

Unfortunately, maintaining this distribution can be difficult and com-
putationally expensive due to complicated multi-modal dependen-
cies between state variables. The main cause of these problems is
that the teammates’ sensor views of the opponents are frequently
occluded. This occlusion makes it difficult to determine which op-
ponent is which, and it can also put sharp edges and multiple modes
into our posterior distributions due to our inability to see around
corners and through walls. In order to make tracking computation-
ally feasible, we will work through a series of three factorizations
which separate out various tractable pieces of the problem. These
steps are conditioning on teammates, factoring by role, and factor-
ing observation and motion models. We will describe each step in
detail below.

2.2 Conditioning On Teammates

The tracking problem is significantly simplified by factoring the
posterior probability

P(rs, sty 2t | Y1:t, Utst, Z1:6—1)
= P(ryz° | Y1:t, Ua:t, 21:6-1) €))
P(st,zt_’{l'"M} |Tt,y1;t,u1:t,21:t—1,270)

This factorization is an application of Bayes’ rule. The first term
in the resulting expression encapsulates the problem of self local-
ization, representing only a distribution over the teammates and the
association variables that pertain to the map. The second term is
the posterior over opponent positions. Now we can solve these two
problems independently. This is an important simplification be-
cause the self-localization problem has been studied extensively [9]
and we can now apply standard techniques. The constraint, men-
tioned previously, that each sensor reading is associated to exactly
one source introduces a slight difficulty in the implementation of
this factorization. We will revisit this issue in Section 4.1.

In our domain, a particle-filter-based localization technique [17,
33] nearly always produces unimodal, high-accuracy position esti-
mates for robots on our own team, so long as we have a reasonable
idea of their initial positions. This motivates us to approximate
the positions of our teammates by point estimators located at the
most likely position for each robot. Such an approximation is only
appropriate when the uncertainty for the positions of our robots is
small, as it precludes us from using events such as robots observing
each other for the self-localization part of our tracking problem [9].
In practice the uncertainty of our own robots’ positions is usually
extremely small, so this approximation is valid.

2.3 Data Association Under Occlusion
We have now reduced the tracking problem to estimating

—{1...M} —0
P(St,Zt | Tty Y1ty ULty B1:it—1, 2t )

We know the observations %1.; and controls u;.;, and the robot
positions r; and map associations z;*° are given by our robots’

self-localizers. Unfortunately the remaining association variables

27 11MY are more problematic.

Data association uncertainty causes two unpleasant effects in our
posterior distribution, as illustrated in Figure 2a. First, each plau-
sible data association hypothesis can cause a separate mode in our
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Figure 2: (a) We can confuse two tracked objects if they move close together and then apart. This confusion manifests in two ways:
multi-modal distributions for each object, and negative correlation between the positions of the two objects. (b) If we allocate new
roles to represent “the robot which went left” and “the robot which went right,” we have no data association problem and only

unimodal posterior beliefs.

belief for the location of opponent actors. Because the number of
plausible data associations often grows exponentially with time, the
result is a highly multi-modal belief. Second, these modes contain
cross-robot correlations: if we are confused whether a particular
object we are tracking is opponent 2 or opponent 3, then finding
out (through some other evidence) that it is opponent 2 causes us to
believe opponent 3 is elsewhere. This is a common characteristic
of data association problems [3].

In many tracking problems, it suffices to keep track of the sin-
gle most probable data association hypothesis. For example, Dis-
sanayake and colleagues [6] describe a Kalman filter tracker which
uses maximum-likelihood data association to keep track of hun-
dreds of landmarks. In their problem, however, landmarks are fairly
well separated compared to the amount of uncertainty in their po-
sitions, which means that the most likely data association usually
accounts for most of the posterior probability mass.

In the laser tag problem, unfortunately, we are not so lucky. Be-
cause opponents may be occluded for sizable intervals, their uncer-
tainty areas can grow quite large and will quickly begin to overlap
significantly with each other. For example, our sensor log might
show two opponents entering an initially empty room and, after a
pause, one opponent exiting the room. In this case, we cannot de-
termine the true identity of the exiting opponent; all we know is
that it is one of the two which went in, and that one other must still
be inside the room.

This problem has important ramifications. If we were to attempt
to keep track of the exact posterior distribution for all actors, we
would quickly be overwhelmed with the number of plausible data
association hypotheses. However, keeping track of only the most
likely hypothesis would result in suboptimal behavior: for example,
we might accidentally relabel two opponents as each other. If we
have already tagged one of the two, that mistake will cause us to let
the other pass freely. To our knowledge, existing tracking and data
association methods are unable to cope with such situations.

This same example leads to another important and related in-
sight: occlusion introduces structure into our posterior. There are
two possible data association decisions we can make as we see an
opponent exit the room: either the first opponent to enter the room
is now exiting, or the second is. This is a difficult decision exactly
because both associations are plausible. The underlying cause of
this situation is that we cannot see inside the room. If an oppo-
nent enters and becomes occluded for a sizable interval then we
know little about its position besides that it is in the room, and that
statement holds for every robot we have seen enter. Notice that a
symmetry has been introduced into our posterior. The occlusion
afforded by the room, given sufficient time, will cause our belief
for every opponent inside to become identical. In order to exploit
this symmetry to allow us to track very large numbers of opponents

efficiently and, at the same time, drastically simplify our data asso-
ciation problem, we now factor our posterior into roles.

2.4 Factoring by Role

Roles represent classes of opponents that share similar posterior
distributions. For example one role might represent the position of
the opponent we just saw come out of a room, without reference to
its exact identity. The definition of roles makes it possible to track
multiple opponents under severe data association problems arising
from the nature of the occlusions. In particular, we can allocate or
merge roles dynamically as we gain or lose information about the
locations of opponents.

This sort of role-based (also called deictic [2]) representation al-
lows us to collapse together many different symmetric modes of our
posterior distribution, as indicated in Figure 2b.* Roles also enable
us to overcome the the data association problem: we can define the
roles so that we are certain which role should be associated with
each sensor reading, regardless of the identity of a specific oppo-
nent. That means that that there will be no correlation between
the positions of different roles, and so we can factor our belief and
track each role separately. It also means we can track arbitrarily
many opponents as long as they fall into a compact set of roles, as
will often happen if there is pervasive occlusion.

In our model roles mean that several opponents may share a sin-
gle piece of the opponent state s;. To accomplish this, we intro-
duce a function d(¢) that maps opponent indices into role indices.
Specifically it takes an opponent index £ and returns the index of
that opponent’s role. In general several opponents will fall into a
single role. We define the role index of each opponent in a role
as the opponent index of the first opponent in the role. For exam-
ple, suppose there are five opponents with identity indexes 1-5 and
they are divided into two roles, {1, 3,5} and {2,4}. In this case
d(1) = d(3) = d(5) = 1and d(2) = d(4) = 2. This particular
method for assigning indices to roles is arbitrary, but will afford
us some notational convenience. We will denote the set of active
roles in our system T" and the number of opponents assigned to a
particular role y € T as #(y).

The role-based representation has an important impact on the
posterior estimation problem. Mathematically, it allows us to sim-
plify our belief. It is well known that we can approximately fac-

YIn practice, we rarely need to worry about confusion of the sort
illustrated in Figure 2. Much more frequent is the type of confusion
illustrated in Figure 3 below, where two opponents leave our sensor
range in the same direction and quickly become indistinguishable.
But the same principle applies in either case: if we try to track the
robots individually we wind up with multi-modal posteriors and
global correlations, while if we reason about roles as described in
this section the posterior becomes much easier to track.



tor the problem of tracking several objects using positive infor-
mation into several independent tracking problems with one object
each [26], therefore we can rewrite our posterior as:

—{1...M} —0
P(st, 2 | 76, Y1:t, Wity 21261, 22 )
M
L =t —0
= HP(St:Zt | 718, Yioty Uity Z10t—1, 24 )
=1

Now we factor our posterior by role. We simply rewrite the pos-
terior replacing all the opponent indices in the equation with the
function d(£) which maps them into roles.

M
~ [ P(SH0 = sf, 2790 = 2 | )
£=1

—0
T1:t, Y1:t, Uity Z1:t—1, Rt )

Notice that we have chosen our roles so that we can track them in-
dependently. Note that many of the terms in the above equation are
similar. This is because we are tracking roles and not individuals
opponents and in general there are far fewer roles than individu-
als. The advantage of this factorization lies in the fact that it makes
tracking highly efficient. The fact that there are far fewer roles than
individuals leads directly to fewer particle filter tracks in our im-
plementation. In contrast, the common formulation of the tracking
problem requires us to maintain exponentially many hypotheses,
which clearly is impractical in the presence of many opponents.

2.5 Factoring Sensor and Motion Models

We have now given a factorization that will allow us to track
many objects efficiently. However, we have not yet shown that
this factorization is maintained over time. With joint motion and
observation models, the positions of different roles might become
dependent whenever we moved or observed, destroying the factor-
ization which we obtained in the previous steps. This is not the
case for motion and observation models that model each role inde-
pendently. As discussed in this section, both the motion model and
the measurement model are indeed independent for different roles,
validating the factorization proposed in the previous section.

The independence of the motion model for teammates is straight-
forward. Each of our teammates moves according to local mo-
tion commands; the noise in motion is independent for each of the
robots. Similarly, it is natural to assume that the opponents move
independently of each other, with independent random variables
characterizing their next state transition functions. Clearly, the lat-
ter independence assumption might not actually hold: for example,
it would be violated if we knew that opponents tended to move in
groups. In practice, though, assuming independence in opponent
motion is safe in that it establishes a worst case motion model.

Independence also holds for measurements, as discussed at length
in [19]. In particular, there are two types of information we can get
from our sensors, positive and negative. Positive information tells
us where an opponent actor is; we receive positive information by
associating a sensor reading ¢ to a role j. Negative information
tells us where an opponent is not; we receive negative information
when our sensor beams pass through a space without detecting an
opponent. Negative information produces complicated posteriors
with sharp edges because our visibility region is distorted by oc-
clusion from static obstacles in the map. Incorporating negative
information also tends to introduce multiple modes in our posterior
because a teammate’s field of view may cut out the middle of our
posterior over an opponents position. In fact, negative information
can increase the variance of our belief distribution (although it al-
ways reduces entropy). Most position-tracking systems can only

incorporate positive information [3]. If the tracked objects are only
rarely occluded, positive information is usually sufficient to achieve
good tracking. In laser tag, however, the majority of the informa-
tion we receive is negative, and so it is critical to take advantage of
negative information in our tracking system. For example, if our
system observes an opponent enter a room with only one exit, it is
imperative to keep track of the fact that it remains in the room until
our robots see it leave (or until our robots lose sight of the exit).

It is well known that we can approximately factor the problem
of tracking several objects using positive information into several
independent tracking problems with one object each [26]. For our
system, though, we make the novel observation that we can also
factor the effects of negative information. The observations en-
ter into the tracking problem through the observation likelihood
P(y; | 7¢,5t,2¢). Since each observation is conditionally inde-
pendent once we know positions and data associations, we have

P(ye | 4,50, 2) = [ [ Plyie | 7, 56, 20)
i

Now, suppose observation i is associated to role &. In this case, the
probability of observation ¢ is a product of two terms: the proba-
bility of generating y;: given that the sensor beam reached role %,
and the probability that the beam reached role k. The latter term in
turn factors into the probability that the beam avoided interception
by role 1, times the probability that the beam avoided interception
by role 2, and so forth for all roles j # k. In other words, we can
write

P(ys | 7¢,8¢,2¢) = (3)

H P(ylt | rt,SfaZti_’k = 1)

i

H P(ylt | ’I”t,S{,Zi_)j = 0)#(J)
jET#£k

which is factorized so that each term depends only on the belief for
only a single role. Thus, sensor measurements maintain the con-
ditional independence of our role estimates, and so our factorized
representation remains valid as we incorporate sensor information.

2.6 Summary of Tracking Algorithm

Combining equations (1) and (2), our final factorization of the
belief state is

P(re, sty 2e | Y14, Ut:t, 21:6—1) = (4)

P(Tt,Zt_m | yl:t,ul:t,zl:t—l)

M

d(£ £ _—d( 4 —0
HP(St( ) = Sty 2y O = 2t | T1cts Yoty Ulst, 2181, 24 )
=1

Equation (3) shows that this factorization is preserved across ev-
idence updates, and a similar argument shows that it is preserved
across motion updates.

In contrast to the naive approaches of tracking each opponent
separately or all opponents together—neither of which is compu-
tationally feasible for problems with pervasive occlusion—our fac-
torization represents an efficient and accurate way to compute our
belief state after any sequence of observations and actions. The rea-
son for this efficiency is that we have separated the overall belief-
tracking problem into a number of smaller tracking problems.



3. ROLEALLOCATION

In order to fully specify our tracking algorithm, the only remain-
ing step is to describe how we allocate and merge roles in order to
maintain independence. We begin with a single role which repre-
sents all of the robots on the opposing team. This role’s position is
initialized to a uniform distribution over free space. As we receive
new observations, there are two types of decisions we must make:
when to split a role into two, and when to merge two roles into one.

Role splitting is driven by positive information: if a positive ob-
servation’s maximum likelihood association isto a role j that repre-
sents more than one opponent, our approach splits off a copy of role
Jj (call this copy k). Role k starts out identical to role j in every way
except except it represents only one robot. (We of course must also
decrement the number of opponents represented by role j.) Now
we can incorporate the new observation into role £. When doing so,
k’s position uncertainty will become smaller than j’s. In this way,
future observations in similar locations will tend to associate with &
instead of j, causing role & to track the newly-observed robot while
Jj represents the position of the remaining unseen robots.

Role merging is a more expensive operation. After every Tmerge
time steps, our approach checks each role j against each other role
k to see if their position distributions are very similar. If they are,
we can no longer tell the two roles apart, and so we can merge them
into one. This test is quadratic in the number of roles, but since
it tends to keep the number of roles small the expense is usually
worthwhile. (In any case it is much lower than the exponential
costs associated with tracking multiple modes for each individual
opponent.)

For our measure of similarity of distributions, we use a grid-
based symmetric KL-divergence. This measure places a coarse grid
over the map and estimates the probabilities p;; and p;;, that roles
7 and k assign to each grid cell 5 (using Laplace smoothing to en-
sure that no grid cell is assigned zero probability). Based on the
frequency counts in this grid, our approach calculates symmetric
KL-divergence:

Dxr(pj,pr) = Z [pij In 29 4 pp1n B

P Pik Pij
between two different role posteriors. If this divergence is smaller
than a cutoff, the roles j and k are merged into a single role. In the
laser tag domain, the grid is two-dimensional.

When we merge two roles, the merged position distribution be-
comes the average of the two original position distributions before
the merging operation (which is a good approximation since these
two distributions were just determined to be nearly the same). This
new role is initialized to represent the sum of the number of oppo-
nents represented by the original two.

4. EXPERIMENTAL RESULTS

In order to better understand the strengths of our system we per-
formed a number of experiments, both in simulation and on real
robots. First, we evaluated the utility of dynamically merging roles
and the impact of that feature on scaling performance. Second, we
systematically explored the impact of our tracking algorithm on our
ability to find and tag opponents in the laser tag setting. Finally, we
verified that our system performs well in large scale real world en-
vironments on real robots. In each of these experiments we found
that our proposed system exhibits excellent performance. The fol-
lowing sections will explain several implementation details of our
algorithm and then treat each experiment in detail.

Number of Filters With and Without Merging
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Figure 4: In this experiment an observer watches another robot
move through a hall. Merging allows us to maintain a near con-
stant number of filters, since there are only a constant number
of beliefs in this system. Without merging the number of filters
grows linearly.

4.1 Implementation Details

For completeness, we now review the details of approximations
to the terms of equation (4) made by our implementation. Our ap-
proach approximates the first term P(rs, 27° | y1.¢, U1:t, 21:6—1)
in equation (4) with a vector of maximum-likelihood estimates re-
turned by individual self-localizers, one for each team member. A
subtlety of this first term is that our implementation picks z;° be-
fore the z;? 1M are chosen. This is an approximation because of
the constraint 3 2477 = 1 discussed in Section 2.1. This ap-
proximation has fittle practical effect because our localizer is quite
good at identifying map features.

In our implementation we represent each term inside the product
in equation (4) with a separate particle filter tracker. This represen-
tation is inexact since particle filters are Monte Carlo algorithms,
but it is asymptotically correct as we increase the number of parti-
cles. Since each individual particle filter only has to track a single
role, we have observed that we do not need too many particles in
practice to get good tracking performance.

4.2 Dynamic Role Assignment

In order to demonstrate the effectiveness of dynamically adding
and merging roles we placed, in simulation, an observer robot in a
doorway looking into a hall. We then moved a sequence of oppo-
nents through the hallway past the door at random intervals. The
setting of the experiment is shown in Figure 3: the light-filled bold
circle represents the observer robot, with a tic-mark showing ori-
entation, and the dark-filled bold circle is the opponent. Each row
of the figure represents the state of all active particle filters in the
system at different times during a pass of a single opponent. In this
example we are allowing roles to dynamically merge over time, so
the number of active filters can decrease. If we do not have this
functionality the number of active filters is strictly increasing.

To understand the utility of roles in tracking, we ran the system
with and without dynamic role merging. In each case we ran the
entire experiment 25 times, with a single run consisting of approx-
imately 20 opponents moving in sequence past the observer robot.
Figure 4 shows the average number of active particle filters in the
system in both cases. Without dynamic merging, the system keeps
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Figure 3: Each row represents the state of all the filters in the system at a given time. (a) Before splitting there are only two filters.
(b) Just after splitting there are three filters. (c) The robot has moved down the hall, out of sight of the observer and the distribution
that was assigned to it has begun to spread. (d) Distribution 2 is becoming similar to distribution 3. (e) Distributions 2 and 3 were

deemed similar enough to merge.

track of all the robots independently, despite the fact that their dis-
tributions are virtually identical. Thus, the number of active particle
filters grows with time. With dynamic merging the number of filters
remains essentially constant as similar distributions are merged.

4.3 Tracking

We explored the utility of our tracking system in the laser tag
domain by implementing two planners for locating and tagging op-
ponents. The first of these planners uses our tracker to model the
location of the opponents. The second, which we will refer to as
the baseline planner, is similar to the first except it does not use a
tracker.

In both planners point to point navigation is implemented through
standard path planning algorithms [21]. For multi-robot coordina-
tion of our teammates, our tracker-based planner uses an heuristic
approach where the teammates greedily attempt to maximize in-
formation gain, but they do so one at a time so that they can take
previous teammates decisions into account. The baseline planner
explores randomly, but uses the same technique of having the team-
mates chose actions one at a time in an attempt to avoid redundancy.

More specifically the coordination strategy in both planners works
as follows. Every Trepian Seconds each of the teammates chooses
a point to move toward. These destination points are chosen from
a coarse three-dimensional grid, (z,y,8), of points laid over the
map. Here 6 is the robot orientation, which is important because
each robot’s laser sensor covers only the area in front of it. In both

planners, teammates compute values for each of the grid points,
with higher values corresponding to more desirable locations. How-
ever, the values are computed differently for the different planners.

In the tracker-based planner, the values of the destination points
are a function of several factors including the travel time required
to reach them, the nuber of hypothisized opponent positions that
would be observed were the teammate there, the degree to which
those hypotheses would be centered in the teammate’s sensor field,
and whether or not other teammates have already chosen nearby
destinations. The degree to which each of these factors influence
planning is controlled by empirically chosen weights. In the base-
line planner the only contributing factors are the travel time and
whether or not other teammates have already chosen nearby points.

Coordination strategies similar to our tracker-based solution have
been found to be highly effective in the context of coordinated
multi-robot exploration of static environments [5, 31, 34]. We
chose the baseline planner to represent the class of behavior-based
strategies which do not attempt to track the true posterior over op-
ponent positions. We believe that, within the class of memoryless
strategies, this baseline planner is a good performer; and, since it is
very similar in architecture to the tracker based planner, it provides
a good basis for comparison.

\We compared these two strategies over 100 runs in simulation. A
single run consists of all robots (two teammates and one opponent)
starting at random positions, and the teammates searching until the
opponent is tagged. If our solution, with tracking, allows us to tag
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Figure 5: The state tracking in our system allows it to find the
opponent consistently faster than a baseline system without the
benefit of tracking.

the evader more quickly than the baseline system, we can conclude
that our tracking algorithm helps the teammates find the opponent.
If the tracking approach does not yield superior performance then
we will conclude that state estimation is not useful in this domain,
that the environment we are searching is too small and simple, or
that the planner we are using is not capable of taking advantage
of tracking information. Figure 5 plots the probability of capture
versus time for the two approaches. In other words the graph shows
the fraction of runs that completed by each time step. Our system
consistently outperforms the baseline, demonstrating the value of
our state tracking algorithm.

4.4 Complete System

Figure 6 shows a run of the complete system on physical robots.
There are two teammates, a Pioneer | and a Pioneer 1l, and one
opponent, built on a modified Scout base. Each robot carries a
Pentium-class computer which is used to run components of the
Carmen software suite [17]. These components provide each robot
with localization and point-to-point navigation in pre-built maps. In
order to control the teammates, we use the tracker based planning
strategy described in Section 4.3.

In figure 6, panel (a) shows the initial conditions. The two team-
mates begin near the center of the hallway. They are represented by
filled circles with a dark outline and a radial line indicating orienta-
tion. The position of the opponent is shown at the far left of the hall
(also a filled circle, but with a slightly different shading). The posi-
tion of the opponent is not used by the teammates for planning, but
only for distinguishing it from ancillary objects, such as people that
might walk by during an experiment. In (b), the teammates begin
moving toward the destination points selected by the coordination
technique (represented by unfilled circles with a light outline and
a radial line to indicate orientation). Note that they have chosen to
move in separate directions and have also cleared most of the hy-
potheses in the room above the corridor. Moving to (c), the right
end of the hall has been nearly cleared of hypotheses, meaning it
is very unlikely the opponent is hiding there, so both teammates
decide to move toward the left of the corridor. In (d) the opponent
is finally located and tagged by one of the teammates. At this point
the teammates label the opponent as having been tagged and ignore
it in their planning, though they still track it to avoid confusing it
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Figure 6: A complete run of the full system on real robots.

with another opponent. In (f) and (g) the teammates continue to
search the map since they have been told that there are potentially
two opponents in the world and they have only tagged one.

We have run our system in several environments besides the one
detailed above. Figure 7 shows maps with example posteriors from
two other environments, as well as a photo of the robots in the en-
vironment described above. In all these environments the system
performed well, directing the teammates to search through the map
efficiently until they found the target. During these runs the system
displayed intelligent behaviors such as splitting the robots up to ex-
plore branching corridors and keeping the robots together to cover
wide areas more efficiently without letting the opponent past.

5. RELATED WORK

Multi-robot information gathering has been addressed by many
researchers. The classical setting involves a team of robots locat-
ing stationary objects in an unknown environment [35, 10, 16, 23].
Most existing work in this field involves behavior-based strategies,
in which the search is carried out through randomized motion. Co-
ordination is often achieved through behaviors that maximize the
distance between adjacent robots. Research in this field has pre-
dominantly focused on static environments [1], although some no-
table success has been reported for environments with dynamic ob-
jects [29]. However, randomized search is limited in that it relies
on chance to find objects.

Techniques that maintain environment models during search have
been studied extensively in the field of multi-robot mapping [5, 20,



Figure 7: Environments in which our robots have played laser
tag.

31]. These approaches apply to static environments in which the
objects being tracked do not move. The tracking literature has also
thoroughly addressed the issue of tracking moving objects [3, 26,
15]. This work has recently been extended to mobile robots [11,
13, 18, 30] and distributed sensor systems [20, 24]. While these ap-
proaches work well in cases where the objects of interest lie within
sensors’ reach (with possible brief periods of occlusion), they do
not address the type of long-term occlusion found in laser tag.

6. DISCUSSION AND CONCLUSION

We have introduced a system for playing multi-robot laser tag.
Laser tag presents an interesting opportunity for research because
of its real-time, dynamic nature and because it leads to complex
non-Gaussian beliefs. We conjecture that the research issues that
result are characteristic of a much broader range of multi-robot ap-
plication domains, ranging from personal service robots (e.g., tour-
guide robots [4, 22, 32]) to the coordination of unmanned air vehi-
cles on reconnaissance missions.

Our system works primarily because of a new particle-filter based
algorithm that allows us to track arbitrary numbers of opponents in
the presence of pervasive occlusion. This is accomplished through
a factorization that allows us to track opponents in terms of roles
instead of individual identities, taking advantage of the structure
induced in our posterior by the occlusion.

Our research opens up many opportunities for future work. An
avenue of particular interest is sophisticated planning. One possible
approach to this problem is to use belief compression [28] to com-
pactly represent the belief state and use MDP planning in the com-
pressed space. Another direction to explore is creating a more so-
phisticated opponent model to increase performance against smarter
adversaries. A third interesting extension is to augment the tracker
to handle some types of correlations among adversaries; this would
allow us to, for example, build play-books of opponent tactics and
use knowledge of these plays to infer something about occluded
opponents given the known positions of others.

We believe that the laser tag problem is highly interesting for
multi-agent mobile robotics research. Just like robotic soccer, it in-
volves fast-moving entities; however, the nature of the sensor data
(specifically, pervasive occlusion) poses new challenges in robot
perception. As this paper suggests, these problems can be ad-
dressed through a novel tracking technique that represents oppo-
nents by role instead of individual identity.
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